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1. Notation Table

[m] | The set {1,---,m}
g A subset of [m)]
g°© The complement of g, g¢ = [m] \ g
I The identity matrix
X The sample matrix X € R"™"*"™
X, The ith column of X
B Vector B € R™
Bi The ith element of 3
By, The vector whose ith element is g; if i € g or 0 otherwise
AW | The ith disturbance matrix
A" | The jth column of A®
Ay The matrix whose ith column is A; if i € g or 0 otherwise
W, | Matrix W, € R™mxm
vec(-) | The operator vectorizing a matrix by stacking its columns
IX]l, | The £,-norm of vec(X), ||vec(X)]|,

2. Proofs in Section 2

To prove the corollaries in Section 2, we give the following lemma.

Lemma 1. If any two different groups g, and g4 in G; in the uncertainty set U (4) are non-overlapping for
i=1,---,t, which means g, N g, = 0, then the optimization problem (5) is equivalent to

min {|ly — X6||p+2 D cll(WiB)ll5} (1)

GR”YL
s i=1 geqG;

Proof. Since any two different groups g, and g4 in G; are non-overlapping, we have

max o'W, B = Z Z max Z Z cgl (W I (2)

i=1 Vger‘,HagL)”pSCq i=1 geqG; ”ag)HP<Cq i=1 geqG;

t

Hence the lemma holds. O

By using Theorem 3 and Lemma 1, we have
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. Proof of Corollary 1: G1 = {[m]} satisfies the condition of Lemma 1, so we have

ZZ%H WiB),ls= 3 cllB,ls = clbllo. 3)

i=1 g€eqG; g9€G1

. Proof of Corollary 2: Gy = {{1},--- ,{m}} satisfies the condition of Lemma 1, then

t m
DDl WiB)lly = D collBylly =D il il (4)
i=1 geqG; geGy =1
. Proof of Corollary 3: G1 = {g1,- - ,gx} satisfies the condition of Lemma 1, so we have

t k
SN Gl WiB)l; =D callBy Iy (5)
=1

i=1 geqG,;

. Proof of Theorem 2: G; = {gi, g5} satisfies the condition of Lemma 1 and cge = 0, so that

E :CgL

t k
Yol (WiB)l; = Z(Cgi By.llp + coc 18 il (6)

=1 geqG,

. Proof of Corollary 4: The dual problem of the optimization problem

E :091

> vy, =B, aupp(vgl) 9%

vgl
can be formulated as

k
max mm \Cas {Z C:llva:lly — Tzvgi +a'p}
Tt

@ Visu v
PP(Vy; i=1

=max{a' B+ min {Z g l[Va:lly a;;vgl}}
a Visupp(vy,)Cg: i (7)

Vgi

:mgx{a—rﬁ — {Z i — Cg;

Vi,supp vh)Cgl =1

pt}

= max a'p

Vi,[lexg; [[<eg,

Since the constraints in the primal problem satisfy Slater’s condition, the strong duality holds. From the
duality and the condition in Corollary 4, we have

T
Join {lly - Xﬂllp+z max o W8}

01 V9€Gs ol p<cq

= mmin X max

61 m{ ly — XBllp + Ve 17”ang<Fq o B} (8)
p— 1 —
= Iélln {lly = X8|, + Vo= Supp (va,)Cgs E quHVqL
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6. Proof of Corollary 5: From Theorem 2 and Lemma 1, we have

> ell(WiB

i=1 geqG;
=3 Bl + X I Was),l; o)
g€G1 geG2

m m—1
:Zcz‘|ﬂi| + Z c|Bi = Bital-
i=1 i=1

7. Proof of Corollary 6: By using the proofs of Corollary 1 and Corollary 3, we can obtain Corollary 6.

8. Proof of Corollary 7: G1 = {{1},---,{m}} satisfies the condition of Lemma 1. Since ¢t = 1, c¢{;; = A and
W; = D, we have

SN GllWiB)lz = S AIDB),l; = ZM DB);| = A|DB|:. (10)

i=1 geqG; 9€Gy i=1

3. Proofs in Section 3
3.1. Proof of Theorem 4:

From the definition of U , we have

max [ly — (X + A)B,
AcU

= max max ly = (X +A)Bl»
C€Z v VgEGi,HA(Z)Hp<cg
AT
=lly - X8|, + maxZ max ol W3
i=1 VQEGHHO‘g llp<cg
t " (11)
=y - X8|, + max max a'’ W,8
" elez0, <C><Ozv9ec Mo llp<eq Z
t . q

=y —XBl,+ min max { max a? W,;,8+nchZ)\ifi(c)}

AERL RERY c€RE T vged flaf [l <cq =1

=lly =XBll, + min v(Ak,B)
AERL ,KER

+oRE

Hence we establish the theorem by taking minimum over 3 on both sides. Now we show the optimization problem
is convex and tractable. we first prove that v(A, Kk, 3) is a convex function of A, k, 3. Since

v(\ K, B) = max {Za(l W.8+k c— Z)\ file)} = max uw(\ Kk, 08). (12)

c e ’Rk, =1 ce Rk’,
Vi,g € Gy, llal?lp < g Vi,g € G, lleei|lp < cq

For fixed ¢ and a( ) (A, Kk, B) is a linear function of A, k,3. Thus v(\, k,3) is convex, which implies the
optimization problem is convex. By choosing parameter v, the optimization problem can be reformulated as

min ||y — X8|,
st v(AK,8) <7y
AeRE, keRE, BeR™

To show the problem is tractable, it suffices to construct a polynomial-time separation oracle for the feasible set
S (Grotschel et al. (Grotschel et al., 1988)). A separation oracle is a routine such that for a solution (Ao, ko, By),
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it can find, in polynomial time, that (a) whether (Ag, ko, 8,) belongs to S or not; and (b) if (Ao, ko, By) € S, a
hyperplane that separates (Ao, Ko, 3) with S.

To verify the feasibility of (Ao, Ko, 3y), notice that (Ao, ko,8,) € S if and only if the optimal value of the
optimization problem (12) is smaller than or equal to 7, which can be verified in polynomial time. If (Ao, Ko, 3y) &

S, then by solving (12), we can find in polynomial time cy, a(()i) such that
t T q
> af) WiB+rTco— > Aifileo) >

i=1 =1

which is the hyperplane separates (Ao, Ko, 3) with S.

3.2. Extension of Corollary 8:

Theorem 1. Let g1,---,q; be t groups such that U?Z:l gi = [m], and A; be a n x m matriz whose columns
except the ith one are all zero. Suppose that cg, is a |g;| dimension vector whose elements give the norm
bound of A; for j € gi, e.g. ||Aj]l2 < § , and ¢ = (cqy, -+ ,¢q4,). We define the uncertainty set as U =

o Yica: A;|3c such that ¢ > 0 and ||cg, |7 < s;,Vi € [t]; [|A;ll2 < ¢, Vi € [t],V] € g;}, then the equivalent
linear regularized regression problem is

t
min {|ly — X8I, + Y sillBg,lla},
=1

ﬁeR‘nL

where || - |7 is the dual norm of || - |4

Proof. From Theorem 3 and Theorem 4, we have

min v(\ K
AER |, KERT (A%, 8)
max {ZZ ki + | Bil)e
AeR+ HGR”‘ cER™
Jj=licg;

t
> Aillleglly + 503
i=1

Define ry, as the vector whose elements are x; + |3;] for j € g;, then the equation above is equivalent to

min Ts = E 3By, llq
AER 4, KERT |Irg,; llg<As,Viin[t] ’

which establishes the theorem. O

4. Proofs in Section 5

Recall that the uncertainty set considered in this paper is
= {ADW, + -+ ADW, Vi, Vg € Gy, [AD]|2 < ¢y} (13)

where G; is the set of the groups of A® and ¢g gives the bound of Ag) for group g. We denote G; and G¢ as
the set {g € G;|cy # 0} and G; — G, respectively. In this theorem, we restrict our discussion to the case that

W; =1Ifori=1,---,t and the bound ¢4 of Aéi) for each group g equals v/nc,, or 0, so the uncertainty set can
be rewritten as

U={AW 4. + A, vg e Gi, |AD |5 < Ve, } (14)
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Note that the constraint ||Alls < ¢ can be reformulated as the union of several element-wise constraints. Denote
={D[>.; >, D?; = ¢®, Dy > 0} (we call an element D € D decomposition), then we have

DeD

Similarly, the uncertainty set {A | [[Ag|l2 < ¢} is equivalent to

U {A | Vi,Vj € g,|Ai;] < Dij},
DeD,
where Dy = {D[>_, >, ij =2, D;; > 0}. After the constraints of the uncertainty sets are decomposed into

element-wise constraints, the set {X + AW 4oy A(t)} can also be represented by an element-wise way. The
notation is a little complicated so we first consider three simple cases:

e One uncertainty set A such that |A|2 < ¢: for fixed D € D, we have {X,; + A;;} = [X;; — Dij, Xi; + D).

e Two uncertainty sets A® and A® such that [|AD|; < ¢ and AP, < ¢ for fixed D) € D and
D® e D, we have {X;; + A + AP} = [x;; - DY - DY x5 + D} + D).

7,]7

e One uncertainty set A and two overlapping groups p and ¢ such that ||A,||2 < c and [|A,]2 < ¢ for fixed
P €D, and Q € D,, we have

[X — Pj, Xij + Pij] jEp,j%q
{Xij + A3 = [Xij — Qij, Xij + Qij] J Z p, J €4q
[Xij — min{ vaZ]} Xij +min{P;;, Qi jE€P, jEQq

Thus, if the decomposition D € D, for each A(Z is fixed, we have {X; +A(1) +- +A(t)} = [Xij —7ij» Xij +7ij]

where v;; is determined by the decomposition Ds. Since the number of the elements of A( ") is less than or equal
to mn (m is the feature dimension and n is the number of samples), there exists a decompomtlon D for each
Aél) such that [X;; — \F’X” + \CF] C [Xij — vij» Xij +75j]. We now prove the theorem.

Proposition 1. (Xu et al., 2010) Given a function h : R™*! — R and Borel sets Zy,--- , Z, C R™TL, let

Py={pePVSC {1, n}:pu(l)Z)=>|S|/n}.
i€S
The following holds

n

1
fz sup  h(b;,r;) = sup/ h(bs,r;)du(b;, r;).
Rm+1

n i—1 (bi,ri)€EZ; nePy,

Step 1: Using the notation above, we first give the following corollary:
Corollary 1. Giveny € R™, X € R"*™, the following equation holds for any 3 € R™,

t
Iy = X8l +y [ Sea+d  max a0 = . / V- rTB)du(t ) (1)
=1 V9€G [lal” |2 < vy peP(n Rm+1

P(n) = U P’ﬂ(Xvsvyvcn)
S={D{"}|ID{" €D, vi,ge G

Here,

m

Cn Cn
Pu(X,S,y,cn) ={p € P|Z; =[yi — TV + ﬁ] < 11X = i Xij + sl

VS C {1"" 7”} : M(U Zi) 2 |S|/’I’L},
€S
where v;; depends on the “decomposition” set S.



Submission and Formatting Instructions for ICML 2013

Proof. The right hand side of Equation (15) is equal to

sup [ sw W / (o =T B)2du(v, 1)}
S={D{"}|Vi,geG;, D) €D, HEPn(X.5.y.cn) RmA1

From Theorem 2, we know that the left hand side is equal to

sup , y + 0, — (X+A)8|2
Vi,g€G:,[18ylla</Zcn [|AS 2 < v/ncn
= sup { sup ly +dy — (X +A)B2}

Vi,ge€G;, DS eD, |8,)12<2c2,|A7 <D

n

= sup g sup (b; — 1] B).
Vi,g€G;, DSV eD, \ =1 (biri)E€lyi—cn/vVmyiten/VmI XTI [Xi =i, Xij+7i5]

Furthermore, applying Proposition 1 yields

Z sup (b — riT,B)

1:1 b rl)e[yzfcn/\/iyl‘i’cn/\/i]xnj 1[X1] Yijs X1]+’y”]

=) s wTeduy)
HEP(X,S,y,cn) JRMHL

= s o[ TR
HEP(X,S,y,cn) Rm+1

which proves the corollary. O

Step 2: As (Xu et al., 2010), we consider the following kernel estimator given samples (b;,r;)"_;,

B (b, 1) = (ne™h) ZK 20T T Ty
where K (x) = I[_l)l]m+1(x)/2m+1, and ¢ = \;%

Observe that the estimated distribution above belongs to the set of distributions

Pu(X,S,y,cn) = {1 € P|Z; = [yi — —Yij, Xij + Yis;

|:j3

‘\/77y2
VS C {17"' vn}:M(U Zi > |S|/TL}

i€S

and hence belongs to P(n) = P.(X,S8,y,cn).

Us:{Dé’”}\Dé“evg,w,gea

Step 3: Combining the last two steps, and using the fact that fb o (b, r) — h(b,r)|d(b,r) goes to zero almost

surely when ¢ | 0 and ne¢™*! 1 oo or equivalently ¢, | 0 and nc™™* 1 co. Now we prove consistency of robust
regression.

Proof. Let f(-) be the true probability density function of the samples, and fi,, be the estimated distribution using
Equation (16) given S,, and ¢,, and denote its density function as f,(-). The condition that ||3(cy, Sp)|le < H
almost surely and P has a bounded support implies that there exists a universal constant C' such that

n;ax(b —r'"B(cn, Sp))2 < C
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almost surely.

By Corollary 1 and fi,, € P(n), we have

\/ [ 6B s 200
b,r
< sup \// _FTB Cna n)) dlLLn(b I‘)
neP(n) br
1

= Z(b—r B(cn, Sn) +Z max a(l B+ —c,

L 1 V9€Gs ol 2<cn vm

V1 in +Z a® B4+ ——c,

=1 1=1 VgEG“Ha(Z) l2<cn Al

AT
Notice that, 2521 MAXy a0 [y <o & I \/%TLCW’ converges to 0 as ¢, | 0 almost surely, so the right-hand
g

side converges to \/fb (b—=rTB(P))2dP(b,r) as n T oo and ¢, | 0 almost surely. Furthermore, we have

/ (b—1"B(cy,Sn))%dP(b,r)

b,r

< / (b— 17 B(ns Su))?dfin (b, 1) + max(b — r7 B(cn. 5)? - / Fulb,r) — £(b,1)|d(b, )
b,r T b,r

S/ (b - rTﬁ(Cm S?L))2dﬂ7z(ba I‘) + C |fn(ba I‘) - f(b, r)\d(b, r)7
b,r b,r

where the last inequality follows from the definition of C. Notice that [, |fn(b,x) — f(b,r)|d(b,r) goes to zero
almost surely when ¢, | 0 and nc”*! 4 co. Hence the theorem follows. O

As mentioned in the paper, the assumption that ||3(cp, Sn)|l2 < H in Theorem 7 can be removed, then we have

Theorem 2. Let {c,} converge to zero sufficiently slowly. Then

im — 2 r) =
nl—mo\//bm (bl i ﬂ(CmSn)) dP(b, )

\/ i (b; — ] B(P))2dP(b,r)

almost surely.

We now prove this heorem. We establish the following lemma first.

Lemma 2. Partition the support of P as Vi,--- ,Vp such that the l
distribution p satisfies

u(Vi) = #((bi,x]) € Vi) /ms t=1,--- T, (17)
then € P(n).

Proof. Let Z; = [y; — f,yz + = } X Hj 1 X5 — C—\},Xij + \;—E], recall that X;; is the jth element of r;. Notice

that the [, radius of V; is less than we have

\/77

(bi,r]) eV =V, C Z;.



Submission and Formatting Instructions for ICML 2013

Therefore, for any S C {1,--- ,n}, the following holds

wlUJ 2) > wlviBie S: (bir]) e V)

i€s
= > n(Ve) = > #((bix]) € Vi)/n > |S|/n.
t|3i€S:(bi,r] )EV: t|3i€S:(bi,r] )EV
Hence p € P,(X,S,y,¢,) which implies € P(n). O

Cn

Partition the support of P into T subsets such that the [, radius of each set is less than NG Denote P(n) as

the set of probability measures satisfying Equation (17). Hence P(n) C P(n) by Lemma 1. Further notice that
there exists a universal constant K such that ||B(c,, Sn)|l2 < K/c, due to the fact that the square loss of the
solution B = 0 is bounded by a constant only depends on the support of P. Thus, there exists a constant C' such
that max, , (b — ' B(cn, Spn))? < C/c?. Follow a similar argument as the proof of Theorem 6, we have

sup \// (b—rTB(cn,Sn))2dpn (b, 1)
neP(n) b,r

t

n

T
§ (bi — rTﬁ E max a® B+ —c,
i=1 i— 1Vg€G7-,,Ha§l)H2§cn \/ﬁ

(18)

and

/b (b—r"B(cn,Sn))?dP(b,r)

< inf { (b — rTIB(Cn, Sn))Qd,un(b? r)+ nl}ix(b — I-Tg(cn7 Sn))2 . /b | fu, (b,x) — f(b,r)|d(b,r)}

un€P(n)

< sw / (057 Ble S.) e b.6) 420/ inf / F (by1) — £(b,0)|d(b,T),

pun€P(n)Jb un€P(n

here f, stands for the density function of a measure p. Notice that P(n) is the set of distributions satisfying
Equation (17), hence inf,, 5, Jy o [ (b,x) — f(b,r)|d(D,r) is upper-bounded by ZtT:l |P(V;) — #((bi,x)) €
Vi)|/n, which goes to zero as n increases for any fixed ¢,,. Therefore,

20/ inf /I o (b,7) — F(b,T)|d(b,x) = 0

Hn€P(n)

if ¢, } 0 sufficiently slow. Combining this with Inequality (18) proves the theorem.

References

Grotschel, Martin, Lovész, Laszlo, and Schrijver, Alexander. Geometric Algorithms and Combinatorial Opti-
mization, volume 2. Springer, 1988.

Xu, H., Caramanis, C., and Mannor, S. Robust regression and lasso. IEEFE Transactions on Information Theory,
56(7):3561-3574, 2010.



