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1. Notation Table

[m] The set {1, · · · ,m}
g A subset of [m]
gc The complement of g, gc = [m] \ g
I The identity matrix
X The sample matrix X ∈ Rn×m

Xi The ith column of X
β Vector β ∈ Rm

βi The ith element of β
βg The vector whose ith element is βi if i ∈ g or 0 otherwise

∆(i) The ith disturbance matrix

∆
(i)
j The jth column of ∆(i)

∆g The matrix whose ith column is ∆i if i ∈ g or 0 otherwise
Wi Matrix Wi ∈ Rm×m

vec(·) The operator vectorizing a matrix by stacking its columns
∥X∥p The ℓp-norm of vec(X), ∥vec(X)∥p

2. Proofs in Section 2

To prove the corollaries in Section 2, we give the following lemma.

Lemma 1. If any two different groups gp and gq in Gi in the uncertainty set U (4) are non-overlapping for
i = 1, · · · , t, which means gp ∩ gq = ∅, then the optimization problem (5) is equivalent to

min
β∈Rm

{∥y −Xβ∥p +
t∑

i=1

∑
g∈Gi

cg∥(Wiβ)g∥∗p} (1)

Proof. Since any two different groups gp and gq in Gi are non-overlapping, we have

t∑
i=1

max
∀g∈Gi,∥α(i)

g ∥p≤cg

α(i)⊤Wiβ =

t∑
i=1

∑
g∈Gi

max
∥α(i)

g ∥p≤cg

α(i)
g (Wiβ)g =

t∑
i=1

∑
g∈Gi

cg∥(Wiβ)g∥∗p (2)

Hence the lemma holds.

By using Theorem 3 and Lemma 1, we have
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1. Proof of Corollary 1: G1 = {[m]} satisfies the condition of Lemma 1, so we have

t∑
i=1

∑
g∈Gi

cg∥(Wiβ)g∥∗p =
∑
g∈G1

c∥βg∥∗2 = c∥β∥2. (3)

2. Proof of Corollary 2: G1 = {{1}, · · · , {m}} satisfies the condition of Lemma 1, then

t∑
i=1

∑
g∈Gi

cg∥(Wiβ)g∥∗p =
∑
g∈G1

cg∥βg∥∗p =
m∑
i=1

ci|βi|. (4)

3. Proof of Corollary 3: G1 = {g1, · · · , gk} satisfies the condition of Lemma 1, so we have

t∑
i=1

∑
g∈Gi

cg∥(Wiβ)g∥∗p =
k∑

i=1

cgi∥βgi∥
∗
p. (5)

4. Proof of Theorem 2: Gi = {gi, gci } satisfies the condition of Lemma 1 and cgc
i
= 0, so that

t∑
i=1

∑
g∈Gi

cg∥(Wiβ)g∥∗p =
k∑

i=1

(cgi∥βgi∥
∗
p + cgc

i
∥βgc

i
∥∗p) =

k∑
i=1

cgi∥βgi∥
∗
p. (6)

5. Proof of Corollary 4: The dual problem of the optimization problem

min∑
vgi

=β, supp(vgi
)⊆gi

k∑
i=1

cgi∥vgi∥∗p

can be formulated as

max
α

min
∀i,supp(vgi

)⊆gi
{

k∑
i=1

cgi∥vgi∥∗p −α⊤
k∑

i=1

vgi +α⊤β}

=max
α

{α⊤β + min
∀i,supp(vgi

)⊆gi
{

k∑
i=1

cgi∥vgi∥∗p −α⊤
givgi}}

=max
α

{α⊤β − max
∀i,supp(vgi

)⊆gi
{

k∑
i=1

α⊤
givgi − cgi∥vgi∥∗p}}

= max
∀i,∥αgi

∥≤cgi

α⊤β

(7)

Since the constraints in the primal problem satisfy Slater’s condition, the strong duality holds. From the
duality and the condition in Corollary 4, we have

min
β∈Rm

{∥y −Xβ∥p +
t∑

i=1

max
∀g∈Gi,∥α(i)

g ∥p≤cg

α(i)⊤Wiβ}

= min
β∈Rm

{∥y −Xβ∥p + max
∀g∈G1,∥αg∥p≤cg

α⊤β}

= min
β∈Rm

{∥y −Xβ∥p + min∑
vgi

=β, supp(vgi
)⊆gi

k∑
i=1

cgi∥vgi∥∗p}.

(8)
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6. Proof of Corollary 5: From Theorem 2 and Lemma 1, we have

t∑
i=1

∑
g∈Gi

cg∥(Wiβ)g∥∗p

=
∑
g∈G1

cg∥βg∥∗p +
∑
g∈G2

c′g∥(W2β)g∥∗p

=
m∑
i=1

ci|βi|+
m−1∑
i=1

c′i|βi − βi+1|.

(9)

7. Proof of Corollary 6: By using the proofs of Corollary 1 and Corollary 3, we can obtain Corollary 6.

8. Proof of Corollary 7: G1 = {{1}, · · · , {m}} satisfies the condition of Lemma 1. Since t = 1, c{i} = λ and
W1 = D, we have

t∑
i=1

∑
g∈Gi

cg∥(Wiβ)g∥∗p =
∑
g∈G1

λ∥(Dβ)g∥∗p =
m∑
i=1

λ|(Dβ)i| = λ∥Dβ∥1. (10)

3. Proofs in Section 3

3.1. Proof of Theorem 4:

From the definition of Û , we have

max
∆∈Û

∥y − (X+∆)β∥p

=max
c∈Z

max
∀i,∀g∈Gi,∥∆(i)

g ∥p≤cg

∥y − (X+∆)β∥p

=∥y −Xβ∥p +max
c∈Z

t∑
i=1

max
∀g∈Gi,∥α(i)

g ∥p≤cg

α(i)⊤Wiβ

=∥y −Xβ∥p + max
c|c≥0;fi(c)≤0

t∑
i=1

max
∀g∈Gi,∥α(i)

g ∥p≤cg

α(i)⊤Wiβ

=∥y −Xβ∥p + min
λ∈Rq

+,κ∈Rk
+

max
c∈Rk

{
t∑

i=1

max
∀g∈Gi,∥α(i)

g ∥p≤cg

α(i)⊤Wiβ + κ⊤c−
q∑

i=1

λifi(c)}

=∥y −Xβ∥p + min
λ∈Rq

+,κ∈Rk
+

υ(λ,κ,β)

(11)

Hence we establish the theorem by taking minimum over β on both sides. Now we show the optimization problem
is convex and tractable. we first prove that υ(λ,κ,β) is a convex function of λ,κ,β. Since

υ(λ,κ,β) = max
c ∈ Rk,

∀i, g ∈ Gi, ∥α
(i)
g ∥p ≤ cg

{
t∑

i=1

α(i)⊤Wiβ+κ⊤c−
q∑

i=1

λifi(c)} = max
c ∈ Rk,

∀i, g ∈ Gi, ∥α
(i)
g ∥p ≤ cg

µ(λ,κ,β). (12)

For fixed c and α
(i)
g , µ(λ,κ,β) is a linear function of λ,κ,β. Thus υ(λ,κ,β) is convex, which implies the

optimization problem is convex. By choosing parameter γ, the optimization problem can be reformulated as

min ∥y −Xβ∥p
s.t. υ(λ,κ,β) ≤ γ

λ ∈ Rp
+,κ ∈ Rk

+,β ∈ Rm

To show the problem is tractable, it suffices to construct a polynomial-time separation oracle for the feasible set
S (Grötschel et al. (Grötschel et al., 1988)). A separation oracle is a routine such that for a solution (λ0,κ0,β0),
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it can find, in polynomial time, that (a) whether (λ0,κ0,β0) belongs to S or not; and (b) if (λ0,κ0,β0) ̸∈ S, a
hyperplane that separates (λ0,κ0,β0) with S.

To verify the feasibility of (λ0,κ0,β0), notice that (λ0,κ0,β0) ∈ S if and only if the optimal value of the
optimization problem (12) is smaller than or equal to γ, which can be verified in polynomial time. If (λ0,κ0,β0) ̸∈
S, then by solving (12), we can find in polynomial time c0,α

(i)
0 such that

t∑
i=1

α
(i)
0

⊤
Wiβ + κ⊤c0 −

q∑
i=1

λifi(c0) > γ.

which is the hyperplane separates (λ0,κ0,β0) with S.

3.2. Extension of Corollary 8:

Theorem 1. Let g1, · · · , gt be t groups such that
∪t

i=1 gi = [m], and ∆̄i be a n × m matrix whose columns
except the ith one are all zero. Suppose that cgi is a |gi| dimension vector whose elements give the norm

bound of ∆̄j for j ∈ gi, e.g. ∥∆̄j∥2 ≤ cjgi , and c = (cg1 , · · · , cgt). We define the uncertainty set as Û =

{
∑t

i=1

∑
j∈gi

∆̄j |∃c such that c ≥ 0 and ∥cgi∥∗q ≤ si,∀i ∈ [t]; ∥∆̄j∥2 ≤ cjgi , ∀i ∈ [t], ∀j ∈ gi}, then the equivalent
linear regularized regression problem is

min
β∈Rm

{∥y −Xβ∥p +
t∑

i=1

si∥βgi∥q},

where ∥ · ∥∗q is the dual norm of ∥ · ∥q.

Proof. From Theorem 3 and Theorem 4, we have

min
λ∈R+,κ∈Rm

+

υ(λ,κ,β)

= min
λ∈R+,κ∈Rm

+

max
c∈Rm

{
t∑

j=1

∑
i∈gj

(κi + |βi|)ci−

t∑
i=1

λi(∥cgi∥∗q + si)}.

Define rgi as the vector whose elements are κj + |βj | for j ∈ gi, then the equation above is equivalent to

min
λ∈R+,κ∈Rm

+ |∥rgi∥q≤λi,∀iin[t]
λ⊤s =

t∑
i=1

si∥βgi∥q,

which establishes the theorem.

4. Proofs in Section 5

Recall that the uncertainty set considered in this paper is

U = {∆(1)W1 + · · ·+∆(t)Wt|∀i,∀g ∈ Gi, ∥∆(i)
g ∥2 ≤ cg} (13)

where Gi is the set of the groups of ∆(i) and cg gives the bound of ∆(i)
g for group g. We denote Ḡi and Ḡc

i as

the set {g ∈ Gi|cg ̸= 0} and Gi − Ḡi, respectively. In this theorem, we restrict our discussion to the case that

Wi = I for i = 1, · · · , t and the bound cg of ∆(i)
g for each group g equals

√
ncn or 0, so the uncertainty set can

be rewritten as

U = {∆(1) + · · ·+∆(t)|∀i,∀g ∈ Ḡi, ∥∆(i)
g ∥2 ≤

√
ncn} (14)
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Note that the constraint ∥∆∥2 ≤ c can be reformulated as the union of several element-wise constraints. Denote
D = {D|

∑
i

∑
j D

2
ij = c2, Dij ≥ 0} (we call an element D ∈ D decomposition), then we have

{∆ | ∥∆∥2 ≤ c} =
∪

D∈D

{∆ | ∀i, j, |∆ij | ≤ Dij}.

Similarly, the uncertainty set {∆ | ∥∆g∥2 ≤ c} is equivalent to∪
D∈Dg

{∆ | ∀i,∀j ∈ g, |∆ij | ≤ Dij},

where Dg = {D|
∑

i

∑
j∈g D

2
ij = c2, Dij ≥ 0}. After the constraints of the uncertainty sets are decomposed into

element-wise constraints, the set {X+∆(1) + · · ·+∆(t)} can also be represented by an element-wise way. The
notation is a little complicated so we first consider three simple cases:

• One uncertainty set ∆ such that ∥∆∥2 ≤ c: for fixed D ∈ D, we have {Xij +∆ij} = [Xij −Dij , Xij +Dij ].

• Two uncertainty sets ∆(1) and ∆(2) such that ∥∆(1)∥2 ≤ c and ∥∆(2)∥2 ≤ c: for fixed D(1) ∈ D and

D(2) ∈ D, we have {Xij +∆
(1)
ij +∆

(2)
ij } = [Xij −D

(1)
ij −D

(2)
ij , Xij +D

(1)
ij +D

(2)
ij ].

• One uncertainty set ∆ and two overlapping groups p and q such that ∥∆p∥2 ≤ c and ∥∆q∥2 ≤ c: for fixed
P ∈ Dp and Q ∈ Dq, we have

{Xij +∆ij} =

 [Xij − Pij , Xij + Pij ] j ∈ p, j ̸∈ q
[Xij −Qij , Xij +Qij ] j ̸∈ p, j ∈ q

[Xij −min{Pij , Qij}, Xij +min{Pij , Qij}] j ∈ p, j ∈ q

Thus, if the decomposition D ∈ Dg for each ∆(i)
g is fixed, we have {Xij+∆

(1)
ij + · · ·+∆

(t)
ij } = [Xij−γij , Xij+γij ]

where γij is determined by the decomposition Ds. Since the number of the elements of ∆(i)
g is less than or equal

to mn (m is the feature dimension and n is the number of samples), there exists a decomposition D for each

∆(i)
g such that [Xij − cn√

m
, Xij +

cn√
m
] ⊆ [Xij − γij , Xij + γij ]. We now prove the theorem.

Proposition 1. (Xu et al., 2010) Given a function h : Rm+1 7→ R and Borel sets Z1, · · · , Zn ⊆ Rm+1, let

Pn = {µ ∈ P |∀S ⊆ {1, · · · , n} : µ(
∪
i∈S

Zi) ≥ |S|/n}.

The following holds

1

n

n∑
i=1

sup
(bi,ri)∈Zi

h(bi, ri) = sup
µ∈Pn

∫
Rm+1

h(bi, ri)dµ(bi, ri).

Step 1: Using the notation above, we first give the following corollary:

Corollary 1. Given y ∈ Rn, X ∈ Rn×m, the following equation holds for any β ∈ Rm,

∥y −Xβ∥2 +
√

n

m
cn +

t∑
i=1

max
∀g∈Ḡi,∥α(i)

g ∥2≤
√
ncn

α(i)⊤β = sup
µ∈P̂ (n)

√
n

∫
Rm+1

(b′ − r′⊤β)2dµ(b′, r′) (15)

Here,

P̂ (n) =
∪

S={D(i)
g }|D(i)

g ∈Dg,∀i,g∈Ḡi

Pn(X,S,y, cn)

Pn(X,S,y, cn) = {µ ∈ P |Zi = [yi −
cn√
m
, yi +

cn√
m
]×

m∏
j=1

[Xij − γij , Xij + γij ];

∀S ⊆ {1, · · · , n} : µ(
∪
i∈S

Zi) ≥ |S|/n},

where γij depends on the “decomposition” set S.
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Proof. The right hand side of Equation (15) is equal to

sup
S={D(i)

g }|∀i,g∈Ḡi,D
(i)
g ∈Dg

{ sup
µ∈Pn(X,S,y,cn)

√
n

∫
Rm+1

(b′ − r′⊤β)2dµ(b′, r′)}.

From Theorem 2, we know that the left hand side is equal to

sup
∀i,g∈Gi,∥δy∥2≤

√
n
m cn,∥∆(i)

g ∥2≤
√
ncn

∥y + δy − (X+∆)β∥2

= sup
∀i,g∈Gi,D

(i)
g ∈Dg

{ sup
∥δy∥2

2≤
n
m c2n,|∆

(i)
g |≤D

(i)
g

∥y + δy − (X+∆)β∥2}

= sup
∀i,g∈Gi,D

(i)
g ∈Dg

√√√√ n∑
i=1

sup
(bi,ri)∈[yi−cn/

√
m,yi+cn/

√
m]×

∏m
j=1[Xij−γij ,Xij+γij ]

(bi − r⊤i β).

Furthermore, applying Proposition 1 yields√√√√ n∑
i=1

sup
(bi,ri)∈[yi−cn/

√
m,yi+cn/

√
m]×

∏m
j=1[Xij−γij ,Xij+γij ]

(bi − r⊤i β)

=

√
sup

µ∈P (X,S,y,cn)

n

∫
Rm+1

(b′ − r′⊤β)2dµ(b′, r′)

= sup
µ∈P (X,S,y,cn)

√
n

∫
Rm+1

(b′ − r′⊤β)2dµ(b′, r′)

which proves the corollary.

Step 2: As (Xu et al., 2010), we consider the following kernel estimator given samples (bi, ri)
n
i=1,

hn(b, r) = (ncm+1)−1
n∑

i=1

K(
b− bi, r− ri

c
)

where K(x) = I[−1,1]m+1(x)/2m+1, and c =
cn√
m
.

(16)

Observe that the estimated distribution above belongs to the set of distributions

Pn(X,S,y, cn) = {µ ∈ P |Zi = [yi −
cn√
m
, yi +

cn√
m
]×

m∏
j=1

[Xij − γij , Xij + γij ];

∀S ⊆ {1, · · · , n} : µ(
∪
i∈S

Zi) ≥ |S|/n}

and hence belongs to P̂ (n) =
∪

S={D(i)
g }|D(i)

g ∈Dg,∀i,g∈Ḡi
Pn(X,S,y, cn).

Step 3: Combining the last two steps, and using the fact that
∫
b,r

|hn(b, r)− h(b, r)|d(b, r) goes to zero almost

surely when c ↓ 0 and ncm+1 ↑ ∞ or equivalently cn ↓ 0 and ncm+1
n ↑ ∞. Now we prove consistency of robust

regression.

Proof. Let f(·) be the true probability density function of the samples, and µ̂n be the estimated distribution using
Equation (16) given Sn and cn, and denote its density function as fn(·). The condition that ∥β(cn, Sn)∥2 ≤ H
almost surely and P has a bounded support implies that there exists a universal constant C such that

max
b,r

(b− r⊤β(cn, Sn))
2 ≤ C
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almost surely.

By Corollary 1 and µ̂n ∈ P̂ (n), we have√∫
b,r

(b− r⊤β(cn, Sn))2dµ̂n(b, r)

≤ sup
µ∈P̂ (n)

√∫
b,r

(b− r⊤β(cn, Sn))2dµn(b, r)

=

√
n

n

√√√√ n∑
i=1

(bi − r⊤i β(cn, Sn))2 +
t∑

i=1

max
∀g∈Ḡi,∥α(i)

g ∥2≤cn

α(i)⊤β +
1√
m
cn

≤
√
n

n

√√√√ n∑
i=1

(bi − r⊤i β(P ))2 +
t∑

i=1

max
∀g∈Ḡi,∥α(i)

g ∥2≤cn

α(i)⊤β +
1√
m
cn

Notice that,
∑t

i=1 max∀g∈Ḡi,∥α(i)
g ∥2≤cn

α(i)⊤β + 1√
m
cn converges to 0 as cn ↓ 0 almost surely, so the right-hand

side converges to
√∫

b,r
(b− r⊤β(P ))2dP (b, r) as n ↑ ∞ and cn ↓ 0 almost surely. Furthermore, we have∫

b,r

(b− r⊤β(cn, Sn))
2dP (b, r)

≤
∫
b,r

(b− r⊤β(cn, Sn))
2dµ̂n(b, r) + max

b,r
(b− r⊤β(cn, Sn))

2 ·
∫
b,r

|fn(b, r)− f(b, r)|d(b, r)

≤
∫
b,r

(b− r⊤β(cn, Sn))
2dµ̂n(b, r) + C

∫
b,r

|fn(b, r)− f(b, r)|d(b, r),

where the last inequality follows from the definition of C. Notice that
∫
b,r

|fn(b, r) − f(b, r)|d(b, r) goes to zero

almost surely when cn ↓ 0 and ncm+1
n ↑ ∞. Hence the theorem follows.

As mentioned in the paper, the assumption that ∥β(cn, Sn)∥2 ≤ H in Theorem 7 can be removed, then we have

Theorem 2. Let {cn} converge to zero sufficiently slowly. Then

lim
n→∞

√∫
b,r

(bi − r⊤i β(cn, Sn))2dP (b, r) =√∫
b,r

(bi − r⊤i β(P ))2dP (b, r)

almost surely.

We now prove this heorem. We establish the following lemma first.

Lemma 2. Partition the support of P as V1, · · · , VT such that the l∞ radius of each set is less than cn√
m
. If a

distribution µ satisfies

µ(Vt) = #((bi, r
⊤
i ) ∈ Vt)/n; t = 1, · · · , T, (17)

then µ ∈ P̂ (n).

Proof. Let Zi = [yi− cn√
m
, yi+

cn√
m
]×

∏m
j=1[Xij − cn√

m
, Xij +

cn√
m
], recall that Xij is the jth element of ri. Notice

that the l∞ radius of Vt is less than
cn√
m
, we have

(bi, r
⊤
i ) ∈ Vt ⇒ Vt ⊆ Zi.
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Therefore, for any S ⊆ {1, · · · , n}, the following holds

µ(
∪
i∈S

Zi) ≥ µ(
∪

Vt|∃i ∈ S : (bi, r
⊤
i ) ∈ Vt)

=
∑

t|∃i∈S:(bi,r⊤i )∈Vt

µ(Vt) =
∑

t|∃i∈S:(bi,r⊤i )∈Vt

#((bi, r
⊤
i ) ∈ Vt)/n ≥ |S|/n.

Hence µ ∈ Pn(X,S,y, cn) which implies µ ∈ P̂ (n).

Partition the support of P into T subsets such that the l∞ radius of each set is less than cn√
m
. Denote P̃ (n) as

the set of probability measures satisfying Equation (17). Hence P̃ (n) ⊆ P̂ (n) by Lemma 1. Further notice that
there exists a universal constant K such that ∥β(cn, Sn)∥2 ≤ K/cn due to the fact that the square loss of the
solution β = 0 is bounded by a constant only depends on the support of P . Thus, there exists a constant C such
that maxb,r (b− r⊤β(cn, Sn))

2 ≤ C/c2n. Follow a similar argument as the proof of Theorem 6, we have

sup
µ∈P̃ (n)

√∫
b,r

(b− r⊤β(cn, Sn))2dµn(b, r)

≤
√
n

n

√√√√ n∑
i=1

(bi − r⊤i β(P ))2 +
t∑

i=1

max
∀g∈Ḡi,∥α(i)

g ∥2≤cn

α(i)⊤β +
1√
m
cn

(18)

and ∫
b,r

(b− r⊤β(cn, Sn))
2dP (b, r)

≤ inf
µn∈P̃ (n)

{
∫
b,r

(b− r⊤β(cn, Sn))
2dµn(b, r) + max

b,r
(b− r⊤β(cn, Sn))

2 ·
∫
b,r

|fµn(b, r)− f(b, r)|d(b, r)}

≤ sup
µn∈P̃ (n)

∫
b,r

(b− r⊤β(cn, Sn))
2dµn(b, r) + 2C/c2n inf

µn∈P̃ (n)

∫
b,r

|fµn
(b, r)− f(b, r)|d(b, r),

here fµ stands for the density function of a measure µ. Notice that P̃ (n) is the set of distributions satisfying

Equation (17), hence infµn∈P̃ (n)

∫
b,r

|fµn(b, r) − f(b, r)|d(b, r) is upper-bounded by
∑T

t=1 |P (Vt) − #((bi, r
⊤
i ) ∈

Vt)|/n, which goes to zero as n increases for any fixed cn. Therefore,

2C/c2n inf
µn∈P̃ (n)

∫
b,r

|fµn(b, r)− f(b, r)|d(b, r) → 0,

if cn ↓ 0 sufficiently slow. Combining this with Inequality (18) proves the theorem.
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