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A. Proof of Theorem 3

The proof uses a large deviation probability inequality of (Wong & Shen, 1995) to treat one-sided log-likelihood ratios
with constraints.

Let S =
{
xτ : ∥xτ∥0 ≤ s01, ∥xτ∥0,G ≤ s02

}
, ∥x∥0 =

∑p
j=1 I(|xj | ̸= 0) is the L0-norm of x, and ∥x∥0,G =

∑|G|
j=1 I(∥xj∥2 ̸= 0)

is the L0-norm over the groups. Now we partition S. Note that for C ⊂ (G1, · · · , G|G|), it can be partitioned into

C = (C \ C0) ∪ (C ∩ C0). Then

S =

s02∪
i=0

∪
C∈Bi

SAC ,C ,

where SAC ,C =
{
xτ ∈ S : C(x) = C = (Gi1 , · · · , Gik),

∑
j |AGj | ≤ s01

}
, and Bi = {C ̸= C0 : |C0 \ C| = i, |C| ≤ s02}, with

|Bi| =
( s02
s02−i

)∑i
j=0

(|G|−s02
j

)
; i = 0, · · · , s02.

To bound the error probability, let L(x) = − 1
2
∥Ax− y∥2 be the likelihood. Note that

{x̂ ̸= x̂o} ⊆ {L(x̂)− L(x̂o) ≥ 0} ⊆ {L(x̂)− L(x0) ≥ 0}.

This together with {x̂ ̸= x̂o} ⊆ {x̂ ∈ S} implies that

{x̂ ̸= x̂o} ⊆ {L(x̂)− L(x0) ≥ 0} ∩ {x̂ ∈ S}.

Consequently,

I ≡ P
(
x̂ ̸= x̂o)

≤ P
(
L(x̂)− L(x0) ≥ 0; x̂ ∈ S

)
≤

s02∑
i=1

∑
C∈Bi

∑
SAC,C

P ∗
(

sup
x∈SAC,C

(
L(x)− L(x0)

)
≥ 0
)

≤
s02∑
i=1

s01∑
j=1

∑
|C|=i,|AG|=j

P ∗
(

sup{
−log(1−h2(x,x0))≥max(i,1)Cmin(x

0)−d3τ
d2p,x∈SAC,C

} (L(x)− L(x0)
)
≥ 0
)
,

where P ∗ is the outer measure and the last two inequalities use the fact that SAC ,C ⊆ {x ∈ SAC ,C : max(|C0 \
C|, 1)Cmin(x

0) ≤ − log(1− h2(x,x0))} ⊆ {− log(1− h2(x,x0)) ≥ d1 max(i, 1)Cmin(x
0)− d3τ

d2p}, under Assumption 3.

For I, we apply Theorem 1 of (Wong & Shen, 1995) to bound each term. Towards this end, we verify their entropy
condition (3.1) for the local entropy over SAC ,C for |C| = 1, · · · , s02 and |A| = 1, · · · , s01. Under Assumption 2 ε = εn,p =

(2c0)
1/2c−1

4 log(21/2/c3) log p(
s01
n
)1/2 satisfies there with respect to ε > 0, that is,

sup
{0≤|A|≤p0}

∫ 21/2ε

2−8ε2
H1/2(t/c3,Fji)dt ≤ p

1/2
0 21/2ε log(2/21/2c3) ≤ c4n

1/2ε2. (16)

for some constant c3 > 0 and c4 > 0, say c3 = 10 and c4 = (2/3)5/2

512
. By Assumption 2, Cmin(x

0) ≥ ε2n,p0,p implies (16),

provided that s01 ≥ (2c0)
1/2c−1

4 log(21/2/c3).

Note that |Bi| =
( s02
s02−i

)∑i
j=0

(|G|−s02
j

)
≤ (|G|(|G| − s02)

i ≤ (|G|2/4)i by the binomial coefficients formula. Moreover,∑s01
j=1 2

jij ≤ is
0
1 , and

∑
j1+···+ji=j

(
j

j1,···ji

)
2j = (2i)j using the Multinomial Theorem. By Theorem 1 of (Wong & Shen,
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1995), there exists a constant c2 > 0, say c2 = 4
27

1
1926

,

I ≤
s02∑
i=1

|Bi|
s01∑
j=1

∑
(j1,···ji)

(
j

j1, · · · ji

)
2j1 · · · 2ji exp

(
− c2niCmin(x

0)
)

≤
s02∑
i=1

exp
(
− c2niCmin(x

0) + 2i(log |G|+ log s01)
)

≤ exp
(
− c2nCmin(x

0) + 2(log |G|+ log s01)
)
.

Let G = {x̂ ̸= x̂0}. For the risk property, Eh2(x̂,x0) = Eh2(x̂0,x0) + Eh2(x̂,x0)I(G) is upper bounded by

Eh2(x̂,x0) + exp
(
− c2nCmin(x

0) + 2(log |G|+ log s01)
)
= (1 + o(1))Eh2(x̂0,x0),

using the fact that h(x̂,x0) ≤ 1. This completes the proof.

B. Accelerated Gradient Method

The AGM procedure is listed in Algorithms 3, in which f(x) is the objective function 1
2
∥Ax− y∥22 with ∇f(x) denotes

its gradient at x. In addition, fL,u(x) is the linearization of f(x) at u defined as follows:

fL,u(x) = f(u) +∇f(u)T (x− u) +
L

2
∥x− u∥22.

Algorithm 3 Accelerated Gradient Method (Nesterov, 2007; Beck & Teboulle, 2009) for (7)

Input: A, y, s1, s2, L0, x0,
Output: solution x to (7)
1: Initialize: L0, x1 = x0, α−1 = 0, α0 = 1, t = 0.
2: repeat
3: t = t+ 1, βt =

αt−2−1
αt−1

, ut = xt + βt(xt − xt−1)

4: Line search: Find the smallest L = 2jLt−1 such that

f(xt+1) ≤ fL,ut(xt+1),

where xt+1 = SGLP(ut − 1
L∇f(ut), s1, s2)

5: αt+1 =
1+

√
1+4α2

t

2 , Lt = L.
6: until Converge
7: return xt

C. Proof of Theorem 2

We utilize an intermediate lemma from (Bonnans & Shapiro, 1998):

Lemma 2. Let X be a metric space and U be a normed space. Suppose that for all x ∈ X, the function ψ(x, ·) is
differentiable and that ψ(x, Y ) and DY ψ(x, Y ) (the partial derivative of ψ(x, Y ) with respect to Y ) are continuous on
X × U . Let Φ be a compact subset of X. Define the optimal value function as ϕ(Y ) = infx∈Φ ψ(x, Y ). The optimal value
function ϕ(Y ) is directionally differentiable. In addition, if for any Y ∈ U , ψ(·, Y ) has a unique minimizer x(Y ) over Φ,
then ϕ(Y ) is differentiable at Y and the gradient of ϕ(Y ) is given by ϕ′(Y ) = DY ψ(x(Y ), Y ).

Proof of Theorem 2. Since both constraints are active, if (x, λ, η) = SGLP(v, s1, s2), then x and λ are also the optimal
solutions to the following problem:

maximize
λ

minimize
x∈X

ψ(x, λ) =
1

2
∥x− v∥22 + λ(∥x∥1 − s1),

where X = {x : ∥x∥G ≤ s2}. By Lemma 2, ϕ(λ) = infx∈X ψ(x, λ) is differentiable with the derivative given by ∥x∥1. In
addition, as a pointwise infimum of a concave function, so does ϕ(λ) (Boyd & Vandenberghe, 2004) and its derivative,
∥x∥1, is non-increasing. Therefore s1 = ∥x∥1 is non-decreasing as λ becomes smaller. This completes the proof.
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D. Algorithm for Solving (8)

Based on the analysis in Section 3.2, we give a detailed description of the sparse group lasso projection algorithm in
Algorithm 4:

Algorithm 4 Sparse Group Lasso Projection Algorithm

Input: v, s1, s2
Output: an optimal solution x to the Sparse Group Projection Problem

Function SGLP(v, s1, s2)

1: if ∥x∥1 ≤ s1 and ∥x∥G ≤ s2 then
2: return v
3: end if
4: xC1 = Ps1

1 (v)
5: xC2 = Ps2

G (v)
6: xC12= bisec(v, s1, s2)
7: if ∥xC1∥G ≤ s2 then
8: return xC1

9: else if ∥xC2∥1 ≤ s1 then
10: return xC2

11: else
12: return xC12

13: end if

Function bisec(v, s1, s2)

1: Initialize up, low and tol
2: while up− low > tol do
3: λ̂ = (low + up)/2

4: if (12) has a solution η̂ given vλ̂ then

5: calculate ŝ1 using η̂ and λ̂.
6: if ŝ1 ≤ s1 then
7: up = λ̂
8: else
9: low = λ̂

10: end if
11: else
12: up = λ̂
13: end if
14: end while
15: λ∗ = up
16: Solve (12) to get η∗

17: Calculate x∗ from λ∗ and η∗ via (10)
18: return x∗

E. Algorithm for Solving (13)

We give a detailed description of algorithm for solving the restricted projection (13) in Algorithm 5.

F. The ADMM Projection algorithm

Alternating Direction Method of Multipliers (ADMM) is widely chosen for its capability of decomposing coupled vari-
ables/constraints, which is exactly the case in our projection problem. Before applying ADMM, we transform (8) into an
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equivalent form as follows:

minimize
x

1

2
∥x− v∥22

subject to ∥u∥1 ≤ s1

∥w∥G ≤ s2

u = x,w = x.

The augmented Lagrangian is:

L(x,λ,η) = 1

2
∥x− v∥22 + λT (u− x) + ηT (w − x) +

ρ

2
(∥u− x∥22 + ∥w − x∥22).

Utilize the scaled form (Boyd et al., 2011), i.e., let λ = λ
ρ
, η = η

ρ
, we can obtain an equivalent augmented Lagrangian:

L(x,λ,η) = 1

2
∥x− v∥22 +

ρ

2
(∥x− u− λ∥22 + ∥x−w − η∥22)−

ρ

2
(∥λ∥22 + ∥η∥22).

Now we calculate the optimal x, λ and η through alternating minimization. For fixed u and w, the optimal x possesses
a closed-form solution:

x =
1

1 + 2ρ
(v + ρ(u+ λ+w + η)) .

For fixed x and u, finding the optimal w is a group lasso projection:

minimize
w

1

2
∥w − (x− η)∥22

subject to ∥w∥G ≤ s2

(17)

For fixed x and w, finding the optimal u amounts to solve an L1-ball projection:

minimize
u

1

2
∥u− (x− λ)∥22

subject to ∥u∥1 ≤ s1.
(18)

The update of multipliers is standard as follows:

λ = λ+ u− x

η = η +w − x
(19)

Algorithm 6 summarizes the above procedure. Note that, the value of the penalty term ρ is fixed in Algorithm 6. However,
in our implementation, we increase ρ whenever necessary to obtain faster convergence.

G. The Dykstra’s Algorithm

The Dykstra’s algorithm is a general scheme to compute the projection onto intersections of convex sets. It is carried out
by taking Euclidean projections onto each convex set alternatively in a smart way and is guaranteed to converge for least
squares objective function (Combettes & Pesquet, 2010). The details of applying Dykstra’s Algorithm to our projection
problem are listed in Algorithm 7.
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Algorithm 5 Restricted Sparse Group Lasso Projection Algorithm

Input: v, s1, s2, T1, T3

Output: an optimal solution x to the Restricted Sparse Group Projection Problem (13)

Function RSGLP(v, s1, s2, T1, T3)

1: if ∥xT1∥1 ≤ s1 and ∥xT3∥G ≤ s2 then
2: return v
3: end if
4: x

(T1)
c

C1
= v(T1)

c

, xT1

C1
= Ps1

1 (vT1)

5: x
(T3)

c

C2
= v(T3)

c

, xT3

C2
= Ps2

G (vT3)

6: x
(T1)

c

C12
= v(T1)

c

, xT1

C12
= bisec(v, s1, s2, T1, T3)

7: if ∥xT3

C1
∥G ≤ s2 then

8: return xC1

9: else if ∥xT1

C2
∥1 ≤ s1 then

10: return xC2

11: else
12: return xC12

13: end if

Function bisec(v, s1, s2, T1, T3)

1: Initialize up, low and tol
2: while up− low > tol do
3: λ̂ = (low + up)/2

4: if (15) has a solution η̂ given vλ̂ then

5: calculate ŝ1 using η̂ and λ̂.
6: if ŝ1 ≤ s1 then
7: up = λ̂
8: else
9: low = λ̂

10: end if
11: else
12: up = λ̂
13: end if
14: end while
15: λ∗ = up
16: Solve (15) to get η∗

17: Calculate (x∗)T1 from λ∗ and η∗.
18: return (x∗)T1

Algorithm 6 ADMM (Boyd et al., 2011) for (8)

Input: v, s1, s2
Output: an optimal solution x to (8)
Initialize: x0, u0, w0, λ0, η0, t = 0, ρ > 0
repeat

t = t+ 1
xt =

1
1+2ρ (v + ρ(ut−1 + λt−1 +wt−1 + ηt−1))

wt = Ps2
G (xt − ηt−1)

ut = Ps1
1 (xt − λt−1)

λt = λt−1 + ut − xt, ηt = ηt−1 +wt − xt.
until Converge
return xt
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Algorithm 7 Dykstra’s Algorithm (Combettes & Pesquet, 2010) for (8)

Input: v, s1, s2
Output: an optimal solution x to (8)
Initialize: x0 = v, p0 = 0, q0 = 0, t = 0
repeat

t = t+ 1
yt−1 = Ps2

G (xt−1 + pt−1)
pt = xt−1 + pt−1 − yt−1

xt = Ps1
1 (yt−1 + qt−1)

qt = yt−1 + qt−1 − xt

until Converge
return xt


