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Abstract

Sparse feature selection has been demon-
strated to be effective in handling high-
dimensional data. While promising, most
of the existing works use convex methods,
which may be suboptimal in terms of the ac-
curacy of feature selection and parameter es-
timation. In this paper, we expand a non-
convex paradigm to sparse group feature se-
lection, which is motivated by applications
that require identifying the underlying group
structure and performing feature selection si-
multaneously. The main contributions of this
article are twofold: (1) computationally, we
introduce a nonconvex sparse group feature
selection model and present an efficient op-
timization algorithm, of which the key step
is a projection with two coupled constraints;
(2) statistically, we show that the proposed
model can reconstruct the oracle estimator.
Therefore, consistent feature selection and
parameter estimation can be achieved. Nu-
merical results on synthetic and real-world
data suggest that the proposed nonconvex
method compares favorably against its com-
petitors, thus achieving desired goal of deliv-
ering high performance.

1. Introduction

During the past decade, sparse feature selection has
been extensively investigated, on both optimization
algorithms (Bach et al., 2010) and statistical proper-
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ties (Tibshirani, 1996; Zhao & Yu, 2006; Bickel et al.,
2009). When the data possesses certain group struc-
ture, sparse modeling has been explored in (Yuan &
Lin, 2006; Meier et al., 2008; Huang & Zhang, 2010)
for group feature selection. The group lasso (Yuan
& Lin, 2006) proposes an L2-regularization method
for each group, which ultimately yields a group-wisely
sparse model. The utility of such a method has been
demonstrated in detecting splice sites (Yang et al.,
2010)—an important step in gene finding and theoret-
ically justified in (Huang & Zhang, 2010). The sparse
group lasso (Friedman et al., 2010) enables to encour-
age sparsity at the level of both features and groups
simultaneously. In the literature, most approaches use
convex methods to pursue the grouping effect due to
globality of the solution and tractable computation.
However, this may lead to suboptimal results. Recent
studies demonstrate that nonconvex methods (Fan &
Li, 2001; Wang et al., 2007; Breheny & Huang, 2009;
Huang et al., 2009; 2012), particularly the truncated
L1-penalty (Shen et al., 2012; Mazumder et al., 2011;
Zhang, 2011), may deliver superior performance than
the standard L1-formulation. In addition, (Shen et al.,
2012) suggests that a constrained nonconvex formu-
lation is slightly more preferable than its regulariza-
tion counterpart due to theoretical merits. In this pa-
per, we investigate the sparse group feature selection
through a constrained nonconvex formulation. Ideally,
we wish to optimize the following L0-model:

minimize
x

1

2
∥Ax− y∥22

subject to

p∑
j=1

I(|xj | ̸= 0) ≤ s1

|G|∑
j=1

I(∥xGj∥2 ̸= 0) ≤ s2,

(1)
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where A is an n by p data matrix with its columns
representing different features. x = (x1, · · · , xp) is
partitioned into |G| non-overlapping groups {xGi} and
I(·) is the indicator function. The advantage of the
L0-model (1) lies in its complete control on two levels
of sparsity (s1, s2), which are the numbers of features
and groups respectively. However, problems like (1)
are known to be NP-hard (Natarajan, 1995) due to
the discrete nature.

This paper develops an efficient nonconvex method,
which is a computational surrogate of the L0-method
described above and has theoretically guaranteed per-
formance. We contribute in two aspects: (i) com-
putationally, we present an efficient optimization al-
gorithm, of which the key step is a projection with
two coupled constraints. (ii) statistically, the proposed
method retains the merits of the L0 approach (1) in the
sense that the oracle estimator can be reconstructed,
which leads to consistent feature selection and param-
eter estimation.

The rest of this paper is organized as follows. Section 2
presents our nonconvex formulation with its optimiza-
tion algorithm explored in Section 3. We analyze the
theoretical properties of our formulation in Section 4
and discuss the significance of this work in Section 5.
Section 6 demonstrates the efficiency of the proposed
method as well as the performance on real-world ap-
plications. Section 7 concludes the paper with a dis-
cussion of future research.

2. Nonconvex Formulation and
Computation

One major difficulty of solving (1) comes from noncon-
vex and discrete constraints, which require enumerat-
ing all possible combinations of features and groups to
achieve the optimal solution. Therefore we approxi-
mate these constraints by their continuous computa-
tional surrogates:

minimize
x

1

2
∥Ax− y∥22

subject to

p∑
j=1

Jτ (|xj |) ≤ s1,

|G|∑
i=1

Jτ (∥xGi∥2) ≤ s2,

(2)
where Jτ (z) = min(|z|/τ, 1) is a truncated L1-function
approximating the L0-function (Shen et al., 2012;
Zhang, 2010), and τ > 0 is a tuning parameter such
that Jτ (z) approximates the indicator function I(|z| ̸=
0) as τ approaches zero.

To solve the nonconvex problem (2), we develop a Dif-
ference of Convex (DC) algorithm (Tao & An, 1997)

based on a decomposition of each nonconvex constraint
function into a difference of two convex functions:

p∑
j=1

Jτ (|xj |) = S1(x)− S2(x),

where

S1(x) =
1

τ

p∑
j=1

|xj |, S2(x) =
1

τ

p∑
j=1

max{|xj | − τ, 0}

are convex in x. Then each trailing convex function,
say S2(x), is replaced by its affine minorant at the
previous iteration

S1(x)−S2(x̂
(m−1))−∇S2(x̂

(m−1))T (x−x̂(m−1)), (3)

which yields an upper approximation of the constraint
function

∑p
j=1 Jτ (|xj |) as follows:

1

τ

p∑
j=1

|xj | · I(|x̂(m−1)
j | ≤ τ) +

p∑
j=1

I(|x̂(m−1)
j | > τ) ≤ s1.

(4)
Similarly, the second nonconvex constraint in (2) can
be approximated by

1

τ

|G|∑
j=1

∥xGj∥2·I(∥x̂
(m−1)
Gj

∥2 ≤ τ)+

|G|∑
j=1

I(∥x̂(m−1)
Gj

∥2 > τ) ≤ s2.

(5)
Note that both (4) and (5) are convex constraints,
which result in a convex subproblem as follows:

minimize
x

1

2
∥Ax− y∥22

subject to
1

τ
∥xT1(x̂

(m−1))∥1 ≤ s1 − (p− |T1(x̂
(m−1))|)

1

τ
∥xT3(x̂

(m−1))∥G ≤ s2 − (|G| − |T2(x̂
(m−1))|),
(6)

where T1, T2 and T3 are the support sets1 defined as:

T1(x) = {i : |xi| ≤ τ}, T2(x) = {i : ∥xGi∥2 ≤ τ}
T3(x) = {i : xi ∈ xGj , j ∈ T2(x)},

∥xT1∥1 and ∥xT3∥G denote the corresponding value
restricted on T1 and T3 respectively, and ∥x∥G =∑|G|

i=1 ∥xGi
∥2. Solving (6) would provide us an up-

dated solution, denoted as x̂(m), which leads to a re-
fined formulation of (6). Such procedure is iterated
until the objective value stops decreasing. The DC al-
gorithm is summarized in Algorithm 1, from which we
can see that efficient computation of (6) is critical to
the overall DC routine. We defer detailed discussion
of this part to Section 3.

1Support sets indicate that the elements outside these
sets have no effect on the particular items in the constraints
of (6).
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Algorithm 1 DC programming for solving (2)

Input: A, y, s1, s2
Output: solution x to (2)
1: Initialize x̂(0).
2: for m = 1, 2, · · · do
3: Compute x̂(m) by optimizing (6).
4: Update T1, T2 and T3.
5: if the objective stops decreasing then
6: return x = x̂(m)

7: end if
8: end for

3. Optimization Procedures

As mentioned in Section 2, efficient computation of the
convex subproblem (6) is of critical importance for the
proposed DC algorithm. Note that (6) has an identical
form of the constrained sparse group lasso problem:

minimize
x

1

2
∥Ax− y∥22

subject to ∥x∥1 ≤ s1

∥x∥G ≤ s2

(7)

except that x is restricted to the two support sets. As
to be shown in Section 3.3, an algorithm for solving (6)
can be obtained through only a few modifications on
that of (7). Therefore, we first focus on solving (7).
Notice that if problem (7) has only one constraint, the
solution is well-established (Duchi et al., 2008; Bach
et al., 2010). However, the two coupled constraints
here make the optimization problem more challenging
to solve.

3.1. Accelerated Gradient Method

For large-scale problems, the dimensionality of data
can be very high, therefore first-order optimization
is often preferred. We adapt the well-known accel-
erated gradient method (AGM) (Nesterov, 2007; Beck
& Teboulle, 2009), which is commonly used due to its
fast convergence rate.

To apply AGM to our formulation (7), the crucial step
is to solve the following Sparse Group Lasso Projection
(SGLP):

minimize
x

1

2
∥x− v∥22

subject to ∥x∥1 ≤ s1 (C1)

∥x∥G ≤ s2 (C2),

(8)

which is an Euclidean projection onto a convex set and
a special case of (7) when A is the identity. For conve-
nience, let C1 and C2 denote the above two constraints
in what follows.

Since the AGM is a standard framework whose effi-
ciency mainly depends on that of the projection step,
we leave the detailed description of AGM in the sup-
plement and introduce the efficient algorithm for this
projection step (8).

3.2. Efficient Projection

We begin with some special cases of (8). If only
C1 exists, (8) becomes the well-known L1-ball projec-
tion (Duchi et al., 2008), whose optimal solution is
denoted as Ps1

1 (v), standing for the projection of v
onto the L1-ball with radius s1. On the other hand, if
only C2 is involved, it becomes the group lasso projec-
tion, denoted as Ps2

G . Moreover, we say a constraint is
active, if and only if an equality holds at the optimal
solution x∗; otherwise, it is inactive.

Preliminary results are summarized in Lemma 1:

Lemma 1. Denote a global minimizer of (8) as x∗.
Then the following results hold:

1. If both C1 and C2 are inactive, then x∗ = v.

2. If C1 is the only active constraint, i.e., ∥x∗∥1 =
s1, ∥x∗∥G < s2, then x∗ = Ps1

1 (v)

3. If C2 is the only active constraint, i.e., ∥x∗∥1 <
s1, ∥x∗∥G = s2, then x∗ = Ps2

G (v)

3.2.1. Computing x∗ from the optimal dual
variables

Lemma 1 describes a global minimizer when either
constraint is inactive. Next we consider the case in
which both C1 and C2 are active. By the convex dual-
ity theory (Boyd & Vandenberghe, 2004), there exist
unique non-negative dual variables λ∗ and η∗ such that
x∗ is also the global minimizer of the following regu-
larized problem:

minimize
x

1

2
∥x− v∥22 + λ∗∥x∥1 + η∗∥x∥G, (9)

whose solution is given by the following Theorem.

Theorem 1 ((Friedman et al., 2010)). The optimal
solution x∗ of (9) is given by

x∗
Gi

= max{∥vλ∗

Gi
∥2 − η∗, 0}

vλ∗

Gi

∥vλ∗
Gi
∥2

i = 1, 2, · · · , |G|

(10)
where vλ∗

Gi
is computed via soft-thresholding (Donoho,

2002) vGi with threshold λ∗ as follows:

vλ∗

Gi
= SGN(vGi) ·max{|vGi | − λ∗, 0},

where SGN(·) is the sign function and all the opera-
tions are taken element-wisely.
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Theorem 1 gives an analytical solution of x∗ in an ideal
situation when the values of λ∗ and η∗ are given. Un-
fortunately, this is not the case and the values of λ∗

and η∗ need to be computed directly from (8). Based
on Theorem 1, we have the following conclusion char-
acterizing the relations between the dual variables:

Corollary 1. The following equations hold:

∥x∗∥1 =

|G|∑
i=1

max{∥vλ∗

Gi
∥2 − η∗, 0}

∥vλ∗

Gi
∥1

∥vλ∗
Gi
∥2

= s1 (11)

∥x∗∥G =

|G|∑
i=1

max{∥vλ∗

Gi
∥2 − η∗, 0} = s2 .(12)

Suppose λ∗ is given, then computing η∗ from (12)
amounts to solving a median finding problem, which
can be done in linear time (Duchi et al., 2008).

Finally, we treat the case of unknown λ∗ (thus un-
known η∗). We propose an efficient bisection approach
to compute it.

3.2.2. Computing λ∗: bisection

Given an initial guess (estimator) of λ∗, says λ̂, one
may perform bisection to locate the optimal λ∗, pro-
vided that there exists an oracle procedure indicating
if the optimal value is greater than λ̂2. This bisection
method can estimate λ∗ in logarithm time. Next, we
shall design an oracle procedure.

Let the triples

(x∗, λ∗, η∗) = SGLP(v, s1, s2)

be the optimal solution of (8) with both constraints
active, i.e., ∥x∗∥1 = s1, ∥x∗∥G = s2, with (λ∗, η∗) be
the optimal dual variables. Consider the following two
sparse group lasso projections:

(x, λ, η) = SGLP(v, s1, s2),

(x′, λ′, η′) = SGLP(v, s′1, s
′
2).

The following key result holds.

Theorem 2. If λ ≤ λ′ and s2 = s′2, then s1 ≥ s′1.

Theorem 2 gives the oracle procedure with its proof
presented in the supplement. For a given estimator λ̂,
we compute its corresponding η̂ from (12) and then ŝ1
from (11), satisfying (x̂, λ̂, η̂) = SGLP(v, ŝ1, s2). Then
ŝ1 is compared with s1. Clearly, by Theorem 2, if

2An upper bound and a lower bound of λ∗ should be
provided in order to perform the bisection. These bounds
can be easily derived from the assumption that both C1

and C2 are active.

ŝ1 ≤ s1, the estimator λ̂ is no less than λ∗. Otherwise,
ŝ1 > s1 means λ̂ < λ∗. In addition, from (11) we know

that ŝ1 is a continuous function of λ̂. Together with the
monotonicity given in Theorem 2, a bisection approach
can be employed to calculate λ∗. Algorithm 2 gives a
detailed description of this procedure.

Algorithm 2 Sparse Group Lasso Projection Algo-
rithm
Input: v, s1, s2
Output: an optimal solution x to the Sparse Group
Projection Problem

Function SGLP(v, s1, s2)

1: if ∥x∥1 ≤ s1 and ∥x∥G ≤ s2 then
2: return v
3: end if
4: xC1 = Ps1

1 (v)
5: xC2 = Ps2

G (v)
6: xC12= bisec(v, s1, s2)
7: if ∥xC1∥G ≤ s2 then
8: return xC1

9: else if ∥xC2∥1 ≤ s1 then
10: return xC2

11: else
12: return xC12

13: end if

Function bisec(v, s1, s2)

1: Initialize up, low and tol
2: while up− low > tol do
3: λ̂ = (low + up)/2

4: if (12) has a solution η̂ given vλ̂ then

5: calculate ŝ1 using η̂ and λ̂.
6: if ŝ1 ≤ s1 then
7: up = λ̂
8: else
9: low = λ̂

10: end if
11: else
12: up = λ̂
13: end if
14: end while
15: λ∗ = up
16: Solve (12) to get η∗

17: Calculate x∗ from λ∗ and η∗ via (10)
18: return x∗

3.3. Solving Restricted version of (7)

Finally, we modify the above procedures to compute
the optimal solution of the restricted problem (6). To
apply the accelerated gradient method, we consider
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the following projection step:

minimize
x

1

2
∥x− v∥22

subject to ∥xT1∥1 ≤ s1 (C1)

∥xT3∥G ≤ s2 (C2).

(13)

Our first observation is: T3(x) ⊂ T1(x), since if an
element of x lies in a group whose L2-norm is less
than τ , then the absolute value of this element must
also be less than τ . Secondly, from the decomposable
nature of the objective function, we conclude that:

x∗
j =

{
vj if j ∈ (T1)

c

vλ
∗

j if j ∈ T1\T3,

since there are no constraints on xj if it is outside T1

and involves only the L1-norm constraint if j ∈ T1\T3.
Following routine calculations as in (Duchi et al.,
2008), we obtain the following results similar to (11)
and (12):

s1 =
∑
i∈T2

max{∥vλ∗

Gi
∥2 − η∗, 0}

∥vλ∗

Gi
∥1

∥vλ∗
Gi
∥2

+
∑

j∈T1\T3

vλ
∗

j (14)

s2 =
∑
i∈T2

max{∥vλ∗

Gi
∥2 − η∗, 0}. (15)

Based on (14) and (15), we design a similar bisection
approach to compute λ∗ and thus (x∗)T3 , as in Algo-
rithm 2. Details can be found in the supplement.

Since the projection (13) does not possess an closed-
form, it is instructive to discuss the convergence prop-
erty of overall accelerated gradient method. Follow
the discussion in (Schmidt et al., 2011), we can pro-
vide sufficient conditions for a guaranteed convergence
rate. Moreover, we found in practice that a reasonable
convergence property can be obtained as long as the
precision level for the computation of the projection is
small, as revealed in Section 6.

Remark Problem (7) can also be solved using
the Alternating Direction Method of Multiplier
(ADMM) (Boyd et al., 2011) instead of the acceler-
ated gradient method (AGM). However, our evalua-
tions show that AGM with our projection algorithm is
more efficient than ADMM.

4. Theoretical Results

This section investigates theoretical aspects of the pro-
posed method. More specifically, we demonstrate that
the oracle estimator x̂o, the least squares estimator
based on the true model, can be reconstructed. As a

result, consistent selection as well as optimal parame-
ter estimation can be achieved.

For better presentation, we introduce some notations
that would be only utilized in this section. Let C =
(Gi1 , · · · , Gik) be the collection of groups that contain
nonzero elements. Let AGj = AGj (x) and A = A(x)
denote the indices of nonzero elements of x in group
Gj and in entire x respectively. Define

Sj,i = {x ∈ S : (AC , C) ̸= (ACf0 , C0), |A| = j, |C| = i},

where S is the feasible region of (2) and C0 represents
the true nonzero groups.

The following assumptions are used to obtain consis-
tent reconstruction of the oracle estimator:

Assumption 1 (Separation condition). Define

Cmin(x
0) = inf

x∈S

− log(1− h2(x,x0))

max(|C0 \ C|, 1)
,

then for some constant c1 > 0,

Cmin(x
0) ≥ c1

log |G|+ log s01
n

,

where

h(x,x0) =
(1
2

∫
(g1/2(x, y)− g1/2(x0, y))2dµ(y)

)1/2
is the Hellinger-distance for densities with respect to a
dominating measure µ.

Assumption 2 (Complexity of the parameter space).
For some constants c0 > 0 and any 0 < t < ε ≤ 1,

H(t,Fj,i) ≤ c0 max((log(|G|+s01))
2, 1)|Bj,i| log(2ε/tff),

where Bj,i = Sj,i ∩ {x ∈ h(x,x0) ≤ 2ε} is a local
parameter space and Fj,i = {g1/2(x, y) : x ∈ Bj,i}
is a collection of square-root densities. H(·,F) is the
bracketing Hellinger metric entropy of space F (Kol-
mogorov & Tihomirov, 1961).

Assumption 3. For some positive constants d1, d2, d3
with d1 > 10,

− log(1−h2(x,x0)) ≥ −d1 log(1−h2(xτ ,x0))−d3τ
d2p,

where xτ = (x1I(|x1| ≥ τ), · · · , xpI(|xp| ≥ τ)).

With these assumptions hold, we can conclude the fol-
lowing non-asymptotic probability error bound regard-
ing the reconstruction of the oracle estimator x̂o. The
proof is provided in the supplement.

Theorem 3. Suppose that Assumptions 2 and 3 hold.
For a global minimizer of (2) x̂ with (s1, s2) = (s01, s

0
2)
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and τ ≤
( (d1−10)Cmin(x

0)
d3d

)1/d2
, the following result

hold:

P
(
x̂ ̸= x̂o

)
≤ exp

(
−c2nCmin(x

0)+2(log |G|+log s01)
)
.

Moreover, with Assumption 1 hold, P
(
x̂ = x̂o

)
→ 1

and

Eh2(x̂,xo) = (1 + o(1))max(Eh2(x̂o,x0),
s01
n
)

as n → ∞, |G| → ∞.

Theorem 3 states that the oracle estimator x̂o can
be accurately reconstructed, which in turn yields fea-
ture selection consistency as well as the recovery of
the performance of the oracle estimator in parame-
ter estimation. Moreover, as indicated in Assump-
tion 1, the result holds when s01|G| grows in the or-
der of exp(c−1

1 nCmin) . This is in contrast to exist-
ing results on consistent feature selection, where the
number of candidate features should be no greater
than exp(c∗n) for some c∗ (Zhao & Yu, 2006; Wang
et al., 2007). In this sense, the number of candidate
features is allowed to be much larger when an ad-
ditional group structure is incorporated, particularly
when each group contains considerable redundant fea-
tures. It is not clear whether such a result also holds
for other bi-level3 variable selection methods, such as
the composite MCP (Huang et al., 2009) and group
bridge (Breheny & Huang, 2009).

To our knowledge, our theory for the grouped selec-
tion is the first of this kind. However, it has a root in
feature selection. The large deviation approach used
here is applicable to derive bounds for feature selec-
tion consistency. In such a situation, the result agrees
with the necessary condition for feature selection con-
sistency for any method, except for the constants in-
dependent of the sample size (Shen et al., 2012). In
other words, the required conditions are weaker than
those for L1-regularization commonly used in the lit-
erature (Van De Geer & Bühlmann, 2009). The use
of the Hellinger-distance is to avoid specifying a sub-
Gaussian tail of the random error. This means that
the result continues to hold even when the error does
not have a sub-Gaussian tail. Although we require x̂
to be a global minimizer of (2), a weaker version of the
theory can be derived for a local minimizer obtained
from the DC programming by following similar deriva-
tions in (Shen et al., 2012). We leave such discussions
in a longer version of the paper.

3The by-level here means simultaneous group-level and
feature-level analysis. This term is first introduced in (Bre-
heny & Huang, 2009).

5. Significance

This section is devoted to a brief discussion of ad-
vantages of our work statistically and computation-
ally. Moreover, it explains why the proposed method
is useful to perform efficient and interpretable feature
selection given a natural group structure.

Interpretability. The parameters in formulation (2)
are highly interpretable in that s1 and s2 are upper
bounds of the number of nonzero elements as well as
that of groups. This is advantageous, especially in
the presence of certain prior knowledge regarding the
number of features and/or that of groups. However,
such an interpretation vanishes with other (convex &
nonconvex) methods such as lasso, sparse group lasso,
composite MCP or group bridge, in which incorporat-
ing such prior knowledge often requires repeated trials
of different parameters.

Parameter tuning. Typically, tuning parameters
for good generalization usually requires considerable
amount work due to a large number of choices of pa-
rameters. However, parameter tuning in model (1)
may search through integer values in a bounded range,
and can be further simplified when certain prior knowl-
edge is available. This permits more efficient tuning
than its regularization counterpart. Based on our lim-
ited experience, we note that τ does not need to be
tuned precisely as we may fix at some small values.

Performance and Computation. Although our
model (2) is proposed as a computational surrogate
of the ideal L0-method, its performance can also be
theoretically guaranteed, i.e., consistent feature selec-
tion can be achieved. Moreover, the computation of
our model is much more efficient and applicable to
large-scale applications.

6. Empirical Evaluation

6.1. Evaluation of Projection Algorithms

Since DC programming and the accelerated gradient
methods are both standard, the efficiency of the pro-
posed nonconvex formulation (2) depends on the pro-
jection step in (8). Therefore, we focus on evaluat-
ing the projection algorithms and comparing with two
popular projection algorithms: Alternating Direction
Method of Multiplier (ADMM) (Boyd et al., 2011) and
Dykstra’s projection algorithm (Combettes & Pesquet,
2010). We give a detailed derivation of adapting these
two algorithms to our formulation in the supplement.

To evaluate the efficiency, we first generate the vector
v whose entries are uniformly distributed in [−50, 50]
and the dimension of v, denoted as p, is chosen from
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the set {102, 103, 104, 105, 106}. Next we partition the
vector into 10 groups of equal size. Finally, s2 is set to
5 log(p) and s1, the radius of the L1-ball, is computed

by
√
10
2 s2 (motivated by the fact that s1 ≤

√
10s2).

For a fair comparison, we run our projection algorithm
until converge and record the minimal objective value
as f∗. Then we run ADMM and Dykstra’s algorithm
until their objective values become close to ours. More
specifically, we terminate their iterations as soon as
fADMM − f∗ ≤ 10−3 and fDykstra − f∗ ≤ 10−3, where
fADMM and fDykstra stand for the objective value of
ADMM and Dykstra’s algorithm respectively. Table 1
summarizes the average running time of all three al-
gorithms over 100 replications.

Table 1. Running time (in seconds) of Dykstra’s, ADMM
and our projection algorithm. All three algorithms are
averaged over 100 replications.

Methods 102 103 104 105 106

Dykstra 0.1944 0.5894 4.8702 51.756 642.60
ADMM 0.0519 0.1098 1.2000 26.240 633.00
ours < 10−7 0.0002 0.0051 0.0440 0.5827

Next we demonstrate the accuracy of our projection
algorithm. Toward this end, the general convex opti-
mization toolbox CVX (Grant & Boyd, 2011) is chosen
as the baseline. Following the same strategy of gener-
ating data, we report the distance (computed from the
Euclidean norm ∥ · ∥2) between optimal solution of the
three projection algorithms and that of the CVX as
well as the running time. Note that the projection is
strictly convex with a unique global optimal solution.

For ADMM and Dykstra’s algorithm, the termination
criterion is that the relative difference of the objec-
tive values between consecutive iterations is less than
a threshold value. Specifically, we terminate the iter-
ation if |f(xk−1) − f(xk)| ≤ 10−7f(xk−1). For our
projection algorithm, we set the tol in Algorithm 2 to
be 10−7. The results are summarized in Table 2 and
Figure 1. Powered by second-order optimization algo-
rithms, CVX can provide fast and accurate solutions
for medium-size problems but would suffer from great
computational burden for large-scale ones. Therefore
we only report the results up to 5, 000 dimensions.

From the above results we can observe that for projec-
tions of a moderate size, all three algorithms perform
well. However, for large-scale ones, the advantage of
the proposed algorithm is evident as our method pro-
vides more accurate solution with less time.

Table 2. Distance between the optimal solution of projec-
tion algorithms and that of the CVX. All the results are
averaged over 100 replications.

Methods 50 100 500 1000 5000
Dykstra 9.00 9.81 11.40 11.90 12.42
ADMM 0.64 0.08 3.6e-3 6.3e-3 1.3e-2
ours 1.4e-3 1.1e-3 1.2e-3 1.7e-3 7.3e-3
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Figure 1. The average running time for different algorithms
to achieve the precision level listed in Table 2.

6.2. Performance on Synthetic Data

We generate a 60×100 matrix A, whose entries follow
i.i.d standard normal distribution. The 100 features
(columns) are partitioned into 10 groups of equal size.
The ground truth vector x0 possesses nonzero elements
only in 4 of the 10 groups. In addition, only 4 elements
in each nonzero group are nonzero. Finally y is gen-
erated according to Ax0 + z with z following distri-
bution N (0, 0.52). The data are divided into training
and testing set of equal size.

We fit our method to the training set and compare
with both convex methods (lasso, group lasso and
sparse group lasso) and methods based on nonconvex
bi-level penalties (group bridge and composite MCP).
Since the data are intentionally generated to be sparse
in both group-level and feature-level, approaches that
only perform group selection, such as group lasso,
group SCAD and ordinary group MCP, are not in-
cluded due to their suboptimal results.

The tuning parameters of the convex methods are se-
lected from {0.01, 0.1, 1, 10}, whereas for our method,
the number of nonzero groups is selected from the set
{2, 4, 6, 8} and the number of features is chosen from
{2s2, 4s2, 6s2, 8s2}. 10-fold cross validation is taken for



Efficient Sparse Group Feature Selection via Nonconvex Optimization

parameter tuning. Group bridge and composite MCP
are carried out using their original R-package grpreg
and the tuning parameters are set to the default values
(100 parameters with 10-fold cross-validation).

Following similar settings in (Breheny & Huang, 2009),
we list the number of selected groups and features by
each method. In addition, the number of false posi-
tive or false negative groups/features are also reported
in Table 3. We can observe that our model correctly
identifies the underlying groups and features. More-
over, our method effectively excludes redundant fea-
tures and groups compared to other methods, which
is illustrated by our low false positive numbers and
relatively high false negative numbers. Such a phe-
nomenon also appears in the evaluations in (Breheny
& Huang, 2009).

Table 3. Comparison of performance on synthetic data. All
the results are averaged for 100 replications.

Methods
Groups Features

NO. FP FN NO. FP FN
lasso 7.56 3.85 0.29 17.37 9.84 8.47
sgl 7.29 3.68 0.39 17.68 10.13 8.45
ours 3.37 0.81 1.44 11.70 5.97 10.27
cMCP 9.5 5.7 0.2 8.02 3.4 11.38
gBrdg 10 6 0 72.8 57.92 1.12

6.3. Performance on Real-world Application

Our method is further evaluated on the application of
examining Electroencephalography (EEG) correlates
of genetic predisposition to alcoholism (Frank & Asun-
cion, 2010). EEG records the brain’s spontaneous elec-
trical activity by measuring the voltage fluctuations
over multiple electrodes placed on the scalp. This
technology has been widely used in clinical diagnosis,
such as coma, brain death and genetic predisposition
to alcoholism. In fact, encoded in the EEG data is a
certain group structure, since each electrode records
the electrical activity of a certain region of the scalp.
Identifying and utilizing such spatial information has
the potential of increasing stability of a prediction.

The training set contains 200 samples of 16384 di-
mensions, sampled from 64 electrodes placed on sub-
ject’s scalps at 256 Hz (3.9-msec epoch) for 1 second.
Therefore, the data can naturally be divided into 64
groups of size 256. We apply the lasso, group lasso,
sparse group lasso, group SCAD, group MCP, group
bridge, composite MCP and our proposed method on
the training set and adapt the 5-fold cross-validation
for selecting tuning parameters. More specifically, for
lasso and group lasso, the candidate tuning parameters

are specified by 10 parameters4 sampled using the log-
arithmic scale from the parameter spaces, while for the
sparse group lasso, the parameters form a 10×10 grid5,
sampled from the parameter space in logarithmic scale.
For our method, the number of groups is selected from
the set: s2 = {30, 40, 50} and s1, the number of fea-
tures is chosen from the set {50s2, 100s2, 150s2}. De-
fault settings in the R package grpreg (100 param-
eters, 10-fold cross validation) are applied to other
nonconvex methods. The accuracy of classification to-
gether with the number of selected features and groups
over a test set, which also contains 200 samples, are
reported in Table 4. Clearly our method achieves the
best performance of classification. Note that, although
lasso’s performance is almost as good as ours with even
less features, however, it fails to identify the underly-
ing group structure in the data, as revealed by the fact
all 64 groups are selected. Moreover, other nonconvex
approaches such as the group SCAD, group MCP and
group bridge seem to over-penalized the group penalty,
which results in very few selected groups and subopti-
mal performance.

Table 4. Comparison of performance on EEG data.

Methods Accuracy # Feature # Group
lasso 67.0 2068 64
glasso 62.5 8704 34
sglasso 65.5 4834 61
ours 68.0 3890 25

gSCAD 63.0 1792 7
gMCP 55.0 256 1
cMCP 65.5 62 35
gBrdg 51.5 80 2

7. Conclusion and Future Work

This paper expands a nonconvex paradigm into sparse
group feature selection. In particular, an efficient op-
timization scheme is developed based on the DC pro-
gramming, accelerated gradient method and efficient
projection. In addition, theoretical properties on the
accuracy of selection and parameter estimation are an-
alyzed. The efficiency and efficacy of the proposed
method are validated on both synthetic data and real-
world applications. The proposed method will be fur-
ther investigated on real-world applications involving
the group structure. Moreover, extending our ap-
proach to multi-modal multi-task learning (Zhang &
Shen, 2011) is another promising direction.

4λlasso = logspace(10−3, 1), λglasso = logspace(10−2, 1)
5The product space of λlasso × λglasso
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