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Abstract

Diffusion network inference and meme track-

ing have been two key challenges in viral dif-
fusion. This paper shows that these two tasks
can be addressed simultaneously with a prob-
abilistic model involving a mixture of mutu-
ally exciting point processes. A fast learning
algorithms is developed based on mean-field
variational inference with budgeted diffusion
bandwidth. The model is demonstrated with
applications to the diffusion of viral texts in
(1) online social networks (e.g., Twitter) and
(2) the blogosphere on the Web.

1. Introduction

The question of how viral signals (e.g., behaviors,
ideas, diseases) evolve over time and spread through
social networks has become a topic of active interest
in many fields (Wortman, 2008). Research, however,
has been hampered by two fundamental challenges:

• Diffusion network inference. The diffusion pro-
cess usually occurs over a hidden network whose
structure cannot be observed or identified directly.
For example, in epidemiology, when a person was
infected with a contagious virus, it’s usually in-
feasible to trace this back to identify how and by
whom he got infected. Similarly, in viral market-
ing, when a user adopted an idea or behavior, it’s
generally impossible to identify where he adopted
it from. The inference problem for uncovering
such hidden diffusion network is daunting, partly
due to the long-standing challenge of recovering
causality from noise-corrupted historical data.

• Tracking trending memes. In many scenar-
ios, there are a number of different but related
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viruses1 simultaneously diffusing and entangling
with one another, yet detection and identifica-
tion is nontrivial. For example, several diseases
may propagate among a community of people
at the same time, but only the conditions and
symptoms, rather than the type of the disease,
can be directly observed when one got infected.
To complicate matters, viruses are often evolv-
ing over time at different time scales (e.g., the
genetic structures of viruses undergo significant
mutations in the course of diffusion), and differ-
ent viruses can hybridize with one another.

These two challenges have been largely open until very
recently a few models started to emerge. To our sur-
prise, it seems these two tasks have to date been inves-
tigated separately, yet they rely on the solution to each
other as a premise. For example, recent work on cas-
cade diffusion models (Gomez-Rodriguez et al., 2011;
Gomez-Rodriguez & Schölkopf, 2012; Snowsill et al.,
2011; Ypma et al., 2012) showed that a hidden diffu-
sion network can be recovered, to certain extent, from
the contagion history. These approaches, however, re-
quire the single successive contagion history to be a
priori segmented into a set of independent cascades,
each of which corresponds to the contagion history of
a single meme. Likewise, existing research on meme
tracking devised models to trace the evolution of tex-
tual contents while assuming that the structure of the
network over which memes spread is given and fixed.

In this paper, we attempt to address both tasks simul-
taneously. The key rationale is that the inferences and
algorithmic procedures underlying the two tasks are
correlated and can be tackled jointly. As a matter of
fact, both tasks are essentially special cases of a more
general problem: tracking the flow of memes, either
spatially over a network (i.e., network diffusion), or
temporally over time (i.e., meme evolution). By pro-

1We use “meme” or “virus” interchangeably to refer to
a distinct cluster of viral events that evolve and propagate
similarly to one another but relatively independent of other
events.
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viding a unified solution, we will not only eliminate the
dependencies on human annotations or external algo-
rithms but also enable joint inference/optimization.

We introduce a probabilistic mixture model over a
set of multivariate Hawkes process (MHP) (Hawkes,
1971). The mutually exciting nature of Hawkes pro-
cess makes it a perfect choice for modeling the evolu-
tion and propagation of a single meme or independent
memes. By casting meme identities as latent variables,
the proposed mixture model further enables us to si-
multaneously track the diffusion of multiple memes
temporally over time and spatially across the network.
The model accounts for both exogenous (i.e., infections
by outsiders) and endogenous (i.e., infections within
a social network) effects in viral diffusion, and it also
models the evolution of viral contents. We derive a fast
inference algorithm based on mean-field variational
methods with budgeted diffusion bandwidth. Experi-
ments on controlled synthetic data and two real-world
data sets (i.e., Twitter and blogosphere) demonstrate
the effectiveness of the proposed model in both meme
tracking and diffusion network inference.

2. Models

Let us consider a typical scenario in viral diffusion,
where a set of memes {m|m = 1, . . . , M} simultane-
ously evolve over time t and propagate among a set of
nodes I = {i|i = 1, . . . , I} through a hidden social net-
work G. The typical observations are a sequence of N
events {En|n = 1, . . . , N}, where an event is denoted
as En = (tn, in, Wn), i.e., a node i got infected at time
t and was observed with behavior (e.g., the symptoms
of an infected patient) W . Our goal is to automatically
(1) identify memes and track their evolutions and (2)
uncover the structure of the graph G (i.e., how a virus
propagates from one node to another). We show these
two tasks can be tackled jointly with a probabilistic
mixture model over Hawkes processes.

2.1. Hawkes process

Evolutionary point processes are widely used to de-
scribe the occurrence of discrete events. Typically, a
point process is a list of times {t1, . . . , tN} at which
an N sequence of events {E1, . . . , EN} occur. Denote
N(t) the number of points (i.e., occurrences of events)
in (−∞, t] and Ht = {E|tE < t} the history of events
up to but not including t, the conditional intensity

function (a.k.a. hazard function)

λ(t|Ht) = lim
∆t→0

E[N(t + ∆t)|Ht]

∆t
(1)

is the most convenient way to characterize a point pro-
cess, which represents the expected instantaneous rate
of future events at t. Let f and F be the conditional

density and the corresponding cumulative distribution
for t, the intensity can be also defined by: λ(t|Ht) =
f(t|Ht)/S(t|Ht), where S(t|Ht) = 1 − F (t|Ht) is
known as the survival function (the probability that an
event does not happen up to t). Because of the depen-
dence on Ht, most point processes are not Markovian
except for a few simple cases (e.g., Poisson processes).
For clarity, hereafter we use * to imply the dependence
on Ht, e.g., λ(t|Ht) will be denoted λ∗(t).

The Hawkes process is a class of self or mutually excit-
ing point process models (Hawkes, 1971). A univariate
Hawkes process {Nt} is defined by

λ∗(t) = µ(t) +

∫ t

−∞

κ(t − s)dN(s), (2)

where µ : R → R+ is a deterministic base in-
tensity, κ : R+ → R+ is a kernel function ex-
pressing the time-decay effect. The process is well
known for its self-exciting property (i.e., the occur-
rence of an event increases the probabilities of fu-
ture events) and has been used in modeling phe-
nomena as widespread as earthquake aftershocks
(Ogata, 1981), crimes (Mohler et al., 2011) and fi-
nancial contagions (Bacrya et al., 2012). The mul-
tivariate Hawkes process {Nd(t)|d = 1, . . . , D} is a
multi-dimensional extension to the univariate case, de-
scribing the occurrences of D coupling point series
(Hawkes, 1971; Liniger, 2009). The intensity function
λ∗ = [λ∗

1, . . . , λ
∗
D]⊤ is defined by

λ∗
d(t) = µd(t) +

D
∑

d′=1

∫ t

−∞

κd′d(t − s)dNd′(s), (3)

where there is a time-decaying triggering kernel κd′d

between a pair of dimensions d′ and d. MHP is
also known as linear mutually exciting process as
the occurrence of an event in one dimension in-
creases the likelihood of future events in all dimen-
sions. It was recently applied to modeling viral mar-
keting (Crane & Sornette, 2008) and finance trades
(Bacrya et al., 2012).

2.2. Mixture of Hawkes processes

We are interested in modeling the diffusion process of
M memes over a hidden network G involving I nodes.
We show the observations {En = (tn, in, Wn)} can be
modeled effectively and conveniently with a mixture of
networked MHPs. The key idea for inferring the diffu-
sion network is to integrate the network structure into
the model and to leverage the mutually-exciting mech-
anism. Let us for now consider the diffusion process
of a single meme, the events can be modeled with an
I-dimensional MHP {Ni(t)|i = 1, . . . , I} where each
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node corresponds to one dimension with intensity

λ∗
i (t) = µi(t) +

I
∑

j=1

∫ t

−∞

κji(t − s)dNj(s) (4)

The baseline intensity ui(t) captures how often node i
gets infected spontaneously (i.e., independent of other
nodes in the network). We assume this meme-birth
process is a homogeneous Poisson process with µi(t) =
µ. The second term captures the mutual excitation,
which is the key for modeling the network diffusion.
We propose to decompose the pairwise triggering ker-
nel into two parts, i.e.,

κji(∆t) = αji × κ(∆t) (5)

where the asymmetric infectivity matrix α ∈ R
I×I
+

characterizes the structure of the diffusion network G;
each element αij expresses the degree of social influ-
ence from a node i to another node j, i.e., how likely i
infects j. The kernel2 κ is now node-independent and
used only to capture the time-decay effect.

Note that the survival analysis models of
(Gomez-Rodriguez et al., 2011) are equivalent to
degraded special cases of the above MHP model
with implicit assumptions that (1) events are not
recurrent, i.e., one node can be infected only once; and
(2) the network being inferred is closed: nodes can
only spread memes already existing in the network;
neither can they be influenced by someone outside
the network nor can they create a new meme. These
assumptions are rather unrealistic and have naturally
been eliminated in the MHP model.

Now consider the case where we have a set of M memes
diffusing at the same time, we assume a set of latent
variable {Zn}, one for each event En, to represents
the meme-identity of each event. We use the binary
one-of-M coding for Z, i.e., Zn = [Zn1, . . . , ZnM ] is
a binary vector with Znm = 1 if and only if En be-
longs to the m-th meme. With Z, we essentially seg-
ment the single successive event cascade {En} into M
cascades: {{En|Zn = m}, m = 1, . . . , M}. Since the
diffusion process of each meme can be modeled as an
MHP, we now have a matrix-variate Hawkes processes,
{Nm,i(t)}, whose intensity is defined by

λ∗
i,m(t) = µi,m +

I
∑

j=1

∫ t

−∞

αji,mκ(t − s)dNm,j(s) (6)

2In this paper, we primarily use the exponential kernel,
i.e., κ(∆t) = ωe−ω∆t if ∆t ≥ 0 or 0 otherwise. However,
the model development is independent of kernel choice and
extensions to other kernels such as power-law, Rayleigh,
non-parametric kernels are straightforward.

where µi,m specifies how likely node i got infected
spontaneously on meme m (e.g., i was a meme-creator
or infected by an outsider). We assume µi,m = µiλm,
where λm specifies the base rate of meme m’s propaga-
tion. Moreover, as these M memes are spreading over
the same social network, the topology of the network
doesn’t change from meme to meme. We assume the
social influence rate is meme-independent and decided
purely by the number of existing infections in the net-
work, thus αji,m = αji. With these specifications and
by using the piecewise-constant property of N(t), we
rewrite the intensity Eq(6) as follows

λ∗
i,m(t) = µiγm +

∑

tl<t

Zlmαiliκ(t − tl). (7)

Note that all the events have been chronologically or-
dered such that, for any n, tn ≤ tn+1. The time
causality induces a directed acyclic graph (DAG) over
the events {En}; the summation in Eq(27) is over one
path of the DAG, i.e., over all the events preceding t.

2.3. Modeling viral texts and mutations

The mixture of MHPs model described above only
models the time t and the player (i.e., node id) i of each
event. Here we extend the model to capture the con-
tent W (i.e., the message being spread). The textual
content is crucial for meme tracking since messages
belonging to the same meme are usually semantically
related (e.g., the genetic structures of the same virus
are similar; tweets of the same event are often on simi-
lar topics). The content information is also important
for network recovery, e.g., the “who is spreading from
whom” relationship, if identified from messages, can be
of great help for eliminatation of false-positive edges
in the time-causality DAGs (Snowsill et al., 2011).

Content can be incorporated into the Hawkes process
model in a number of different ways. For example, we
can assume messages in each meme are generated from
the same language model, e.g.,:

p(Wn|Znm = 1) = Multinomial(βm) (8)

Here, the texts are represented by a simple bag-of-word
model. Alternatively, we can extract more expressive
features or use other more powerful text representation
models, and relate these features to the meme identity
with a classification model. For example, suppose xn

is the feature vector we extract from Wn, we can use
a Multinomial logit model :

p(Znm = 1|xn, θ) =
exp(θ⊤mxn)

∑M

m′=1 exp(θ⊤m′xn)
(9)

where {θm|m = 1, . . . , M} are linear weight vectors.
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In contrast to modeling the content directly, another
way is to detect the mutation-from relationship (i.e.,
who was mutated from whom) by string matching al-
gorithms (Leskovec et al., 2009; Snowsill et al., 2011),
and model such pairwise constraints instead, for ex-
ample, via regularization in MLE:

max log L + ν
∑

l<n

ClnΩ(Zn, Zl) (10)

where Cln = 1 if events n was mutated from l or 0
otherwise, Ω(·, ·) is a similarity function3.

2.4. Smoothing

Note that the number of latent variables Z’s grows lin-
early with the number of event observations N , which
makes the inference vulnerable to overfitting. We reg-
ularize the inference by assuming a Bayesian prior for
Z. Particularly, each Zn is assumed to be sampled
i.i.d. from a multinomial distribution parameterized
by π, where π = [π1, . . . , πm] and

∑M

m=1 πm = 1.

3. Inference

Statistical inference of non-Markovian point pro-
cess has become a topic of active interest lately.
(Guttorp & Thorarinsdottir, 2012) reviews some of
the recent advances. In this section, we derive a mean-
filed variational Bayesian inference algorithm for the
mixture of MHPs model. This algorithm is, however,
quadratic O(N2). To facilitate large-scale applica-
tions, we present a fast algorithm by controlling the
bandwidth of longitudinal diffusion.

3.1. Variational inference

Take the mixture of MHPs with content model Eq(8)
as an example, suppose we have observations {En =
(tn, in, Wn)} on [0, T ] where T > 0. The likelihood for
the complete data (i.e., assuming Z’s are observed) is
given by (c.f. Appendix 1)

L(Z, t, W ) =

N
∏

n=1

M
∏

m=1

(πmλin,m(tn)pm(Wn))
Zmn

× exp(−

I
∑

i=1

M
∑

m=1

∫ T

0

λi,m(s)ds). (11)

Note that the latent variables Z’s are inter-dependent,
i.e., the meme identity at current step Zn depends on
all the past meme ids {Z1, . . . , Zn−1} as well as all the
future ones {Zn+1, . . .}. Marginalizing over such inter-
connected series is intractable. To this end, we use
mean-field variational inference by assuming a fully-
factorizable variational distribution q for Z’s, which is

3In our implement, we use Ω(Z, Z′) = Z⊤Z′.

parametrized by free variables φ’s (one φ per Z),

q({Zn}}) =

N
∏

n=1

Multinomial(Zn|φn). (12)

We then lower-bound the log-likelihood with help of q:

L(t, W ) = log(

∫

{Z}

L(Z, t, W )d{Z})

≥Eq[L(Z, t, W )] + E [q], (13)

where E [q] denotes the Shannon entropy of Z’s under
q. The right-hand side Eq(13), denoted L, is known as
the evidence lower-bound (ELBO), which will be used
as the surrogate to the true log-likelihood in inference
and learning. We have

L =

N
∑

n=1

M
∑

m=1

φnm (log πm + Eq[log λin,m(tn)] + log pm(Wn))

−
I
∑

i=1

M
∑

m=1

∫ T

0

Eq[λi,m(s)]ds + E [q]. (14)

The last term reduces to (c.f. Appendix 1):

I
∑

i=1

M
∑

m=1

∫ T

0

Eq[λi,m(s)]ds

=T

M
∑

m=1

I
∑

i=1

γmµi −

N
∑

n=1

K(T − tn)

I
∑

i=1

αini, (15)

where K(t) =
∫ t

0
κ(s)ds. The second term involves

the expectation of the log-intensity Eq[log(γmµi +
∑

tl<t Zlmαilik(t − tl))]. To break down the log-sum,
we again apply Jensen’s inequality

Eq[log(λin,m(tn))]

≥ηm
nn log(γmµin

) +

n−1
∑

ℓ=1

φlmηm
ln log(αilin

k(tn − tl))

− ηm
nn log(ηm

nn) −

n−1
∑

l=1

φlmηm
ln log(ηm

ln) (16)

where we have introduced a set of branching vari-
ables {ηm, m = 1, . . . , M}. Note that each ηm is a
N × N lower-triangular matrix with n-th row ηm

n =
[ηm

1,n, . . . , ηm
n,n]T . The branching η also satisfies the

following conditions:

ηm
ln ≥ 0, l = 1, . . . , n (17)

ηm
nn +

n−1
∑

l=1

φlmηm
ln = 1 (18)
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Optimizing the Lagaragian of the ELBO, we have the
following inference algorithm, with Z’s inferred via

φnm ∝ πm : prior

×

(

V
∏

v=1

βwnv

mv

)

: content

× (γmµin
)
ηm

nn : self triggering (19)

×

n−1
∏

l=1

(αilin
κ(tn − tl))

φlmηm

ln : influences from past

×

N
∏

l=n+1

(αinil
κ(tl − tn))

φlmηm

nl : influences to future,

where the branchings, η, are updated via

ηm
nn =

γmµin

γmµin
+
∑n−1

l=1 φlmαilin
k(tn − tl)

, (20)

ηm
ln =

αilin
k(tn − tl)

γmµin
+
∑n−1

l=1 φlmαilin
k(tn − tl)

. (21)

3.2. Learning

We derive maximum likelihood estimation for the
mixture MHPs model with Eq(8) content model.
The model involves five parameters, i.e., the self-
instantaneous rate µ ∈ R

I
+, the per-meme infection

rate γ ∈ R
M
+ , the infectivity (i.e., diffusion rate) ma-

trix α ∈ R
I×I
+ , the regularization prior π ∈ SM , and

the language model β ∈ S
M
V , where R+ and SK denote

the nonnegative real domain and the K-simplex space
{x|x ∈ R

K
+ and

∑K

k=1 xk = 1} respectively. The log-
likelihood of the model, L(t, W |µ, γ, α, β, π), is lower-
bounded by the ELBO L, which is tight when the
variational parameters are optimal. The MLE for the
model parameters can therefore be obtained by opti-
mizing the ELBO upon the convergence of the vari-
ational inference. The update formulas are given as
follows (c.f. Appendix 2):

πm ∝

N
∑

n=1

φnm (22)

βmv ∝

N
∑

n=1

wnvφnm (23)

µi =

∑M

m=1 φnm

∑N

n=1 δin,iη
m
nn

∑M

m=1 γmT
(24)

αij =

∑M
m=1 φnmφlm

∑N
n=1

∑n−1
l=1 δil,iδin,jη

m
ln

∑N

n=1 δin,iK(T − tn)
(25)

γm =

∑N
n=1 φnmηm

nn
∑I

i=1 µiT
(26)

where δ is the Kronecker’s delta function.

t E v e n t sM e m e 1M e m e 2M e m e 3
a b c d et tt

d a c b ebedca b d e a c
H i d d e n n e t w o r kb c d ea

I n f e c t i v i t y ( u p p e r )
Figure 1. The successive event history (top-left) is seg-
mented into multiple meme cascades (bottom-left), each of
which induces a DAG; the structure of the hidden diffusion
network (top-right) is inferred by estimating the infectiv-
ity matrix (bottom-right: only the upper triangular half is
shown) from these DAGs.

3.3. Interpretation

The learning algorithm has two loops. The in-
ner loop Eq(19) addresses meme-tracking, i.e., it it-

eratively infers the posterior of meme identities Z
given the current network configurations. By in-
ferring Z, it essentially segments the single succes-
sive event history into multiple cascades, one per
meme. Each of these cascades induces a DAG, a
small sub-graph of the DAG induced by the whole
event sequence. The outer loop, i.e., the closed-

form learning formulas Eq(22–26), further find the
optimal network configuration α and other parame-
ters based on the cascades inferred. This two-layer
algorithm differs significantly from existing network
inference techniques (Gomez-Rodriguez et al., 2011;
Gomez-Rodriguez & Schölkopf, 2012; Snowsill et al.,
2011) in that we segment cascades (i.e., infer memes)
automatically whereas theirs rely on human annota-
tions and/or external algorithms to do so.

The two algorithms are intuitively interpretable. The
meme-tracking algorithm Eq(19) clusters events into
memes based not only on the semantics of the vi-
ral contents but also on the evolution and propaga-
tion patterns. As marked in the formula, the meme
identity of an event En is inferred by integrating
five types of evidences: (1) Prior popularity of each
meme; (2) Semantic clustering of the viral content
(e.g., viruses with similar genetic structures will be
grouped as a meme); (3) Spontaneous infection, i.e.,
how likely the meme was created by node in sponta-
neously; (4) Past diffusion: how the meme had been
propagated before infecting in; (5) Future diffusion:
how the meme would be propagated after infecting
in. The algorithm resembles the mean-filed Boltzmann
machine: starting from an initial meme configuration,
it runs by cyclically updating each variational meme-
assignment φn while keeping other φ’s fixed until the
equilibrium configuration is reached (i.e., all meme as-
signments are consistent with one another).
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Table 1. Comparison of diffusion network models.
Model Probabilistic Continuous-time Multiple memes Exogenous factor Viral contents Sparsity Meme-tracking Convex

Pan X

Mayers X X X X

Gomez X X X X

Ypma X X X

Snowsill X X

Ours X X X X X X X

The network inference algorithm Eq(25) recovers the
hidden diffusion network by estimating the infectivity
matrix from the DAGs of the identified memes. The
essential idea is to approximate a causality relationship
from a set of time causalities (i.e., the meme DAGs),
e.g., if Bob becomes infected almost always right af-
ter Alice’s infections and no one else has as frequent
time-causality with Bob as Alice, it is highly likely
that Alice is an influencer to Bob. Figure 1 shows an
illustrative example involving a five-node network.

3.4. Fast inference

The meme-tracking algorithm Eq(19) is quadratic in
sequence length, i.e., O(N2) per iteration, which could
be problematic since the event history could be ex-
tremely long (e.g., users post hundreds of millions of
tweets per day on Twitter). The algorithm can be
made linear by controlling the depth of the diffusion
along the time axis. Particularly, because the decay-
ing kernel κ(∆t) approaches zero very fast as ∆t goes
large, it’s not necessary to propagate the diffusion too
far away. As such, we preset a maximum bandwidth
L for the temporal diffusion and modify the last two
terms in Eq(19) as follows:

max(0,n−L)
∏

l=n−1

(αilin
κ(tn − tl))

φlmηm

ln : influences from past

min(N,n+L)
∏

l=n+1

(αinil
κ(tl − tn))

φlmηm

nl : influences to future

Note that the branching variable ηm becomes a lower-
triangular matrix with left bandwidth L.

By noticing that the infectivity matrix α is extremely
sparse in practice (i.e., a node is usually connected
to and can only infect a tiny fraction of nodes in a
large network), the algorithm can be further speedup
by hashing events of neighboring nodes and updating
meme assignments based on these hashed influences.

3.5. Topological sparsity

Sparsity is an important property of real-world net-
works. Here we seek ways to improve the sparsity
of the inferred diffusion network G. Unfortunately,
adding traditional regularization such as Lasso or Elas-
ticNet penalty to the ELBO Eq(13) doesn’t lead to
sparse α (c.f. Appendix 4 for details). To this end, we

modify the model by adding a network-independent
diffusion rate ρ for each event:

λ∗
i,m(t) = µiγm + Zlm

∑

tl<t

(αili + ρ)κ(t − tl) (27)

Essentially, we are assuming that each event has a min-
imum decaying diffusion rate allowing it to infect some
nodes not directly through the network (e.g., nodes are
infected occasionally by some relay nodes that are not
included in the network). This modification yields

αij =

(

∑

m,n

∑n−1
l=1 δil,iδin,jη

m
ln

∑

n δin,iK(T − tn)
− ρ

)+

. (28)

Insignificant influence rates will be set automatically
to exact zero. Note that Eq(19–21) also need to be
slightly modified (i.e., replace α with α + ρ).

4. Related work

Diffusion network inference and meme-tracking have
been two important challenges in understanding vi-
ral diffusion in epidemiology, social science and many
other disciplines (Wortman, 2008). Here we briefly in-
troduce and compare the specs of network inference
models. To date, there are only a few machine learn-
ing models for diffusion network inference in literature.
(Pan et al., 2011) developed a coupled hidden Markov
model for estimating symmetric social tie strengths
from behavioral correlations. (Meyers & Leskovec,
2010) presented an approach for network inference us-
ing convex programming. (Gomez-Rodriguez et al.,
2011; Gomez-Rodriguez & Schölkopf, 2012) presented
probabilistic models for diffusion network based on
survival and event history analysis and showed that
the problem can be solved via submodular optimiza-
tion. (Ypma et al., 2012) devised a classification
model for estimating the transmission tree of dis-
eases using both genetic and epidemiological data.
(Snowsill et al., 2011) presented a suffix-tree based
pattern matching algorithm for tracking text reuses
and casted network inference as a set covering prob-
lem. The contributions of our work are three folds: (1)
We introduce MHP as a principled framework for vi-
ral network inference; (2) We established probabilistic
mixture of MHPs, a latent variable mixture model that
addresses meme-tracking and network inference simul-
taneously; Compared with existing ones, our model
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Figure 2. Experiments on synthetic data. (a–b): Comparison of network inference results in terms of RMSE and Rank
Correlation. (c): An network estimated using MMHP-MC (88.2% of learned αs are zeros). (d): Comparison of meme-tracking
accuracy. (e): Comparison of running time between the original variational algorithm and the fast algorithm.

doesn’t require prior meme segmentation, or rely on
human annotations/external algorithms to do so; (3)
We model such important factors as the evolution of
viral contents, exogenous effect due to external sources
and topological sparsity of the network. Table 1 pro-
vides a brief comparison of network inference mod-
els (named after first authors) in terms of whether
they: are probabilistic, model continuous time dynam-
ics, work for multiple memes, model exogenous effect
such as meme birth and external sources, model evo-
lution of viral contents, encourage topological spar-
sity, do meme-tracking simultaneously, can be solved
by convex optimization.

5. Experiments

5.1. On controlled synthetic data

Data. For given model dimensions (M, I, T ), we
drew random model parameters (µ, γ, α) and simu-
lated events for each meme by running Ogata’s mod-
ified thinning algorithm (Ogata, 1981). We mixed
the memes into one sequence by ordering the events
chronologically. Viral contents were sampled from ran-
domly generated language models (one per meme).
With probability 0.8, the pairwise mutation-from con-
straints were also simulated for events of the same
meme, using the algorithm in (Snowsill et al., 2011).
Experiments were done on 2,000–500,000 events in-
volving M = 50 memes and I = 50 nodes.

Network recovery. We examine to what extent the
model can recover the structure of the underlying net-
work by measuring the difference between the learned
infectivity matrix α̂ and the true α. We use root

mean square error (Rmse) and Kendall’s rank cor-

relation coefficient (RCorr) as metrics. All experi-
ments are run at least five times and the average results
are reported. We evaluated the following three realis-
tic models: MMHP denotes the plain mixture of MHPs
model (i.e., without viral content model), MMHP-LM the
one with language model and MMHP-MC with mutation
constraints. For comparison, we also evaluated three
baselines: (1) MHP-True is the model with meme iden-

tities {Z} being known, which represents the upper-
bound of the performance we can achieve; (2) MHP-One
is the model assuming only one meme (M = 1), i.e., all
meme identities {Z} being equal, which represents the
lower-bound performance; (3) the NetRate algorithm
proposed in the recent work (Gomez-Rodriguez et al.,
2011). Note that NetRate cannot model recurrent
events so only the first occurrence is used.

In Figure 2(a–b), we plot the average metrics vs.
the sequence length (i.e., number of events used in
training) N . Because memes were not segmented a
priori, the performance of NetRate is pretty poor,
even worse than the lower-bound model. The three
MMHP models substantially outperform NetRate; for
both metrics, their performance lies between the lower
bound and the upper bound. When N is moderately
large, they all recover the hidden network satisfac-
torily, e.g., Figure 2(d) shows the network estimated
from a N = 20K sequence (the recovered network is
very sparse, for 88.2% of the edges, the estimated in-
fectivity rate α̂ = 0). Note that on both metrics, the
MMHPs with content models significantly outperforms
the plain MMHPs, while MMHP-MC performs the best,
(e.g., it approaches the upper bound as N increases).

Meme tracking. Next, we examine if the meme-
tracking algorithm can segment memes from the mix-
ture. We do so by comparing the inferred meme
identities with the true labels. Note that the meme-
tracking algorithm is unsupervised, i.e., the true labels
were never seen in training. We assign meme labels
based on the posterior score φ using a winner-takes-all

scheme. Meme linkages (i.e., matching between the
ground truth label set to the inferred label set) were
done by linear programming using the simplex algo-
rithm. The results were reported in Figure 2(c). De-
spite its unsupervised nature, the meme-tracking algo-
rithm is surprisingly effective, e.g., all the three models
can achieve accuracy of 90% and up; when data set is
moderately large, the MMHP-MC model successfully seg-
ment memes with 100% accuracy.

Scalability. Figure 2(e) plots the running time curves
of the standard variational algorithm and the fast ver-
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Figure 3. The ten top memes and their trends from mid
Jun. to late Nov. 2009 identified by MMHP-LM on Twitter.

sion, both for the MMHP model. The fast algorithm is
orders of magnitude faster and it scales linearly with
data size. The speedup doesn’t compromise much of
the performance, e.g., the convergence and inference
results are comparable to the standard one.

5.2. On Twitter & Blogosphere

We further apply the proposed model to viral text dif-
fusion on Twitter and the blogosphere. The goal is to
model real-world meme diffusion, particularly (1) iden-
tify memes (e.g., topics, ideas, behaviors) and track
their trends; and (2) uncover the hidden graph over
which memes transmit among in-world nodes (e.g.,
people, organizations). We use two fairly large public
data sets4. Because the mutation-from relationships
are unavailable for both data sets, we apply primarily
the MMHP-LM model.

Meme tracking. Figure 3 shows the ten top memes
(shown are the most representative terms of each
meme) we identified from the Twitter data and their
trends over time. Further analysis shows that these
memes satisfactorily reflect the top trending events
that occurred between mid June and late November
in 2009 (e.g., the Microsoft-Yahoo! search deal, the
Obama healthcare reform and the outbreak of the
swine flue). Similar results were obtained on the Bl-
ogosphere data. Due to the unavailability of ground-
truth, we were not able to conduct quantitative anal-
ysis of the meme tracking accuracy.

Network inference. The true transmission graphs
for both data set are unknown. By tracking the in-
formation flow following the hyper-links between dif-
ferent blog-sites and constraining the edges with time-

4http://snap.stanford.edu/data
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Figure 4. Network inference results on Blogosphere.

causality, we can roughly approximate the transmis-
sion graph for the blogosphere data. Figure 4 shows
how the network inferred by different models (with
varying number of latent memes, M) compare to this
noisy ground-truth in terms of RMSE and RCorr.
Again, we observe the MMHP models dramatically out-
perform the NetRate baseline.

6. Conclusions

Summary. We presented a viral diffusion model in-
volving a mixture of MHPs, which addresses diffusion
network inference and meme-tracking simultaneously
and requires no human annotation or prior meme seg-
mentation. Fast inference algorithms have been de-
veloped based on mean-filed method and experiments
were conducted on both synthetic and real data.

Limitations of study and future work. The cur-
rent work has some limitations which we plan to ad-
dress in future work. (1) The current mixture model
assumes the number of memes are fixed and known.
The model can be enhanced by replacing the smooth-
ing prior with a nonparametric grouping prior (e.g.,
Dirichlet process) that entities us identify the suitable
number of clusters to automatically from data; (2) The
meme tracking algorithm Eq(19) uses a fully factorized
distribution to approximate the meme posteriors. The
obtained meme trends are usually not fluent as transi-
tions of memes among neighboring events are not cap-
tured. This can be improved by using a Markov chain
model, the essential idea underlying Kalman filtering
and hidden Markov model; (3) The current model can-
not handle meme hybridizations since each event is
assumed to belong to a single meme (although this
assumption is relaxed in variational inference). To al-
low hybridization, we need mixture model for meme
assignments. One suitable candidate is the Dirichlet-
Multinomial model (Kvam & Day, 2001).

Software. Research code can be downloaded at:
http://www.cc.gatech.edu/~syang46/mhp.tar.gz
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