
Appendix 1. Likelihood and evidence lower bound

Before deriving the likelihood for the mixture of MHPs model, we start with the following Lemma about the

relationship between the PDF and the conditional intensity function.

Lemma 1. Given the conditional intensity function of a Hawkes process, λ∗(t), the probabilistic density

function f∗, the survival function S∗ and the cumulative distribution function F ∗ are given by:

f∗(t) = λ∗(t) exp(−

∫ t

tn

λ∗(s)ds)

S∗(t) = exp(−

∫ t

tn

λ∗(s)ds)

F ∗(t) = 1 − exp(−

∫ t

tn

λ∗(s)ds).

Proof. By definition, we have:

λ∗(t) =
f∗(t)

1 − F ∗(t)
=

d
dt

F ∗(t)

1 − F ∗(t)
= −

d

dt
log(1 − F ∗(t))

The equation for F ∗ follows from the fundamental theorem of calculus, and the other two relationships can be

derived using f∗ = d
dt

F ∗ and S∗ = 1 − F ∗. �

The likelihood for the complete data {(tn, Zn,Wn)} is given by:

L(t, Z,W ) =

N
∏

n=1

p(Zn)p(Wn|Zn)p∗(tn|Zn).

The first two terms are straightforward, i.e., the smoothing prior and the language model. Let t0 = 0 and

tN+1 = T , the last term can be derived as follows:

Lt|Z =
N
∏

n=1

p∗(tn|Zn) × S∗(T )

=

N
∏

n=1

M
∏

m=1

λ∗
in,m(tn)Znm ×

N
∏

n=1

M
∏

m=1

I
∏

i=1

S∗
i,m(tn) ×

M
∏

m=1

I
∏

i=1

S∗
i,m(T )

=

N
∏

n=1

M
∏

m=1

λ∗
in,m(tn)Znm ×

N
∏

n=1

M
∏

m=1

I
∏

i=1

exp(−

∫ tn

tn−1

λ∗
i,m(s)ds) ×

M
∏

m=1

I
∏

i=1

exp(−

∫ T

tN

λ∗
i,m(s)ds)

=

N
∏

n=1

M
∏

m=1

λin,m(tn)Zmn × exp(−

I
∑

i=1

M
∑

m=1

∫ T

0

λi,m(s)ds).

which gives the Eq(11) in the paper.
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The normalization term in the evidence lower bound (ELBO) is derived as follows:

I
∑

i=1

M
∑

m=1

∫ T

0

Eq[λi,m(s)]ds

=

I
∑

i=1

M
∑

m=1

∫ T

0

(γmµi +
∑

tl<t

φtmαiliκ(t − tl))dt

= T

I
∑

i=1

M
∑

m=1

γmµi +

I
∑

i=1

∫ T

0

∑

tl<t

αiliκ(t − tl)dt

M
∑

m=1

φtm

= T

I
∑

i=1

M
∑

m=1

γmµi +
I
∑

i=1

∫ T

0

∑

tl<t

αiliκ(t − tl)dt

= T

I
∑

i=1

M
∑

m=1

γmµi +
I
∑

i=1

N+1
∑

n=1

n−1
∑

l=1

αili

∫ tn

tn−1

κ(t − tl)dt

= T

I
∑

i=1

M
∑

m=1

γmµi +

I
∑

i=1

N
∑

l=1

αili

N+1
∑

n=l+1

(K(tn − tl) − K(tn−1 − tl))

= T

I
∑

i=1

M
∑

m=1

γmµi +

I
∑

i=1

N
∑

l=1

αiliK(T − tl),

which proves Eq(15) in the paper.

Appendix 2. Inference and learning algorithm

In this section, we derive the inference and learning algorithms.

Inference for φ. The variational ELBO objective is decomposable for φs. Isolating the terms containing φn

we have:

maxLφn
=

M
∑

m=1

φnm

(

log πm +

V
∑

v=1

wnv log βmv −

n−1
∑

l=1

φlmηm
ln log(ηm

ln) − log φnm

)

+

M
∑

m=1

φnm

(

ηm
nn log(γmµin

) +

n−1
∑

ℓ=1

φlmηm
ln log(αilin

k(tn − tl)) +

N
∑

ℓ=n+1

φlmηm
nl log(αinil

k(tn − tl))

)

s.t.

M
∑

m=1

φnm = 1.

Eq(19) follows from the first-order optimality of the above optimization, i.e., by forming the Lagrangian and

setting the derivative to zero.
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Inference for η. The branching variables are optimal when the lower-bound in Eq(16) is tight, i.e., when the

equality satisfies. This leads to:

ηm
nn ∝ γmµin ,

ηm
ln ∝ αilink(tn − tl),

ηm
nn +

n−1
∑

l=1

φlmηm
ln = 1,

which leads to Eq(20–21).

Update α, µ and γ. The update formulas for π and β are trivial. Here we derive the update equations for µ,

γ and α, given that the variational parameters are optimal. We have, for α, the ELBO:

Lα =

N
∑

n=1

M
∑

m=1

φnm

n−1
∑

l=1

ηm
lnφlm log(αilink(tn − tl)) −

I
∑

i=1

N
∑

l=1

αiliK(T − tl).

Eq(25) follows by setting the derivative of Lα to zero. Eq(24) and Eq(26) can be derived similarly.

Appendix 3. An alternative inference algorithm

In Eq(16), we lower-bound the expectation of the log-intensity by applying Jensen’s inequality with a set of

branchings that satisfy Eq(17–18). Here, we present an alternative way to define these branchings and lower-

bound the expected log-intensity, which leads to another version of the inference algorithm. This algorithm is

slightly flawed in its mathematic form but in our experiments, we found that it converges faster than the one

presented in the paper.

Again, we define a set of branching variables {ηm}, each of which fill a lower-triangular matrix, i.e.,

ηm
n = [ηm

1,n, . . . , ηm
n,n]T . But different from Eq(17–18), the branchings here define a multinomial distribution

such that each ηm
l,n ≥ 0 and

∑n
l=1

ηm
ln = 1.Let E [ηm

n ] = −
∑n

l=1
ηm

ln log(ηm
ln) be the entropy of ηm

n , we have:

Eq[log(λin,m(tn))]

=Eq[log(ηm
nn

γmµin

ηm
nn

+

n−1
∑

ℓ=1

ηm
ln

Zlmαil,ink(tn − tl)

ηm
ln

)]

≥ηm
nn log(γmµin) +

n−1
∑

ℓ=1

ηm
ln(Eq[log(Zlm)] + log(αil,ink(tn − tl))) + E [ηm

n ]

Unfortunately, in the Equation above, the term Eq[log(Zlm)], i.e., the expected logarithm of a Bernoulli vari-

able, is not well-defined. As a proxy, we substitute it with log(Eq[Zlm]) = log φlm. Note that this is not

mathematically sound.

This new lower bound leads to the following inference and learning algorithms.
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Variational inference:

φnew
nm ∝ πm : prior

×

(

V
∏

v=1

βwnv

mv

)

: content

× (γmµin)η
m
nn : self triggering

×

n−1
∏

l=1

(

φold
lm αilinκ(tn − tl)

)ηm

ln

: influences from the past

×

N
∏

l=n+1

exp(ηm
nl

φold
lm

φold
nm

) : influences to the future1

where the branchings are updated via:

ηm
nn =

γmµin

γmµin +
∑n−1

l=1 φlmαilink(tn − tl)

ηm
ln =

φlmαilink(tn − tl)

γmµin +
∑n−1

l=1
φlmαilink(tn − tl)

Learning:

πm ∝
N
∑

n=1

φnm

βmv ∝

N
∑

n=1

wnvφnm

µi =

∑N
n=1

δ(in = i)
∑M

m=1
φnmηm

nn
∑M

m=1
γmT

αij =

∑M
m=1

∑N
n=1

∑n−1

l=1
δ(il = i)δ(in = j)φnmηm

ln
∑N

n=1
δ(in = i)K(T − tn)

γm =

∑N
n=1

φnmηm
nn

∑I
i=1

µiT

Note that the formulas for π and β are the same.

Appendix 4. Sparsity in MHPs and MMHP

In this appendix, we show that simply adding Lasso (i.e., ℓ1) or ElasticNet (i.e., mixture of ℓ1 and ℓ2) penalties

to the ELBO objective cannot lead to topological sparsity. To illustrate this, let us consider the plain MHP

model (i.e., without latent mixture variables). Suppose λ∗(t) = [λ∗
1(t), . . . , λ

∗
I(t)]

⊤ be the conditional intensity

function of an I-dimensional Hawkes process, where

λ∗
i (t) = µi +

∑

tl<t

αiliκ(t − tl)
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Given a sequence of events {(tn, in)|n = 1, . . . , N}. The log-likelihood is given by:

L =

N
∑

n=1

log(µin +

n−1
∑

ℓ=1

αil,inκ(tn − tℓ)) − T

I
∑

i=1

µi −

N
∑

n=1

I
∑

i=1

αin,iK(T − tn)

Introducing the branchings, we have the following lower-bound:

L ≥ J =

N
∑

n=1

(ηnn log(µin) +

n−1
∑

ℓ=1

ηln log(αil,inκ(tn − tℓ))) − T

I
∑

i=1

µi −

N
∑

n=1

I
∑

i=1

αin,iK(T − tn)

Optimizing this lower-bound given the branchings yields the following MLE for α:

αij =

∑N
n=1

∑n−1

l=1
δil,iδin,jηln

∑N
n=1

δin,iK(T − tn)
,

the inferred infectivity is not sparse.

We want to enforce sparsity of α. Let J (α) be the objective involving α, we have:

J (α) =

N
∑

n=1

n−1
∑

ℓ=1

ηln log(αil,inκ(tn − tℓ)) −

N
∑

n=1

I
∑

i=1

αin,iK(T − tn)

Note that this objective already includes a ℓ1 regularization on α. Simply adding another ℓ1 term cannot give

us a sparse solution, i.e.:

minJ (α) − C

I
∑

i,j=1

|αij | =

N
∑

n=1

n−1
∑

ℓ=1

ηln log(αil,inκ(tn − tℓ)) − (

N
∑

n=1

K(T − tn) − C)

I
∑

i=1

αin,i

yields

αij =

(

∑N
n=1

∑n−1

l=1
δil,iδin,jηln

∑N
n=1

δin,iK(T − tn) − C

)+

Note that in the above, although increasing the regularization strength C could lead to zero αs, but the regular-

ization path is not well-behaved (see Figure 1).

Alternatively adding an ℓ2 term (to make a elastic net type regularization) also doesn’t work:

0

0

C

α

Figure 1: Regularization path.

minJ (α) − C
∑

i,j

|α2
ij |
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yields

αij =
−B +

√

B2 + 4C
∑N

n=1

∑n−1

l=1
δil,iδin,jηln

2C

where B =
∑N

n=1
δin,iK(T − tn). Unfortunately, this solution is not sparse either (note that ηln = 0 iff the

corresponding αij = 0). Also, this solution is not well-posed when the regularization strength is small (e.g.,

C → 0).

Infeasibility of sparseness in MHPs: the reason. What happened? Why the sparsity encouraging penalties

cannot yield solutions that are supposed to be sparse? The key reason has to do with the way we lower-

bounding the log-likelihood. Particular, by introducing the branchings and breaking down the log-sum in the

log-likelihood L, the infectivities αs become singular points in the lower-bound J , hence, sparsity is infeasible

if J is optimized.

As such, in order to obtain sparsity, we need to optimize the log-likelihood L directly instead of its lower-

bound J . For a plain MHP model, this is not a big deal as the optimization can be solved with any convex

optimization algorith. However, for the mixture of MHPs model, optimizing L directly is intractable. For

example, if we didn’t introduce the branchings to break down the log-sum, each meme-identity variable Z

would be coupled with all Zs in the past and all Zs in the future in a very complicated nonlinear manner,

inference of which is unimaginably troublesome.
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