Supplementary Material for paper: Efficient Sparse Group Feature Selection via Nonconvex Optimization

A. Proof of Theorem 3

The proof uses a large deviation probability inequality of (Wong & Shen, 1995) to treat one-sided log-likelihood ratios with constraints.

Let $S = \{ \boldsymbol{x}^{\tau} : \|\boldsymbol{x}^{\tau}\|_{0} \leq s_{1}^{0}, \|\boldsymbol{x}^{\tau}\|_{0,G} \leq s_{2}^{0} \}, \|\boldsymbol{x}\|_{0} = \sum_{j=1}^{p} I(|x_{j}| \neq 0) \text{ is the } L_{0}\text{-norm of } \boldsymbol{x}, \text{ and } \|\boldsymbol{x}\|_{0,G} = \sum_{j=1}^{|G|} I(\|\boldsymbol{x}_{j}\|_{2} \neq 0) \text{ is the } L_{0}\text{-norm over the groups. Now we partition } \mathcal{S}.$ Note that for $C \subset (G_{1}, \cdots, G_{|G|})$, it can be partitioned into $C = (C \setminus C^{0}) \cup (C \cap C^{0}).$ Then

$$\mathcal{S} = \bigcup_{i=0}^{s_2^0} \bigcup_{C \in \mathcal{B}_i} \mathcal{S}_{A_C,C},$$

where $S_{A_C,C} = \{ \boldsymbol{x}^{\tau} \in \mathcal{S} : C(\boldsymbol{x}) = C = (G_{i_1}, \cdots, G_{i_k}), \sum_j |A_{G_j}| \le s_1^0 \}$, and $\mathcal{B}_i = \{ C \neq C_0 : |C^0 \setminus C| = i, |C| \le s_2^0 \}$, with $|\mathcal{B}_i| = {s_2^0 \choose j} \sum_{j=0}^i {|G| - s_2^0 \choose j}; i = 0, \cdots, s_2^0$.

To bound the error probability, let $L(\boldsymbol{x}) = -\frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|^2$ be the likelihood. Note that

$$\{\hat{\boldsymbol{x}} \neq \hat{\boldsymbol{x}}^o\} \subseteq \{L(\hat{\boldsymbol{x}}) - L(\hat{\boldsymbol{x}}^o) \ge 0\} \subseteq \{L(\hat{\boldsymbol{x}}) - L(\boldsymbol{x}^0) \ge 0\}$$

This together with $\{\hat{x} \neq \hat{x}^o\} \subseteq \{\hat{x} \in S\}$ implies that

$$\{\hat{oldsymbol{x}}
eq \hat{oldsymbol{x}}^o\}\subseteq\{L(\hat{oldsymbol{x}})-L(oldsymbol{x}^0)\geq 0\}\cap\{\hat{oldsymbol{x}}\in\mathcal{S}\}.$$

Consequently,

$$\begin{split} I &\equiv P\left(\hat{x} \neq \hat{x}^{o}\right) \\ &\leq P\left(L(\hat{x}) - L(x^{0}) \geq 0; \hat{x} \in \mathcal{S}\right) \\ &\leq \sum_{i=1}^{s_{2}^{0}} \sum_{C \in \mathcal{B}_{i}} \sum_{S_{A_{C},C}} P^{*}\left(\sup_{x \in \mathcal{S}_{A_{C},C}} \left(L(x) - L(x^{0})\right) \geq 0\right) \\ &\leq \sum_{i=1}^{s_{2}^{0}} \sum_{j=1}^{s_{1}^{0}} \sum_{|C|=i,|A_{G}|=j} P^{*}\left(\sup_{\{-\log(1-h^{2}(x,x^{0})) \geq \max(i,1)C_{\min}(x^{0}) - d_{3}\tau^{d_{2}}p, x \in \mathcal{S}_{A_{C},C}\}} \left(L(x) - L(x^{0})\right) \geq 0\right), \end{split}$$

where P^* is the outer measure and the last two inequalities use the fact that $\mathcal{S}_{A_C,C} \subseteq \{ \boldsymbol{x} \in \mathcal{S}_{A_C,C} : \max(|C^0 \setminus C|, 1)C_{\min}(\boldsymbol{x}^0) \leq -\log(1-h^2(\boldsymbol{x}, \boldsymbol{x}^0)) \} \subseteq \{ -\log(1-h^2(\boldsymbol{x}, \boldsymbol{x}^0)) \geq d_1 \max(i, 1)C_{\min}(\boldsymbol{x}^0) - d_3 \tau^{d_2} p \}, \text{ under Assumption 3.}$

For *I*, we apply Theorem 1 of (Wong & Shen, 1995) to bound each term. Towards this end, we verify their entropy condition (3.1) for the local entropy over $S_{A_C,C}$ for $|C| = 1, \dots, s_2^0$ and $|A| = 1, \dots, s_1^0$. Under Assumption 2 $\varepsilon = \varepsilon_{n,p} = (2c_0)^{1/2}c_4^{-1}\log(2^{1/2}/c_3)\log p(\frac{s_1^0}{n})^{1/2}$ satisfies there with respect to $\varepsilon > 0$, that is,

$$\sup_{\{0\le|A|\le p_0\}} \int_{2^{-8}\varepsilon^2}^{2^{1/2}\varepsilon} H^{1/2}(t/c_3, \mathcal{F}_{ji})dt \le p_0^{1/2} 2^{1/2}\varepsilon \log(2/2^{1/2}c_3) \le c_4 n^{1/2}\varepsilon^2.$$
(16)

for some constant $c_3 > 0$ and $c_4 > 0$, say $c_3 = 10$ and $c_4 = \frac{(2/3)^{5/2}}{512}$. By Assumption 2, $C_{\min}(\boldsymbol{x}^0) \ge \varepsilon_{n,p_0,p}^2$ implies (16), provided that $s_1^0 \ge (2c_0)^{1/2}c_4^{-1}\log(2^{1/2}/c_3)$.

Note that $|\mathcal{B}_i| = {s_2^0 \choose s_2^0 - i} \sum_{j=0}^i {|G| - s_2^0 \choose j} \le (|G|(|G| - s_2^0)^i \le (|G|^2/4)^i$ by the binomial coefficients formula. Moreover, $\sum_{j=1}^{s_1^0} 2^j i^j \le i^{s_1^0}$, and $\sum_{j_1+\dots+j_i=j} {j \choose j_1,\dots,j_i} 2^j = (2i)^j$ using the Multinomial Theorem. By Theorem 1 of (Wong & Shen,

1995), there exists a constant $c_2 > 0$, say $c_2 = \frac{4}{27} \frac{1}{1926}$,

$$\begin{split} I &\leq \sum_{i=1}^{s_2^0} |\mathcal{B}_i| \sum_{j=1}^{s_1^0} \sum_{(j_1, \cdots j_i)} \binom{j}{j_1, \cdots j_i} 2^{j_1} \cdots 2^{j_i} \exp\left(-c_2 n i C_{\min}(\boldsymbol{x}^0)\right) \\ &\leq \sum_{i=1}^{s_2^0} \exp\left(-c_2 n i C_{\min}(\boldsymbol{x}^0) + 2i (\log|G| + \log s_1^0)\right) \\ &\leq \exp\left(-c_2 n C_{\min}(\boldsymbol{x}^0) + 2 (\log|G| + \log s_1^0)\right). \end{split}$$

Let $G = {\hat{\boldsymbol{x}} \neq \hat{\boldsymbol{x}}^0}$. For the risk property, $Eh^2(\hat{\boldsymbol{x}}, \boldsymbol{x}^0) = Eh^2(\hat{\boldsymbol{x}}^0, \boldsymbol{x}^0) + Eh^2(\hat{\boldsymbol{x}}, \boldsymbol{x}^0)I(G)$ is upper bounded by

$$Eh^{2}(\hat{\boldsymbol{x}}, \boldsymbol{x}^{0}) + \exp\left(-c_{2}nC_{\min}(\boldsymbol{x}^{0}) + 2(\log|G| + \log s_{1}^{0})\right) = (1 + o(1))Eh^{2}(\hat{\boldsymbol{x}}^{0}, \boldsymbol{x}^{0}),$$

using the fact that $h(\hat{\boldsymbol{x}}, \boldsymbol{x}^0) \leq 1$. This completes the proof.

B. Accelerated Gradient Method

The AGM procedure is listed in Algorithms 3, in which $f(\boldsymbol{x})$ is the objective function $\frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_2^2$ with $\nabla f(\boldsymbol{x})$ denotes its gradient at \boldsymbol{x} . In addition, $f_{L,\boldsymbol{u}}(\boldsymbol{x})$ is the linearization of $f(\boldsymbol{x})$ at \boldsymbol{u} defined as follows:

$$f_{L,\boldsymbol{u}}(\boldsymbol{x}) = f(\boldsymbol{u}) + \nabla f(\boldsymbol{u})^T (\boldsymbol{x} - \boldsymbol{u}) + \frac{L}{2} \|\boldsymbol{x} - \boldsymbol{u}\|_2^2.$$

Algorithm 3 Accelerated Gradient Method (Nesterov, 2007; Beck & Teboulle, 2009) for (7)

Input: $A, y, s_1, s_2, L_0, x_0,$

Output: solution x to (7)

1: Initialize: L_0 , $x_1 = x_0$, $\alpha_{-1} = 0$, $\alpha_0 = 1$, t = 0.

2: repeat

3: $t = t + 1, \beta_t = \frac{\alpha_{t-2} - 1}{\alpha_{t-1}}, u_t = x_t + \beta_t (x_t - x_{t-1})$

4: Line search: Find the smallest $L = 2^{j}L_{t-1}$ such that

$$f(\boldsymbol{x}_{t+1}) \leq f_{L,\boldsymbol{u}_t}(\boldsymbol{x}_{t+1})$$

where $\boldsymbol{x}_{t+1} = \text{SGLP}(\boldsymbol{u}_t - \frac{1}{L}\nabla f(\boldsymbol{u}_t), s_1, s_2)$ 5: $\alpha_{t+1} = \frac{1+\sqrt{1+4\alpha_t^2}}{2}, L_t = L.$ 6: until Converge 7: return \boldsymbol{x}_t

C. Proof of Theorem 2

We utilize an intermediate lemma from (Bonnans & Shapiro, 1998):

Lemma 2. Let X be a metric space and U be a normed space. Suppose that for all $x \in X$, the function $\psi(x, \cdot)$ is differentiable and that $\psi(x, Y)$ and $D_Y\psi(x, Y)$ (the partial derivative of $\psi(x, Y)$ with respect to Y) are continuous on $X \times U$. Let Φ be a compact subset of X. Define the optimal value function as $\phi(Y) = \inf_{x \in \Phi} \psi(x, Y)$. The optimal value function $\phi(Y)$ is directionally differentiable. In addition, if for any $Y \in U$, $\psi(\cdot, Y)$ has a unique minimizer x(Y) over Φ , then $\phi(Y)$ is differentiable at Y and the gradient of $\phi(Y)$ is given by $\phi'(Y) = D_Y \psi(x(Y), Y)$.

Proof of Theorem 2. Since both constraints are active, if $(x, \lambda, \eta) = \text{SGLP}(v, s_1, s_2)$, then x and λ are also the optimal solutions to the following problem:

maximize minimize
$$\psi(x,\lambda) = \frac{1}{2} ||x-v||_2^2 + \lambda(||x||_1 - s_1),$$

where $X = \{x : \|x\|_G \le s_2\}$. By Lemma 2, $\phi(\lambda) = \inf_{x \in X} \psi(x, \lambda)$ is differentiable with the derivative given by $\|x\|_1$. In addition, as a pointwise infimum of a concave function, so does $\phi(\lambda)$ (Boyd & Vandenberghe, 2004) and its derivative, $\|x\|_1$, is non-increasing. Therefore $s_1 = \|x\|_1$ is non-decreasing as λ becomes smaller. This completes the proof.

D. Algorithm for Solving (8)

Based on the analysis in Section 3.2, we give a detailed description of the sparse group lasso projection algorithm in Algorithm 4:

Algorithm 4 Sparse Group Lasso Projection Algorithm

Input: v, s_1, s_2 **Output:** an optimal solution x to the Sparse Group Projection Problem Function SGLP(\boldsymbol{v}, s_1, s_2) 1: if $||x||_1 \le s_1$ and $||x||_G \le s_2$ then 2: return v3: end if 4: $\boldsymbol{x}_{C_1} = \mathcal{P}_1^{s_1}(\boldsymbol{v})$ 5: $\boldsymbol{x}_{C_2} = \mathcal{P}_G^{s_2}(\boldsymbol{v})$ 6: $\boldsymbol{x}_{C_{12}} = \text{bisec}(\boldsymbol{v}, s_1, s_2)$ 7: if $\|x_{C_1}\|_G \leq s_2$ then 8: return x_{C_1} 9: else if $||x_{C_2}||_1 \leq s_1$ then 10: return x_{C_2} 11: else 12:return $x_{C_{12}}$ 13: end if **Function** bisec $(\boldsymbol{v}, s_1, s_2)$ 1: Initialize up, low and tol 2: while up - low > tol do 3: $\hat{\lambda} = (low + up)/2$ if (12) has a solution $\hat{\eta}$ given $v^{\hat{\lambda}}$ then 4: calculate \hat{s}_1 using $\hat{\eta}$ and $\hat{\lambda}$. 5: if $\hat{s_1} \leq s_1$ then 6: 7: $up = \lambda$ 8: else 9: $low = \hat{\lambda}$ end if 10:else 11:12: $up = \lambda$ end if 13:14: end while 15: $\lambda^* = up$ 16: Solve (12) to get η^* 17: Calculate x^* from λ^* and η^* via (10) 18: return x^*

E. Algorithm for Solving (13)

We give a detailed description of algorithm for solving the restricted projection (13) in Algorithm 5.

F. The ADMM Projection algorithm

Alternating Direction Method of Multipliers (ADMM) is widely chosen for its capability of decomposing coupled variables/constraints, which is exactly the case in our projection problem. Before applying ADMM, we transform (8) into an

equivalent form as follows:

$$\begin{array}{ll} \underset{x}{\operatorname{minimize}} & \frac{1}{2} \| \boldsymbol{x} - \boldsymbol{v} \|_{2}^{2} \\ \text{subject to} & \| \boldsymbol{u} \|_{1} \leq s_{1} \\ & \| \boldsymbol{w} \|_{G} \leq s_{2} \\ & \boldsymbol{u} = \boldsymbol{x}, \boldsymbol{w} = \boldsymbol{x} \end{array}$$

The augmented Lagrangian is:

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\eta}) = \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{v}\|_{2}^{2} + \boldsymbol{\lambda}^{T}(\boldsymbol{u} - \boldsymbol{x}) + \boldsymbol{\eta}^{T}(\boldsymbol{w} - \boldsymbol{x}) + \frac{\rho}{2}(\|\boldsymbol{u} - \boldsymbol{x}\|_{2}^{2} + \|\boldsymbol{w} - \boldsymbol{x}\|_{2}^{2})$$

Utilize the scaled form (Boyd et al., 2011), i.e., let $\lambda = \frac{\lambda}{\rho}$, $\eta = \frac{\eta}{\rho}$, we can obtain an equivalent augmented Lagrangian:

$$\mathcal{L}(\boldsymbol{x},\boldsymbol{\lambda},\boldsymbol{\eta}) = \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{v}\|_{2}^{2} + \frac{\rho}{2} (\|\boldsymbol{x} - \boldsymbol{u} - \boldsymbol{\lambda}\|_{2}^{2} + \|\boldsymbol{x} - \boldsymbol{w} - \boldsymbol{\eta}\|_{2}^{2}) - \frac{\rho}{2} (\|\boldsymbol{\lambda}\|_{2}^{2} + \|\boldsymbol{\eta}\|_{2}^{2}).$$

Now we calculate the optimal x, λ and η through alternating minimization. For fixed u and w, the optimal x possesses a closed-form solution:

$$\boldsymbol{x} = \frac{1}{1+2\rho} \left(\boldsymbol{v} + \rho(\boldsymbol{u} + \boldsymbol{\lambda} + \boldsymbol{w} + \boldsymbol{\eta}) \right).$$

For fixed \boldsymbol{x} and \boldsymbol{u} , finding the optimal \boldsymbol{w} is a group lasso projection:

For fixed \boldsymbol{x} and \boldsymbol{w} , finding the optimal \boldsymbol{u} amounts to solve an L_1 -ball projection:

$$\begin{array}{ll} \underset{\boldsymbol{u}}{\text{minimize}} & \frac{1}{2} \| \boldsymbol{u} - (\boldsymbol{x} - \boldsymbol{\lambda}) \|_2^2 \\ \text{subject to} & \| \boldsymbol{u} \|_1 \le s_1. \end{array}$$

$$(18)$$

The update of multipliers is standard as follows:

$$\begin{aligned} \lambda &= \lambda + u - x \\ \eta &= \eta + w - x \end{aligned} \tag{19}$$

Algorithm 6 summarizes the above procedure. Note that, the value of the penalty term ρ is fixed in Algorithm 6. However, in our implementation, we increase ρ whenever necessary to obtain faster convergence.

G. The Dykstra's Algorithm

The Dykstra's algorithm is a general scheme to compute the projection onto intersections of convex sets. It is carried out by taking Euclidean projections onto each convex set alternatively in a smart way and is guaranteed to converge for least squares objective function (Combettes & Pesquet, 2010). The details of applying Dykstra's Algorithm to our projection problem are listed in Algorithm 7.

Algorithm 5 Restricted Sparse Group Lasso Projection Algorithm

Input: v, s_1, s_2, T_1, T_3 **Output:** an optimal solution x to the Restricted Sparse Group Projection Problem (13) Function $\text{RSGLP}(\boldsymbol{v}, s_1, s_2, T_1, T_3)$ 1: if $\|\boldsymbol{x}^{T_1}\|_1 \leq s_1$ and $\|\boldsymbol{x}^{T_3}\|_G \leq s_2$ then 2: return v3: end if 3: end if 4: $\boldsymbol{x}_{C_{1}}^{(T_{1})^{c}} = \boldsymbol{v}^{(T_{1})^{c}}, \, \boldsymbol{x}_{C_{1}}^{T_{1}} = \mathcal{P}_{1}^{s_{1}}(\boldsymbol{v}^{T_{1}})$ 5: $\boldsymbol{x}_{C_{2}}^{(T_{3})^{c}} = \boldsymbol{v}^{(T_{3})^{c}}, \, \boldsymbol{x}_{C_{2}}^{T_{3}} = \mathcal{P}_{G}^{s_{2}}(\boldsymbol{v}^{T_{3}})$ 6: $\boldsymbol{x}_{C_{12}}^{(T_{1})^{c}} = \boldsymbol{v}^{(T_{1})^{c}}, \, \boldsymbol{x}_{C_{12}}^{T_{1}} = \text{bisec}(\boldsymbol{v}, \, s_{1}, \, s_{2}, \, T_{1}, \, T_{3})$ 7: if $\|\boldsymbol{x}_{C_{1}}^{T_{3}}\|_{G} \leq s_{2}$ then 8: return x_{C_1} 9: else if $\|\boldsymbol{x}_{C_2}^{T_1}\|_1 \leq s_1$ then return x_{C_2} 10: 11: else 12:return $x_{C_{12}}$ 13: end if **Function** bisec $(\boldsymbol{v}, s_1, s_2, T_1, T_3)$ 1: Initialize up, low and tol 2: while up - low > tol do 3: $\lambda = (low + up)/2$ if (15) has a solution $\hat{\eta}$ given v^{λ} then 4: calculate \hat{s}_1 using $\hat{\eta}$ and $\hat{\lambda}$. 5:if $\hat{s_1} \leq s_1$ then 6: 7: $up = \hat{\lambda}$ 8: else $low = \hat{\lambda}$ 9: end if 10: 11: else 12: $up = \hat{\lambda}$ end if 13:14: end while 15: $\lambda^* = up$ 16: Solve (15) to get η^* 17: Calculate $(\boldsymbol{x}^*)^{T_1}$ from λ^* and η^* . 18: return $(x^*)^{T_1}$

Algorithm 6 ADMM (Boyd et al., 2011) for (8)

Input: v, s_1, s_2 Output: an optimal solution x to (8) Initialize: $x_0, u_0, w_0, \lambda_0, \eta_0, t = 0, \rho > 0$ repeat t = t + 1 $x_t = \frac{1}{1+2\rho} (v + \rho(u_{t-1} + \lambda_{t-1} + w_{t-1} + \eta_{t-1}))$ $w_t = \mathcal{P}_G^{s_2}(x_t - \eta_{t-1})$ $u_t = \mathcal{P}_1^{s_1}(x_t - \lambda_{t-1})$ $\lambda_t = \lambda_{t-1} + u_t - x_t, \eta_t = \eta_{t-1} + w_t - x_t.$ until Converge return x_t

Algorithm 7 Dykstra's Algorithm (Combettes & Pesquet, 2010) for (8)