
Appendices to “Sparse Gaussian Conditional Random Fields:
Algorithms, Theory, and Application to Energy Forecasting”

A. Derivation of Gradient, Hessian, and Differentials

Here we derive analytic expressions for the gradient, Hessian, and various differentials of the log likelihood
function. Recall that the log-likelihood is given by

f(Λ,Θ) = − log |Λ|+ trΛSyy + 2trΘTSxy + trΛ−1ΘTSxxΘ (1)

We adopt the differential matrix calculus notation from (Magnus & Neudecker, 1988) where for a matrix A ∈
Rm×n and a function f : Rm×n → R, dkf(A;U) : Rm×n×Rm×n → R denotes the k-th differential of the function
f evaluated at U . For example, the first differential can easily be expressed in terms of the gradient

df(A;U) = tr∇Af(A)TU. (2)

Other derivatives for functions of matrices (i.e., Hessians or higher order terms) are cumbersome to represent
directly, but the differentials themselves can typically be expressed compactly; indeed, it is often simplest to
first derive these differentials and then use them to determine analytical expressions for the Hessians and higher
order derivatives. Furthermore, the Taylor expansion of a function can be represented directly in terms of its
differentials; for instance the second order approximation is given by

f(A+ ∆) ≈ f(A) + df(A; ∆) +
1

2
d2f(A; ∆) ≡ f(A) + vec(∇Af(A))T vec(∆) +

1

2
vec(∆)T (∇2

Af(A)) vec(∆) (3)

where vec denotes the vectorization of a matrix (forming a vector by concatenating the columns), and ∇2
Af(A)

denotes the Hessian.

Using standard rules of differential calculus, we can compute the first and second order differentials of the
log-likelihood f(Λ,Θ),

df(Λ,Θ;U, V ) = trSyyU + 2trSyxV − trΛ−1U + 2trΛ−1ΘTSxxV − trΛ−1ΘTSxxΘΛ−1U (4)

and from this expression we can easily determine the relevant gradients

∇Λf(Λ,Θ) = Syy − Λ−1 − Λ−1ΘTSxxΘΛ−1

∇Θf(Λ,Θ) = 2Sxy + 2SxxΘΛ−1.
(5)

Similarly, we can differentiate again to find the second differential

d2f(Λ,Θ;U, V ) = 2trΛ−1UΛ−1ΘTSxxΘΛ−1U + trΛ−1UΛ−1U + 2trΛ−1V TSxxV − 4trΛ−1UΛ−1ΘTSxxV. (6)

Combining the first and second differential gives the full second order Taylor expansion shown in the paper. It
also lets us determine the Hessian itself, which we use in the incoherence condition for the theoretical results

∇2
Λ,Θf(Λ,Θ) =

[
Λ−1 ⊗ (Λ−1 + 2Λ−1ΘTSxxΘΛ−1) −2Λ−1 ⊗ Λ−1ΘTSxx

−2Λ−1 ⊗ SxxΘΛ−1 2Λ−1 ⊗ Sxx

]
(7)

B. Detailed Description of Newton Coordinate Descent Method

We present a detailed description and full pseudo-code for the Newton coordinate descent algorithm. The
derivation mirrors that in (Hsieh et al., 2011). The complete method is shown in Algorithm 1, with the coordinate
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Algorithm 1 Newton Coordinate Descent for SGCRF

Input: Input features X ∈ Rm×n and outputs Y ∈ Rm×p; regularization parameter λ; algorithm parameters
ε, σ, α, β.
Output: Optimized parameters Λ, Θ
Initialize: Λ← I, Θ← 0, Σ← Λ−1

while (not converged) do
1. Compute the gradient, determine active sets SΛ, SΘ using (14), and check for convergence.
2. Find regularized Newton direction DΛ, DΘ using Algorithm 2.
3. Initialize α← 1 and compute

µ← (tr∇Λf(Λ,Θ)T∆Λ + tr∇Θf(Λ,Θ)T∆Θ + ‖Λ + ∆Λ‖1? + ‖Θ + ∆Θ‖1).

while (insufficient descent) do
1. Compute the Cholesky decomposition LLT = Λ + αDΛ, continuing if not positive definite
2. Check descent f(Λ + αDΛ,Θ + αDΘ) < f(Λ,Θ) + ασµ and break if satisfied
3. α← βα

end while
end while

descent inner loop for computing the approximation to the Newton direction given in Algorithm 2. This process
repeats until the solution converges to a within a specified tolerance, checked using the KKT conditions.

Next, we derive the coordinatewise updates for the inner loop and highlight the key optimizations that are used
in order to achieve fast performance.

B.1. Coordinate descent updates for the Newton approximation

To begin, note that for a fixed Λ and Θ, the regularized Newton direction is given by the solution to the
second-order Taylor expansion which for our problem has the form

h(∆Λ,∆Θ) = trSyy∆Λ + 2trSyx∆Θ − trΛ−1∆Λ + 2trΛ−1ΘTSxx∆Θ−

trΛ−1ΘTSxxΘΛ−1∆Λ + trΛ−1∆ΛΛ−1ΘTSxxΘΛ−1∆Λ −
1

2
trΛ−1∆ΛΛ−1∆Λ+

λ (||Λ + ∆Λ‖1,? + ‖Θ + ∆Θ‖1)

(8)

We split the updates into three cases. First, we consider optimizing over a diagonal element of DΛ by finding
µ = arg minµ h(∆Λ + µeie

T
i ,∆Θ) which has the explicit form

minimize
µ

1

2
µ2
[
Σ2
ii + 2ΣiiΨii

]
+ µ

[
−Σii + (Syy)ii −Ψii + (ΣUΣ)ii − 2(ΣΘTSxxV Σ)ii + 2(ΨUΣ)ii

]
+

λ|Λii + µ|
(9)

where Σ = Λ−1 and Ψ = ΣΘTSxxΘΣ.

Next, note that for two symmetric matrices A, B, not necessarily equal, the symmetric update is given by

arg min
µ

trA(U + µ(eie
T
j + eje

T
i ))B(U + µ(eie

T
j + eje

T
i ))

= arg min
µ

µ2trA(eie
T
j + eje

T
i )B(eie

T
j + eje

T
i ) + µtrAUB(eie

T
j + eje

T
i ) + µtrA(eie

T
j + eje

T
i )BU

= arg min
µ

µ2(AiiBjj + 2AijBij +AjjBii) + 2µ((AUB)ij + (AUB)ji)

(10)

Applying this equivalence twice, once with A = B = Σ and again with A = Σ, B = Ψ the the symmetric update
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Algorithm 2 Coordinate descent inner loop

Input: S empirical covariance, λ regularization parameter, SΛ, SΘ active sets and Λ,Θ current estimates
Output: Approximate regularized Newton direction DΛ, DΘ

Initialize: DΛ ← 0, DΘ ← 0, U ← 0, V ← 0
while (not converged) do
for coordinate (i, j) in SΛ do

1. Find µ by solving (9) or (11), using U and V for efficiency.
2. Symmetrically update DΛ and two rows of U

(DΛ)ij , (DΛ)ij ← (DΛ)ij + µ

Ui ← Ui + µΣj

Uj ← Uj + µΣi

where Σi denotes the ith row of Λ−1.
end for
for coordinate (i, j) in SΘ do

1. Find µ by solving (12), using U and V for efficiency.
2. Update DΘ and one row of V

(DΘ)ij ← (DΘ)ij + µ

Vi ← Vi + µΣj

end for
end while

for an off-diagonal element of matrix DΛ, µ = arg minµ h(∆Λ + µ(eie
T
j + eje

T
i ),∆Θ) is given by

minimize
µ

µ2
[
Σ2
ij + ΣiiΣjj + ΣiiΨjj + 2ΣijΨij + ΣjjΨii

]
+

2µ [−Σij + (Syy)ij −Ψij + (ΣUΣ)ij − Φij − Φji + (ΨUΣ)ij + (ΨUΣ)ji] +

2λ|Λij + Uij + µ|

(11)

where Φ = ΣΘTSxxV Σ. Finally, we consider optimizing over an element of DΘ

minimize
µ

µ2 [Σjj(Sxx)ii] + µ [2(Sxy)ij + 2(SxxΘΣ)ij + 2(SxxV Σ)ij − 2(SxxΘΣUΣ)ij ] +

λ|Θij + Vij + µ|
(12)

Each equation has a quadratic form and thus can be solved in closed form. The second two have an `1 penalty
and the form minµ

1
2aµ

2 + bµ+ λ|c+ µ| which has the solution

µ = −c+ Sλ/a

(
c− b

a

)
(13)

B.2. Optimizations

As in the case of the MRF (Hsieh et al., 2011), there are several modifications to a naive solution that significantly
reduce the running time of the algorithm.

First, consider the matrix products involved in the coordinatewise updates above. A naive implementation of the
coordinate descent algorithm would require O((n+ p)2) operations even though the majority of the elements are
unchanged from one iteration. However, by caching products of the static matrices and maintaining a factorized
form of the products involving ∆Λ and ∆Θ, specifically U = ∆ΛΣ, V = ∆ΘΣ, we reduce this to O((n+p)). As a
consequence, at each iteration of the loop we must update the rows of U and V corresponding to the coordinates
of ∆Λ and ∆Θ.
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Next, we describe how we drastically reduce the coordinate descent active set. At each iteration of the outer loop,
we fix the active set using the current nonzero coordinates and the KKT conditions of the objective function.
We include a coordinate of Λ, respectively Θ, if

|(∇Λf(Λ,Θ))i,j | > λ or Λij 6= 0

|(∇Θf(Λ,Θ))i,j | > λ or Θij 6= 0.
(14)

Since the size of this active set is determined by the number of nonzero elements in the parameters, for sparse
solutions the speed up is very significant. Note that although we fix the active set before beginning coordinate
descent, as in the MRF case (Hsieh et al., 2011), we still have convergence guarantees for the overall algorithm.

Finally, note that when taking a step we must ensure sufficient descent and that the Λ parameter remains in
the semidefinite cone. We accomplish this using the Cholesky decomposition, which is also used for efficiently
computing Λ−1.

C. Theoretical Analysis

We will make the following assumptions about the input and output variables X and Y . These mirror similar
assumptions in (Wainwright, 2009) and (Ravikumar et al., 2011), and we will discuss the precise differences.

First, the analysis here proceeds on the assumption that there is a true underlying model generating the test
data, of the prescribed form (i.e., the data is generated according to a sparse Gaussian CRF). It is trivial to
extend this analysis to the case of sub-Gaussian noise, but we simply assume Gaussian noise for simplicity of
presentation

Assumption 1. Underlying model The data is generated according to

y|x ∼ N (−Λ?−1Θ?Tx,Λ?−1). (15)

where each row of [Λ? Θ?T ] has at most d nonzero entries (i.e., the vertices corresponding to output variables in
the graphical model of the CRF have maximum degree d).

For simplicity, we will also denote Σ? = Λ?−1.

Our second assumption is a restricted convexity requirement, which ensures that the optimization problem
restricted to the active set is unique. This is a common assumption for `1 approaches (the same condition
appears in the least-squares analysis of (Wainwright, 2009)), and the only extension here is that we require this
to hold for each output variable.

Assumption 2. Restricted convexity For each output i, let Si denote {j : Θji 6= 0} (i.e., Si is the “active
set” of edges directly connecting an input to yi), we have that

λmin

(
1

m
XT
Si
XSi

)
> 0. (16)

The next assumption is more subtle (and quite strict in practice), but is again typical for exact subset selection
proofs for `1 approaches. Namely, we require a mutual incoherence assumption, which effectively ensures that
the connections in the CRF that correspond to the “true” edges do not correlate too much with edges that are
not the support set.

Assumption 3. Mutual incoherence Let S denote the active set of all variables in vector form

S =

[
vec(supp{Λ?})
vec(supp{Θ?})

]
(17)

where supp denotes the support function (the indicator of whether an element is nonzero), and let S̄ denote its
complement. Then for H = ∇2

Λ,Θf(Λ,Θ) defined above

|||HS̄S(HSS)−1|||∞ ≤ 1− α (18)

for some α > 1, where |||·|||∞ denotes the matrix infinity norm, the maximum absolute row sum.
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Our first lemma shows that the gradients ∇Λf(Λ?,Θ?) and ∇Θf(Λ?,Θ?) (the gradients evaluated at the true
parameters) are small (in infinity norm) with high probability given samples on the order of m = Ω(log n+log p).
The proof (shown below) follows from a standard bound on Gaussian random variables, and from Lemma 1 in
(Ravikumar et al., 2011).

Lemma 1. Given data generated by the model in Assumption 1 we have that

P (‖∇Θf(Λ?,Θ?)‖∞ > ε) ≤ 2np exp

{
− mε2

8c2σ?c2X

}
(19)

where cσ? = maxi Σ?ii, and cX = maxj=1,...,n ‖Xj‖2/
√
m; the maximum normalized `2 norm over columns of X.

Furthermore,

P (‖∇Λf(Λ?,Θ?)‖∞ > ε) ≤ 4p2 exp

{
− mε2

3200c2σ?

}
(20)

for 0 < δ < 40cσ? .

The next lemma is a generic primal-dual witness approach, mirroring exactly the derivation in (Wainwright,
2009), but presented in a generic form. For the presentation here, we will use a generic optimization problem
minimize f(θ) + λ‖θ‖1, though we will apply this specifically to our CRF problem momentarily. Intuitively, the
lemma states conditions for which optimizing over the known support set is equivalent to optimizing with the `1
penalty.

Lemma 2. Consider some sparse θ? with S = supp(θ?), and consider the two optimization problems

θ̂ = arg min
θ
f(θ) + λ‖θ‖1

θ̃ = arg min
θ,θS̄=0

f(θ) + λ‖θ‖1.
(21)

Define ∆ = θ̃ − θ?, and R(∆) = −∇θf(θ̃) +∇θf(θ?) +∇2
θf(θ?)∆. Then if the following conditions hold

1. The solution θ̃ is unique.

2. Mutual incoherence holds, i.e., |||(∇2
θf(θ?))S̄S(∇2

θf(θ?))−1
SS |||∞ ≤ 1− α

3. max{‖∇θf(θ?)‖∞, ‖R(∆)‖∞} ≤ λα/8

then the `1 solution recovers the restricted solution, θ̃ = θ̂.

In our setting, the ∆ and R(∆) are themselves matrices and thus slightly more complex. Thus, for subsequent
lemmas, we define the following terms that we use to quantity the error of the second order Taylor expansions
of our particular log-likelihood, evaluated at the true parameters. For any Λ, Θ, we define ∆Λ = Λ − Λ? and
∆Θ = Θ−Θ? and

∆ ≡
[

Λ
Θ

]
. (22)

Define

RΛ(∆Λ,∆Θ) = ∇Λf(Λ?,Θ?)−∇Λf(Λ? + ∆Λ,Θ
? + ∆Θ) + d(∇Λf(Λ?,Θ?); ∆Λ,∆Θ)

RΘ(∆Λ,∆Θ) = ∇Θf(Λ?,Θ?)−∇Θf(Λ? + ∆Λ,Θ
? + ∆Θ) + d(∇Θf(Λ?,Θ?); ∆Λ,∆Θ),

(23)

which are the residuals of the first order Taylor expansion of the gradient (i.e., the errors in the second order
Taylor expansion of the function itself), and

R(∆) =

[
RΛ(∆Λ,∆Θ)
RΘ(∆Λ,∆Θ)

]
. (24)

The next lemma bounds the residual ‖R(∆)‖∞ in terms of the distance from the true parameters, ‖∆‖∞.
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Lemma 3. Under the definitions above, if

‖∆‖∞ ≤
1

d
min

{
1

3cΣ?

,
cΘ?

2

}
(25)

then
‖R(∆)‖∞ ≤ 206c4Σ?c2Θ?c2Xd

2‖∆‖2∞ (26)

where cΣ? = maxi,j Σ?ij and cΘ? = maxi,j Θ?
ij.

Finally, we show that when the gradient evaluated at the true model are sufficiently small, then ‖∆‖∞ itself is
small.

Lemma 4. Under the model above, suppose that

max{‖∇Λf(Λ?,Θ?)‖∞, ‖∇Θf(Λ?,Θ?)‖∞} ≤
1

2cH?

[
min

{
1

3cΣ?d
,

1

412c4Σ?c2Θ?c2Xd
2

}
− λ
]
. (27)

Then
‖∆‖∞ ≤ 2cH?(max{‖∇Λf(Λ?,Θ?)‖∞, ‖∇Θf(Λ?,Θ?)‖∞}+ λ) (28)

where cH? = maxi,j H
?
ij, the maximum element of the Hessian evaluated at the true parameters.

These elements allow us to prove the desired theorem.

Theorem 1. Using assumptions 1-3 above, suppose we have sample size

m ≥ 4122C2d4(1 + 8/α)2 log(pn) (29)

where C = max{3cΣ? , c−1
Θ∗ , c4Σ?c2Σ?c2X} and choose λ as

λ ≥ (8/α)cσ?cX
√

3200

√
log(pn) + log 4

m
(30)

then with probability greater than 1− c1 exp(−c2mλ2) we have

1. The solution to the `1 regularized optimization problem, Λ̃, Θ̃, has nonzero entries that are a strict subset
of the nonzero entries of Λ?, Θ?

2. The solution satisfies the elementwise bounds

max{‖Λ̃− Λ?‖∞, ‖Θ̃−Θ?‖∞} ≤ 2(1 + 8α−1)cH?cσ?cX
√

3200

√
log(pn) + log 4

m
(31)

Proof. Let

δ = cσ?cX
√

3200

√
log(pn) + log 4

m
. (32)

Then by Lemma 1 and the minimum bound on m we have that

max{‖∇Θf(Λ?,Θ?)‖∞, ‖∇Λf(Λ?,Θ?)‖∞} ≤ δ (33)

with probability greater than 1 − c1 exp(−c2mλ2); we proceed with the proof conditioned on this event. Next,
note by our choice of λ we have that δ ≤ αλ/8 and thus the first half of the third condition for Lemma 2 holds.
It remains to show that R(∆) ≤ αλ/8. By our minimum bound on m and our choice of λ we have that(

1 +
8

α

)
δ ≤ 1

2cH?

min

{
1

3cΣ?d
,

1

412c4Σ?c2Θ?c2Xd
2

}
(34)

and thus Lemma 4 applies, which gives

‖∆‖∞ ≤ 2cH?

(
1 +

8

a

)
δ. (35)
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Therefore, the assumption of ‖∆‖∞ ≤ 1
d min{ 1

3cΣ?
, cΘ?

2 } holds and we apply Lemma 3 to establish

‖R(∆)‖∞ ≤ 206c4Σ?c2Θ?c2Xd
2‖∆‖2∞

≤ 824c4Σ?c2Θ?c2Xd
2cH?

(
1 +

8

a

)2

δ2

≤

[
824c4Σ?c2Θ?c2Xd

2cH?

(
1 +

8

a

)2

δ

]
αλ

8

≤ αλ

8
.

(36)

Finally, note that our Assumption 2 implies that the solution (Λ̃, Θ̃) is unique and thus combined with the above
derivation and Assumption 3, we the conditions for Lemma 2 and thus we conclude that (Λ̃, Θ̃) = (Λ̂, Θ̂) and
the thus claim 1 and 2 are satisfied.

C.1. Proofs of Lemmas

Proof. (of Lemma 1) Let X be given and assuming that Y is generated according to our model. We first consider
P (‖∇Θf(Λ?,Θ?)‖∞ > ε); as shown in Appendix A, we have

∇Θf(Λ,Θ) = 2Sxy + 2SxxΘΛ−1. (37)

Writing β∗ = −Θ∗Λ∗−1 and Σ∗ = Λ∗−1, we have Y = Xβ∗ + Z where Z ∈ Rm×p has rows Zi ∼ N (0,Σ∗), and
thus

2Sxy + 2SxxΘ∗Λ∗−1 =
2

m
(XTY −XTXβ∗) =

2

m
XTZ. (38)

By our assumptions that ‖Xj‖2/
√
n < cX for all columns of X and the maximum diagonal entry Σ? is c2σ? , we

have

Var

(
2

m
XT
i Zj

)
≤ 4c2σ?c2X

m
(39)

for any columns Xi and Zj . Therefore by the union bound and Gaussian tail probability we have

P

(
‖ 1

m
XTZ‖∞ > ε

)
≤ 2np exp

{
− mε2

8c2σ∗c2X

}
(40)

Next, we consider P (‖∇Λf(Λ?,Θ?)‖∞ > ε) and again from Appendix A, we have

∇Λf(Λ,Θ) = Syy − Λ−1 − Λ−1ΘTSxxΘΛ−1 (41)

which we can rewrite as

Syy − Λ∗−1 − Λ∗−1Θ∗TSxxΘ∗Λ∗−1 =
1

m
ZTZ − Σ∗. (42)

Now we can apply Lemma 1 in (Ravikumar et al., 2011) and arrive at the desired bound

P (‖ 1

m
ZTZ − Σ∗‖∞ > ε) < 4p2 exp

{
− mε2

3200c2σ?

}
(43)

for 0 < ε < 40cσ? .

Proof. (of Lemma 2)

The proof here proceeds exactly as in (Wainwright, 2009) and (Ravikumar et al., 2011), so we describe it relatively
quickly. The goal is to show that when solve the restricted problem, the resulting θ̃ (which is zero outside the
support set S) is also optimal for the full `1 problem. Defining ∆ = θ̃− θ?, the the full `1 optimization problem
can be written as

∇2
θf(θ?)∆ +∇θf(θ?)−R(∆) + λz = 0. (44)
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If we can show that ‖z‖∞ < 1, then θ̃ is an optimal solution to the original `1 problem, so θ̃ = θ̂. Furthermore,

the solution θ̂ cannot have support outside the support of θ?.

We can write the above optimality condition in terms of S and S̄, using H = ∇2
θf(θ?) and g = ∇θf(θ?) for

simplicity [
HSS HSS̄

HS̄S HS̄S̄

] [
∆S

0

]
+

[
gS
gS̄

]
+

[
R(∆)S
R(∆)S̄

]
+ λ

[
zS
zS̄

]
(45)

Using the fact that
∆S = H−1

SS (R(∆)S − gS − λzS) (46)

we can solve forzS̄ gives

zS̄ = − 1

λ
HS̄S∆S +

1

λ
(R(∆)S − gS̄) =

1

λ
HS̄SH

−1
SS (gS −R(∆)S) +HS̄SH

−1
SSzS +

1

λ
(R(∆)S − gS) (47)

Thus

‖zS̄‖∞ ≤
2− α
λ

(‖g‖∞ + ‖R(∆)‖∞) + 1− α ≤ 2− α
λ

αλ

4
+ 1− α < 1. (48)

Proof. (of Lemma 3) Since R(∆) is the residual of the first order Taylor expansion of the likelihood gradient, by
the mean value theorem we have that the exists t ∈ [0, 1] such that

RΛ(∆Λ,∆Θ) = d2(∇Λf(Λ? + t∆Λ,Θ
? + t∆Λ); ∆Λ,∆Θ) (49)

and similarly for RΘ(∆Λ,∆Θ). The first and second differentials of these gradient terms are given by (note that
since these are the differentials of a matrix-valued function, we cannot simplify as many of the expressions as we
did for the differential of the likelihood function)

d(∇Λf(Λ?,Θ?);U, V ) = Λ−1UΛ−1 + Λ−1UΛ−1ΘTSxxΘΛ−1 + Λ−1ΘTSxxΘΛ−1UΛ−1 −
Λ−1V TSxxΘΛ−1 − Λ−1ΘTSxxV Λ−1

d2(∇Λf(Λ?,Θ?);U, V ) = −2Λ−1UΛ−1UΛ−1 − 2Λ−1UΛ−1UΛ−1ΘTSxxΘΛ−1 −
2Λ−1UΛ−1ΘTSxxΘΛ−1UΛ−1 − 2Λ−1ΘTSxxΘΛ−1UΛ−1UΛ−1 +

2Λ−1UΛ−1V TSxxΘΛ−1 + 2Λ−1UΛ−1ΘTSxxV Λ−1 +

2Λ−1V TSxxΘΛ−1UΛ−1 + 2Λ−1ΘTSxxV Λ−1UΛ−1 −
2Λ−1V TSxxV Λ−1

d(∇Θf(Λ?,Θ?);U, V ) = −2SxxΘΛ−1UΛ−1 + 2SxxV Λ−1

d2(∇Θf(Λ?,Θ?);U, V ) = 4SxxΘΛ−1UΛ−1UΛ−1 − 4SxxV Λ−1UΛ−1

(50)

For example, RΛ(∆Λ,∆Θ) is equal to the second expression with the Λ? terms replaced by Λ? + ∆Λ, the Θ?

terms replaced by Θ? + ∆Θ and U and V replaced by ∆Λ and ∆Θ respectively. To bound R(∆), we bound each
of these terms individually.

Although the expression is rather lengthy, note that each term in the second differentials has a quadratic expres-
sion in ∆Λ and ∆θ, with at most four (Λ?+ t∆Λ)−1 terms, two Θ?+ t∆Θ terms and one Sxx term. Furthermore,
we use the fact that

‖ABC‖∞ = ‖(CT ⊗A) vec(B)‖∞ ≤ |||C|||1|||A|||∞‖B‖∞ (51)

to place the vector infinity norm around the Sxx term in all cases, since ‖Sxx‖∞ ≤ c2X . Thus, each term in the
second differential is bounded by

c2X |||(Λ? + t∆Λ)−1|||4∞|||Θ
? + t∆Θ|||21|||∆|||1 (52)

Now, first note that since ∆ as a most d entries per column

|||∆|||1 ≤ d‖∆‖∞. (53)
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Now, note that
(Λ? + t∆Λ)−1 = (I + tΛ?−1∆Λ)−1 (54)

and

(I + tΛ?−1∆Λ)−1 =

∞∑
i=1

(−1)i(tΛ?−1∆Λ)i (55)

so that

|||(Λ? + t∆Λ)−1|||∞ ≤ |||Λ
?−1|||∞

∞∑
i=1

|||Λ?−1|||i∞|||∆Λ|||∞‖
i

≤ cΣ?

1− cΣ?d‖∆‖∞
≤ 3cΣ?

2
.

(56)

Furthermore,

|||Θ? + t∆Θ|||1 ≤ |||Θ
?|||1 + |||∆Θ|||1 ≤ cΘ? +

1

2
d‖∆‖∞ ≤

3cΘ?

2
. (57)

Combining these expressions results in the bound

‖R(∆)‖∞ ≤ 206c4Σ?c2Θ?c2Xd
2‖∆‖2∞ (58)

as required.

Proof. (of Lemma 4) Let (Λ?,Θ?) be the true parameters with support S and (Λ̃, Θ̃) be the solution to the
optimization problem restricted to this support set. Our goal is to bound ‖∆‖∞ where ∆ = [∆Λ∆Θ] with
∆Λ = Λ̃− Λ? and ∆Θ = Θ̃−Θ?.

Define
r := 2cH?(max{‖∇Λf(Λ?,Θ?)‖∞, ‖∇Θf(Λ?,Θ?)‖∞}+ λ) (59)

and note that by assumption we have

r ≤ 2cH?(min

{
1

3cΣ?d
,

1

412c4Σ?c2Θ?cXd2

}
) (60)

To bound ‖∆‖∞ observe that we have ∆C = 0 and

∆S = H?−1
SS (RS(∆) +GS − λZS) (61)

as shown in the proof for Lemma 2. Our approach will be the same as that of (Ravikumar et al., 2011), using
Brouwer’s fixed point theorem. To do so, note that we can view the RHS of the above equation as a continuous
function of ∆ and thus by Brouwer’s fixed point theorem on a compact set, it suffices to show that if show that
if ‖∆S‖∞ ≤ r then ‖H∗−1

SS (RS −GS − λZS)‖∞ ≤ r as this implies that there is a solution to this equation such

that ‖∆S‖ ≤ r and by uniqueness (from Assumption 2) this solution must be (Λ̃, Θ̃).

Taking infinity norm, we have

‖∆S‖∞ ≤ ‖H∗−1
SS ‖∞‖R(∆)‖∞ + ‖H∗−1

SS ‖∞‖GS − λZS‖∞ (62)

For the first term, through application of the bound on R(∆) and by assumption on ‖∆‖∞

‖H∗−1
SS ‖∞‖R(∆)‖∞ ≤ 206κH∗c4Σ?c2Θ?cXd

2‖∆‖2∞ ≤
r

2
(63)

And for the second term
‖H∗−1

SS ‖∞‖GS − λZS‖∞ ≤ κH∗(‖G‖∞ + λ) ≤ r

2
(64)

and thus the claim is proven.
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x1 x2 x3

y1 y2 y3

Figure 1. The chain CRF with 3 input variables and 3 output variables.
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Figure 2. The mutual incoherence condition |||HS̄S(HSS)
−1|||∞ while varying ρ and β.

D. Mutual Incoherence for the Chain CRF

In this section we consider the mutual incoherence condition for the chain CRF, illustrated in Figure 1. For
simplicity, we consider a class of models parameterized by two variables: ρ describing the conditional dependence
between the output variables and β describing the relative influence of the input variables on the output variables.
In particular, the class of models specified by

Λ? =

1 ρ 0
ρ 1 ρ
0 ρ 1

 Θ? =

ρβ 0 0
0 ρβ 0
0 0 ρβ

 (65)

with positive ρ and β.

We are interested in characterizing the range over which the mutual incoherence condition

|||HS̄S(HSS)−1|||∞ < 1 (66)

holds. Note that the Hessian (given in Appendix A) depends not only on these parameters, but also on the
empirical covariance of the input features, Sxx; for the purpose of this illustration, we take Sxx to be the identity
matrix, representing an ideal case in which the input features are perfectly uncorrelated. Under these conditions,
we can see from Figure 2 that mutual incoherence indeed holds over a range of the parameters. However, as ρ
increases and the output variables become more correlated, we approach the boundary at which this assumption
is no longer valid.
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