Wenzhuo Yang

A0096049@NUS.EDU.SG

Department of Mechanical Engineering, National University of Singapore, Singapore 117576

Huan Xu

MPEXUH@NUS.EDU.SG

Department of Mechanical Engineering, National University of Singapore, Singapore 117576

1. Notation Table

[m]	The set $\{1, \cdots, m\}$
g	A subset of $[m]$
g^c	The complement of $g, g^c = [m] \setminus g$
Ι	The identity matrix
Х	The sample matrix $\mathbf{X} \in \mathcal{R}^{n \times m}$
\mathbf{X}_i	The <i>i</i> th column of \mathbf{X}
β	Vector $\boldsymbol{\beta} \in \mathcal{R}^m$
β_i	The <i>i</i> th element of β
$oldsymbol{eta}_g$	The vector whose <i>i</i> th element is β_i if $i \in g$ or 0 otherwise
$oldsymbol{\Delta}^{(i)}$	The i th disturbance matrix
$oldsymbol{\Delta}_{j}^{(i)}$	The <i>j</i> th column of $\mathbf{\Delta}^{(i)}$
Δ_g	The matrix whose <i>i</i> th column is Δ_i if $i \in g$ or 0 otherwise
\mathbf{W}_i	Matrix $\mathbf{W}_i \in \mathcal{R}^{m imes m}$
$\operatorname{vec}(\cdot)$	The operator vectorizing a matrix by stacking its columns
$\ \mathbf{X}\ _p$	The ℓ_p -norm of vec(X), $\ $ vec(X) $\ _p$

2. Proofs in Section 2

To prove the corollaries in Section 2, we give the following lemma.

Lemma 1. If any two different groups g_p and g_q in G_i in the uncertainty set U (4) are non-overlapping for $i = 1, \dots, t$, which means $g_p \cap g_q = \emptyset$, then the optimization problem (5) is equivalent to

$$\min_{\boldsymbol{\beta} \in \mathcal{R}^m} \{ \| \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \|_p + \sum_{i=1}^t \sum_{g \in G_i} c_g \| (\mathbf{W}_i \boldsymbol{\beta})_g \|_p^* \}$$
(1)

Proof. Since any two different groups g_p and g_q in G_i are non-overlapping, we have

$$\sum_{i=1}^{t} \max_{\forall g \in G_i, \|\boldsymbol{\alpha}_g^{(i)}\|_p \le c_g} \boldsymbol{\alpha}^{(i)^{\top}} \mathbf{W}_i \boldsymbol{\beta} = \sum_{i=1}^{t} \sum_{g \in G_i} \max_{\|\boldsymbol{\alpha}_g^{(i)}\|_p \le c_g} \boldsymbol{\alpha}_g^{(i)} (\mathbf{W}_i \boldsymbol{\beta})_g = \sum_{i=1}^{t} \sum_{g \in G_i} c_g \| (\mathbf{W}_i \boldsymbol{\beta})_g \|_p^*$$
(2)

Hence the lemma holds.

By using Theorem 3 and Lemma 1, we have

1. Proof of Corollary 1: $G_1 = \{[m]\}$ satisfies the condition of Lemma 1, so we have

$$\sum_{i=1}^{l} \sum_{g \in G_i} c_g \| (\mathbf{W}_i \boldsymbol{\beta})_g \|_p^* = \sum_{g \in G_1} c \| \boldsymbol{\beta}_g \|_2^* = c \| \boldsymbol{\beta} \|_2.$$
(3)

2. Proof of Corollary 2: $G_1 = \{\{1\}, \dots, \{m\}\}$ satisfies the condition of Lemma 1, then

$$\sum_{i=1}^{t} \sum_{g \in G_i} c_g \| (\mathbf{W}_i \boldsymbol{\beta})_g \|_p^* = \sum_{g \in G_1} c_g \| \boldsymbol{\beta}_g \|_p^* = \sum_{i=1}^{m} c_i |\beta_i|.$$
(4)

3. Proof of Corollary 3: $G_1 = \{g_1, \dots, g_k\}$ satisfies the condition of Lemma 1, so we have

$$\sum_{i=1}^{t} \sum_{g \in G_i} c_g \| (\mathbf{W}_i \boldsymbol{\beta})_g \|_p^* = \sum_{i=1}^{k} c_{g_i} \| \boldsymbol{\beta}_{g_i} \|_p^*.$$
(5)

4. Proof of Theorem 2: $G_i = \{g_i, g_i^c\}$ satisfies the condition of Lemma 1 and $c_{g_i^c} = 0$, so that

$$\sum_{i=1}^{t} \sum_{g \in G_i} c_g \| (\mathbf{W}_i \boldsymbol{\beta})_g \|_p^* = \sum_{i=1}^{k} (c_{g_i} \| \boldsymbol{\beta}_{g_i} \|_p^* + c_{g_i^c} \| \boldsymbol{\beta}_{g_i^c} \|_p^*) = \sum_{i=1}^{k} c_{g_i} \| \boldsymbol{\beta}_{g_i} \|_p^*.$$
(6)

5. Proof of Corollary 4: The dual problem of the optimization problem

$$\min_{\sum \mathbf{v}_{g_i} = \boldsymbol{\beta}, \text{ supp}(\mathbf{v}_{g_i}) \subseteq g_i} \sum_{i=1}^k c_{g_i} \|\mathbf{v}_{g_i}\|_p^*$$

can be formulated as

$$\max_{\boldsymbol{\alpha}} \min_{\forall i, \text{supp}(\mathbf{v}_{g_{i}}) \subseteq g_{i}} \{ \sum_{i=1}^{k} c_{g_{i}} \| \mathbf{v}_{g_{i}} \|_{p}^{*} - \boldsymbol{\alpha}^{\top} \sum_{i=1}^{k} \mathbf{v}_{g_{i}} + \boldsymbol{\alpha}^{\top} \boldsymbol{\beta} \}$$

$$= \max_{\boldsymbol{\alpha}} \{ \boldsymbol{\alpha}^{\top} \boldsymbol{\beta} + \min_{\forall i, \text{supp}(\mathbf{v}_{g_{i}}) \subseteq g_{i}} \{ \sum_{i=1}^{k} c_{g_{i}} \| \mathbf{v}_{g_{i}} \|_{p}^{*} - \boldsymbol{\alpha}_{g_{i}}^{\top} \mathbf{v}_{g_{i}} \} \}$$

$$= \max_{\boldsymbol{\alpha}} \{ \boldsymbol{\alpha}^{\top} \boldsymbol{\beta} - \max_{\forall i, \text{supp}(\mathbf{v}_{g_{i}}) \subseteq g_{i}} \{ \sum_{i=1}^{k} \boldsymbol{\alpha}_{g_{i}}^{\top} \mathbf{v}_{g_{i}} - c_{g_{i}} \| \mathbf{v}_{g_{i}} \|_{p}^{*} \} \}$$

$$= \max_{\forall i, \| \boldsymbol{\alpha}_{g_{i}} \| \leq c_{g_{i}}} \boldsymbol{\alpha}^{\top} \boldsymbol{\beta}$$

$$(7)$$

Since the constraints in the primal problem satisfy Slater's condition, the strong duality holds. From the duality and the condition in Corollary 4, we have

$$\min_{\boldsymbol{\beta}\in\mathcal{R}^{m}} \{ \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{p} + \sum_{i=1}^{t} \max_{\forall g\in G_{i}, \|\boldsymbol{\alpha}_{g}^{(i)}\|_{p} \leq c_{g}} \boldsymbol{\alpha}^{(i)^{\top}} \mathbf{W}_{i} \boldsymbol{\beta} \}$$

$$= \min_{\boldsymbol{\beta}\in\mathcal{R}^{m}} \{ \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{p} + \max_{\forall g\in G_{1}, \|\boldsymbol{\alpha}_{g}\|_{p} \leq c_{g}} \boldsymbol{\alpha}^{\top} \boldsymbol{\beta} \}$$

$$= \min_{\boldsymbol{\beta}\in\mathcal{R}^{m}} \{ \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{p} + \min_{\sum \mathbf{v}_{g_{i}} = \boldsymbol{\beta}, \text{ supp}(\mathbf{v}_{g_{i}}) \subseteq g_{i}} \sum_{i=1}^{k} c_{g_{i}} \|\mathbf{v}_{g_{i}}\|_{p}^{*} \}.$$
(8)

6. Proof of Corollary 5: From Theorem 2 and Lemma 1, we have

$$\sum_{i=1}^{t} \sum_{g \in G_{i}} c_{g} \|(\mathbf{W}_{i}\boldsymbol{\beta})_{g}\|_{p}^{*}$$

$$= \sum_{g \in G_{1}} c_{g} \|\boldsymbol{\beta}_{g}\|_{p}^{*} + \sum_{g \in G_{2}} c_{g}^{\prime} \|(\mathbf{W}_{2}\boldsymbol{\beta})_{g}\|_{p}^{*}$$

$$= \sum_{i=1}^{m} c_{i} |\boldsymbol{\beta}_{i}| + \sum_{i=1}^{m-1} c_{i}^{\prime} |\boldsymbol{\beta}_{i} - \boldsymbol{\beta}_{i+1}|.$$
(9)

- 7. Proof of Corollary 6: By using the proofs of Corollary 1 and Corollary 3, we can obtain Corollary 6.
- 8. Proof of Corollary 7: $G_1 = \{\{1\}, \dots, \{m\}\}$ satisfies the condition of Lemma 1. Since t = 1, $c_{\{i\}} = \lambda$ and $\mathbf{W}_1 = \mathbf{D}$, we have

$$\sum_{i=1}^{t} \sum_{g \in G_i} c_g \| (\mathbf{W}_i \boldsymbol{\beta})_g \|_p^* = \sum_{g \in G_1} \lambda \| (\mathbf{D} \boldsymbol{\beta})_g \|_p^* = \sum_{i=1}^{m} \lambda | (\mathbf{D} \boldsymbol{\beta})_i | = \lambda \| \mathbf{D} \boldsymbol{\beta} \|_1.$$
(10)

3. Proofs in Section 3

3.1. Proof of Theorem 4:

From the definition of \hat{U} , we have

$$\begin{aligned} \max_{\boldsymbol{\Delta}\in\hat{U}} \|\mathbf{y} - (\mathbf{X} + \boldsymbol{\Delta})\boldsymbol{\beta}\|_{p} \\ &= \max_{\mathbf{c}\in Z} \max_{\forall i, \forall g\in G_{i}, \|\boldsymbol{\Delta}_{g}^{(i)}\|_{p} \leq c_{g}} \|\mathbf{y} - (\mathbf{X} + \boldsymbol{\Delta})\boldsymbol{\beta}\|_{p} \\ &= \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{p} + \max_{\mathbf{c}\in Z} \sum_{i=1}^{t} \max_{\forall g\in G_{i}, \|\boldsymbol{\alpha}_{g}^{(i)}\|_{p} \leq c_{g}} \boldsymbol{\alpha}^{(i)^{\top}} \mathbf{W}_{i}\boldsymbol{\beta} \\ &= \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{p} + \max_{\mathbf{c}\mid\mathbf{c}\geq0; f_{i}(\mathbf{c})\leq0} \sum_{i=1}^{t} \max_{\forall g\in G_{i}, \|\boldsymbol{\alpha}_{g}^{(i)}\|_{p} \leq c_{g}} \boldsymbol{\alpha}^{(i)^{\top}} \mathbf{W}_{i}\boldsymbol{\beta} \\ &= \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{p} + \min_{\boldsymbol{\lambda}\in\mathcal{R}^{q}_{+}, \boldsymbol{\kappa}\in\mathcal{R}^{k}_{+}} \max_{\mathbf{c}\in\mathcal{R}^{k}} \{\sum_{i=1}^{t} \max_{\forall g\in G_{i}, \|\boldsymbol{\alpha}_{g}^{(i)}\|_{p} \leq c_{g}} \boldsymbol{\alpha}^{(i)^{\top}} \mathbf{W}_{i}\boldsymbol{\beta} + \boldsymbol{\kappa}^{\top} \mathbf{c} - \sum_{i=1}^{q} \lambda_{i} f_{i}(\mathbf{c})\} \\ &= \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{p} + \min_{\boldsymbol{\lambda}\in\mathcal{R}^{q}_{+}, \boldsymbol{\kappa}\in\mathcal{R}^{k}_{+}} v(\boldsymbol{\lambda}, \boldsymbol{\kappa}, \boldsymbol{\beta}) \end{aligned}$$
(11)

Hence we establish the theorem by taking minimum over β on both sides. Now we show the optimization problem is convex and tractable. we first prove that $v(\lambda, \kappa, \beta)$ is a convex function of λ, κ, β . Since

$$v(\boldsymbol{\lambda},\boldsymbol{\kappa},\boldsymbol{\beta}) = \max_{\substack{\mathbf{c} \in \mathcal{R}^{k}, \\ \forall i, g \in G_{i}, \|\boldsymbol{\alpha}_{g}^{(i)}\|_{p} \leq c_{g}}} \{\sum_{i=1}^{t} \boldsymbol{\alpha}^{(i)^{\top}} \mathbf{W}_{i} \boldsymbol{\beta} + \boldsymbol{\kappa}^{\top} \mathbf{c} - \sum_{i=1}^{q} \lambda_{i} f_{i}(\mathbf{c})\} = \max_{\substack{\mathbf{c} \in \mathcal{R}^{k}, \\ \forall i, g \in G_{i}, \|\boldsymbol{\alpha}_{g}^{(i)}\|_{p} \leq c_{g}}} \mu(\boldsymbol{\lambda},\boldsymbol{\kappa},\boldsymbol{\beta}).$$
(12)

For fixed **c** and $\alpha_g^{(i)}$, $\mu(\lambda, \kappa, \beta)$ is a linear function of λ, κ, β . Thus $v(\lambda, \kappa, \beta)$ is convex, which implies the optimization problem is convex. By choosing parameter γ , the optimization problem can be reformulated as

$$\begin{array}{ll} \min & \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_p \\ \text{s.t.} & \upsilon(\boldsymbol{\lambda}, \boldsymbol{\kappa}, \boldsymbol{\beta}) \leq \gamma \\ & \boldsymbol{\lambda} \in \mathcal{R}^p_+, \boldsymbol{\kappa} \in \mathcal{R}^k_+, \boldsymbol{\beta} \in \mathcal{R}^m \end{array}$$

To show the problem is tractable, it suffices to construct a polynomial-time separation oracle for the feasible set S (Grötschel et al. (Grötschel et al., 1988)). A separation oracle is a routine such that for a solution $(\lambda_0, \kappa_0, \beta_0)$,

it can find, in polynomial time, that (a) whether $(\lambda_0, \kappa_0, \beta_0)$ belongs to S or not; and (b) if $(\lambda_0, \kappa_0, \beta_0) \notin S$, a hyperplane that separates $(\lambda_0, \kappa_0, \beta_0)$ with S.

To verify the feasibility of $(\lambda_0, \kappa_0, \beta_0)$, notice that $(\lambda_0, \kappa_0, \beta_0) \in S$ if and only if the optimal value of the optimization problem (12) is smaller than or equal to γ , which can be verified in polynomial time. If $(\lambda_0, \kappa_0, \beta_0) \notin S$, then by solving (12), we can find in polynomial time $\mathbf{c}_0, \boldsymbol{\alpha}_0^{(i)}$ such that

$$\sum_{i=1}^{t} \boldsymbol{\alpha}_{0}^{(i)^{\top}} \mathbf{W}_{i} \boldsymbol{\beta} + \boldsymbol{\kappa}^{\top} \mathbf{c}_{0} - \sum_{i=1}^{q} \lambda_{i} f_{i}(\mathbf{c}_{0}) > \gamma.$$

which is the hyperplane separates $(\lambda_0, \kappa_0, \beta_0)$ with S.

3.2. Extension of Corollary 8:

Theorem 1. Let g_1, \dots, g_t be t groups such that $\bigcup_{i=1}^t g_i = [m]$, and $\bar{\Delta}_i$ be a $n \times m$ matrix whose columns except the ith one are all zero. Suppose that \mathbf{c}_{g_i} is a $|g_i|$ dimension vector whose elements give the norm bound of $\bar{\Delta}_j$ for $j \in g_i$, e.g. $\|\bar{\Delta}_j\|_2 \leq c_{g_i}^j$, and $\mathbf{c} = (\mathbf{c}_{g_1}, \dots, \mathbf{c}_{g_t})$. We define the uncertainty set as $\hat{U} = \{\sum_{i=1}^t \sum_{j \in g_i} \bar{\Delta}_j | \exists \mathbf{c} \text{ such that } \mathbf{c} \geq 0 \text{ and } \|\mathbf{c}_{g_i}\|_q^* \leq s_i, \forall i \in [t]; \|\bar{\Delta}_j\|_2 \leq c_{g_i}^j, \forall i \in [t], \forall j \in g_i\}$, then the equivalent linear regularized regression problem is

$$\min_{\boldsymbol{\beta} \in \mathcal{R}^m} \{ \| \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \|_p + \sum_{i=1}^t s_i \| \boldsymbol{\beta}_{g_i} \|_q \},\$$

where $\|\cdot\|_q^*$ is the dual norm of $\|\cdot\|_q$.

Proof. From Theorem 3 and Theorem 4, we have

$$\min_{\lambda \in \mathcal{R}_+, \boldsymbol{\kappa} \in \mathcal{R}_+^m} v(\lambda, \boldsymbol{\kappa}, \boldsymbol{\beta})$$

=
$$\min_{\lambda \in \mathcal{R}_+, \boldsymbol{\kappa} \in \mathcal{R}_+^m} \max_{\mathbf{c} \in \mathcal{R}^m} \{\sum_{j=1}^t \sum_{i \in g_j} (\kappa_i + |\beta_i|)c_i - \sum_{i=1}^t \lambda_i (\|\mathbf{c}_{g_i}\|_q^* + s_i)\}.$$

Define \mathbf{r}_{q_i} as the vector whose elements are $\kappa_j + |\beta_j|$ for $j \in g_i$, then the equation above is equivalent to

$$\min_{\lambda \in \mathcal{R}_+, \boldsymbol{\kappa} \in \mathcal{R}_+^m ||| \mathbf{r}_{g_i}||_q \le \lambda_i, \forall iin[t]} \boldsymbol{\lambda}^\top \mathbf{s} = \sum_{i=1}^t s_i \|\boldsymbol{\beta}_{g_i}\|_q,$$

which establishes the theorem.

4. Proofs in Section 5

Recall that the uncertainty set considered in this paper is

$$U = \{ \mathbf{\Delta}^{(1)} \mathbf{W}_1 + \dots + \mathbf{\Delta}^{(t)} \mathbf{W}_t | \forall i, \forall g \in G_i, \| \mathbf{\Delta}_g^{(i)} \|_2 \le c_g \}$$
(13)

where G_i is the set of the groups of $\Delta^{(i)}$ and c_g gives the bound of $\Delta_g^{(i)}$ for group g. We denote \bar{G}_i and \bar{G}_i^c as the set $\{g \in G_i | c_g \neq 0\}$ and $G_i - \bar{G}_i$, respectively. In this theorem, we restrict our discussion to the case that $\mathbf{W}_i = \mathbf{I}$ for $i = 1, \dots, t$ and the bound c_g of $\Delta_g^{(i)}$ for each group g equals $\sqrt{n}c_n$ or 0, so the uncertainty set can be rewritten as

$$U = \{ \mathbf{\Delta}^{(1)} + \dots + \mathbf{\Delta}^{(t)} | \forall i, \forall g \in \bar{G}_i, \| \mathbf{\Delta}_g^{(i)} \|_2 \le \sqrt{n} c_n \}$$
(14)

Note that the constraint $\|\mathbf{\Delta}\|_2 \leq c$ can be reformulated as the union of several element-wise constraints. Denote $\mathcal{D} = \{\mathbf{D}|\sum_i \sum_j D_{ij}^2 = c^2, D_{ij} \geq 0\}$ (we call an element $\mathbf{D} \in \mathcal{D}$ decomposition), then we have

$$\{\boldsymbol{\Delta} \mid \|\boldsymbol{\Delta}\|_2 \leq c\} = \bigcup_{\mathbf{D} \in \mathcal{D}} \{\boldsymbol{\Delta} \mid \forall i, j, |\Delta_{ij}| \leq D_{ij}\}.$$

Similarly, the uncertainty set $\{\Delta \mid \|\Delta_g\|_2 \leq c\}$ is equivalent to

$$\bigcup_{\mathbf{D}\in\mathcal{D}_g} \{ \mathbf{\Delta} \mid \forall i, \forall j \in g, |\Delta_{ij}| \le D_{ij} \},\$$

where $\mathcal{D}_g = \{\mathbf{D} | \sum_i \sum_{j \in g} D_{ij}^2 = c^2, D_{ij} \ge 0\}$. After the constraints of the uncertainty sets are decomposed into element-wise constraints, the set $\{\mathbf{X} + \mathbf{\Delta}^{(1)} + \cdots + \mathbf{\Delta}^{(t)}\}$ can also be represented by an element-wise way. The notation is a little complicated so we first consider three simple cases:

- One uncertainty set Δ such that $\|\Delta\|_2 \leq c$: for fixed $\mathbf{D} \in \mathcal{D}$, we have $\{X_{ij} + \Delta_{ij}\} = [X_{ij} D_{ij}, X_{ij} + D_{ij}]$.
- Two uncertainty sets $\mathbf{\Delta}^{(1)}$ and $\mathbf{\Delta}^{(2)}$ such that $\|\mathbf{\Delta}^{(1)}\|_2 \leq c$ and $\|\mathbf{\Delta}^{(2)}\|_2 \leq c$: for fixed $\mathbf{D}^{(1)} \in \mathcal{D}$ and $\mathbf{D}^{(2)} \in \mathcal{D}$, we have $\{X_{ij} + \Delta_{ij}^{(1)} + \Delta_{ij}^{(2)}\} = [X_{ij} D_{ij}^{(1)} D_{ij}^{(2)}, X_{ij} + D_{ij}^{(1)} + D_{ij}^{(2)}].$
- One uncertainty set Δ and two overlapping groups p and q such that $\|\Delta_p\|_2 \leq c$ and $\|\Delta_q\|_2 \leq c$: for fixed $\mathbf{P} \in \mathcal{D}_p$ and $\mathbf{Q} \in \mathcal{D}_q$, we have

$$\{X_{ij} + \Delta_{ij}\} = \begin{cases} [X_{ij} - P_{ij}, X_{ij} + P_{ij}] & j \in p, \ j \notin q\\ [X_{ij} - Q_{ij}, X_{ij} + Q_{ij}] & j \notin p, \ j \in q\\ [X_{ij} - \min\{P_{ij}, Q_{ij}\}, X_{ij} + \min\{P_{ij}, Q_{ij}\}] & j \in p, \ j \in q \end{cases}$$

Thus, if the decomposition $\mathbf{D} \in \mathcal{D}_g$ for each $\mathbf{\Delta}_g^{(i)}$ is fixed, we have $\{X_{ij} + \Delta_{ij}^{(1)} + \dots + \Delta_{ij}^{(t)}\} = [X_{ij} - \gamma_{ij}, X_{ij} + \gamma_{ij}]$ where γ_{ij} is determined by the decomposition \mathbf{D} s. Since the number of the elements of $\mathbf{\Delta}_g^{(i)}$ is less than or equal to mn (m is the feature dimension and n is the number of samples), there exists a decomposition \mathbf{D} for each $\mathbf{\Delta}_g^{(i)}$ such that $[X_{ij} - \frac{c_n}{\sqrt{m}}, X_{ij} + \frac{c_n}{\sqrt{m}}] \subseteq [X_{ij} - \gamma_{ij}, X_{ij} + \gamma_{ij}]$. We now prove the theorem.

Proposition 1. (Xu et al., 2010) Given a function $h : \mathbb{R}^{m+1} \mapsto \mathbb{R}$ and Borel sets $Z_1, \dots, Z_n \subseteq \mathbb{R}^{m+1}$, let

$$P_n = \{\mu \in P | \forall S \subseteq \{1, \cdots, n\} : \mu(\bigcup_{i \in S} Z_i) \ge |S|/n\}$$

The following holds

$$\frac{1}{n}\sum_{i=1}^{n}\sup_{(b_i,\mathbf{r}_i)\in Z_i}h(b_i,\mathbf{r}_i) = \sup_{\mu\in P_n}\int_{\mathcal{R}^{m+1}}h(b_i,\mathbf{r}_i)d\mu(b_i,\mathbf{r}_i).$$

Step 1: Using the notation above, we first give the following corollary:

Corollary 1. Given $\mathbf{y} \in \mathcal{R}^n$, $\mathbf{X} \in \mathcal{R}^{n \times m}$, the following equation holds for any $\boldsymbol{\beta} \in \mathcal{R}^m$,

$$\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|_{2} + \sqrt{\frac{n}{m}}c_{n} + \sum_{i=1}^{\tau} \max_{\forall g \in \bar{G}_{i}, \|\boldsymbol{\alpha}_{g}^{(i)}\|_{2} \le \sqrt{n}c_{n}} \boldsymbol{\alpha}^{(i)^{\top}}\boldsymbol{\beta} = \sup_{\mu \in \hat{P}(n)} \sqrt{n} \int_{\mathcal{R}^{m+1}} (b' - \mathbf{r}'^{\top}\boldsymbol{\beta})^{2} d\mu(b', \mathbf{r}')$$
(15)

Here,

$$\hat{P}(n) = \bigcup_{\mathcal{S} = \{\mathbf{D}_g^{(i)}\} | \mathbf{D}_g^{(i)} \in \mathcal{D}_g, \forall i, g \in \bar{G}_i} P_n(\mathbf{X}, \mathcal{S}, \mathbf{y}, c_n)$$

$$P_n(\mathbf{X}, \mathcal{S}, \mathbf{y}, c_n) = \{ \mu \in P | Z_i = [y_i - \frac{c_n}{\sqrt{m}}, y_i + \frac{c_n}{\sqrt{m}}] \times \prod_{j=1}^m [X_{ij} - \gamma_{ij}, X_{ij} + \gamma_{ij}];$$
$$\forall S \subseteq \{1, \cdots, n\} : \mu(\bigcup_{i \in S} Z_i) \ge |S|/n\},$$

where γ_{ij} depends on the "decomposition" set S.

Proof. The right hand side of Equation (15) is equal to

$$\sup_{\mathcal{S}=\{\mathbf{D}_{g}^{(i)}\}\mid\forall i,g\in\bar{G}_{i},\mathbf{D}_{g}^{(i)}\in\mathcal{D}_{g}}\{\sup_{\mu\in P_{n}(\mathbf{X},\mathcal{S},\mathbf{y},c_{n})}\sqrt{n\int_{\mathcal{R}^{m+1}}(b'-\mathbf{r}'^{\top}\boldsymbol{\beta})^{2}d\mu(b',\mathbf{r}')}\}.$$

From Theorem 2, we know that the left hand side is equal to

$$\begin{split} \sup_{\substack{\forall i,g \in G_i, \|\boldsymbol{\delta}_y\|_2 \leq \sqrt{\frac{n}{m}}c_n, \|\boldsymbol{\Delta}_g^{(i)}\|_2 \leq \sqrt{n}c_n \\ \forall i,g \in G_i, \mathbf{D}_g^{(i)} \in \mathcal{D}_g} \{ \sup_{\substack{\forall y \|_2^2 \leq \frac{n}{m}c_n^2, |\boldsymbol{\Delta}_g^{(i)}| \leq \mathbf{D}_g^{(i)} \\ \forall i,g \in G_i, \mathbf{D}_g^{(i)} \in \mathcal{D}_g} \sqrt{\sum_{i=1}^{n} (b_i, \mathbf{r}_i) \in [y_i - c_n/\sqrt{m}, y_i + c_n/\sqrt{m}] \times \prod_{j=1}^{m} [X_{ij} - \gamma_{ij}, X_{ij} + \gamma_{ij}]} (b_i - \mathbf{r}_i^\top \boldsymbol{\beta}). \end{split}$$

Furthermore, applying Proposition 1 yields

$$\sqrt{\sum_{i=1}^{n} \sup_{(b_{i},\mathbf{r}_{i})\in[y_{i}-c_{n}/\sqrt{m},y_{i}+c_{n}/\sqrt{m}]\times\prod_{j=1}^{m}[X_{ij}-\gamma_{ij},X_{ij}+\gamma_{ij}]} (b_{i}-\mathbf{r}_{i}^{\top}\boldsymbol{\beta}) }$$

$$= \sqrt{\sup_{\mu\in P(\mathbf{X},\mathcal{S},\mathbf{y},c_{n})} n \int_{\mathcal{R}^{m+1}} (b'-\mathbf{r}'^{\top}\boldsymbol{\beta})^{2} d\mu(b',\mathbf{r}')} }$$

$$= \sup_{\mu\in P(\mathbf{X},\mathcal{S},\mathbf{y},c_{n})} \sqrt{n \int_{\mathcal{R}^{m+1}} (b'-\mathbf{r}'^{\top}\boldsymbol{\beta})^{2} d\mu(b',\mathbf{r}')}$$

which proves the corollary.

Step 2: As (Xu et al., 2010), we consider the following kernel estimator given samples $(b_i, \mathbf{r}_i)_{i=1}^n$,

$$h_n(b, \mathbf{r}) = (nc^{m+1})^{-1} \sum_{i=1}^n K(\frac{b - b_i, \mathbf{r} - \mathbf{r}_i}{c})$$

where $K(\mathbf{x}) = I_{[-1,1]^{m+1}}(\mathbf{x})/2^{m+1}$, and $c = \frac{c_n}{\sqrt{m}}$. (16)

Observe that the estimated distribution above belongs to the set of distributions

$$P_n(\mathbf{X}, \mathcal{S}, \mathbf{y}, c_n) = \{ \mu \in P | Z_i = [y_i - \frac{c_n}{\sqrt{m}}, y_i + \frac{c_n}{\sqrt{m}}] \times \prod_{j=1}^m [X_{ij} - \gamma_{ij}, X_{ij} + \gamma_{ij}];$$
$$\forall S \subseteq \{1, \cdots, n\} : \mu(\bigcup_{i \in S} Z_i) \ge |S|/n\}$$

and hence belongs to $\hat{P}(n) = \bigcup_{\mathcal{S} = \{\mathbf{D}_g^{(i)}\} | \mathbf{D}_g^{(i)} \in \mathcal{D}_g, \forall i, g \in \bar{G}_i} P_n(\mathbf{X}, \mathcal{S}, \mathbf{y}, c_n).$

Step 3: Combining the last two steps, and using the fact that $\int_{b,\mathbf{r}} |h_n(b,\mathbf{r}) - h(b,\mathbf{r})| d(b,\mathbf{r})$ goes to zero almost surely when $c \downarrow 0$ and $nc^{m+1} \uparrow \infty$ or equivalently $c_n \downarrow 0$ and $nc_n^{m+1} \uparrow \infty$. Now we prove consistency of robust regression.

Proof. Let $f(\cdot)$ be the true probability density function of the samples, and $\hat{\mu}_n$ be the estimated distribution using Equation (16) given S_n and c_n , and denote its density function as $f_n(\cdot)$. The condition that $\|\beta(c_n, S_n)\|_2 \leq H$ almost surely and P has a bounded support implies that there exists a universal constant C such that

$$\max_{b,\mathbf{r}}(b-\mathbf{r}^{\top}\boldsymbol{\beta}(c_n,S_n))^2 \le C$$

almost surely.

By Corollary 1 and $\hat{\mu}_n \in \hat{P}(n)$, we have

$$\begin{split} &\sqrt{\int_{b,\mathbf{r}} (b-\mathbf{r}^{\top}\boldsymbol{\beta}(c_{n},S_{n}))^{2} d\hat{\mu}_{n}(b,\mathbf{r})} \\ &\leq \sup_{\mu\in\hat{P}(n)} \sqrt{\int_{b,\mathbf{r}} (b-\mathbf{r}^{\top}\boldsymbol{\beta}(c_{n},S_{n}))^{2} d\mu_{n}(b,\mathbf{r})} \\ &= \frac{\sqrt{n}}{n} \sqrt{\sum_{i=1}^{n} (b_{i}-\mathbf{r}_{i}^{\top}\boldsymbol{\beta}(c_{n},S_{n}))^{2}} + \sum_{i=1}^{t} \max_{\forall g\in\bar{G}_{i}, \|\boldsymbol{\alpha}_{g}^{(i)}\|_{2} \leq c_{n}} \boldsymbol{\alpha}^{(i)^{\top}}\boldsymbol{\beta} + \frac{1}{\sqrt{m}} c_{n} \\ &\leq \frac{\sqrt{n}}{n} \sqrt{\sum_{i=1}^{n} (b_{i}-\mathbf{r}_{i}^{\top}\boldsymbol{\beta}(P))^{2}} + \sum_{i=1}^{t} \max_{\forall g\in\bar{G}_{i}, \|\boldsymbol{\alpha}_{g}^{(i)}\|_{2} \leq c_{n}} \boldsymbol{\alpha}^{(i)^{\top}}\boldsymbol{\beta} + \frac{1}{\sqrt{m}} c_{n} \end{split}$$

Notice that, $\sum_{i=1}^{t} \max_{\forall g \in \bar{G}_i, \|\boldsymbol{\alpha}_g^{(i)}\|_2 \leq c_n} \boldsymbol{\alpha}^{(i)^\top} \boldsymbol{\beta} + \frac{1}{\sqrt{m}} c_n$ converges to 0 as $c_n \downarrow 0$ almost surely, so the right-hand side converges to $\sqrt{\int_{b, \mathbf{r}} (b - \mathbf{r}^\top \boldsymbol{\beta}(P))^2 dP(b, \mathbf{r})}$ as $n \uparrow \infty$ and $c_n \downarrow 0$ almost surely. Furthermore, we have

$$\begin{split} &\int_{b,\mathbf{r}} (b-\mathbf{r}^{\top}\boldsymbol{\beta}(c_{n},S_{n}))^{2}dP(b,\mathbf{r}) \\ &\leq \int_{b,\mathbf{r}} (b-\mathbf{r}^{\top}\boldsymbol{\beta}(c_{n},S_{n}))^{2}d\hat{\mu}_{n}(b,\mathbf{r}) + \max_{b,\mathbf{r}} (b-\mathbf{r}^{\top}\boldsymbol{\beta}(c_{n},S_{n}))^{2} \cdot \int_{b,\mathbf{r}} |f_{n}(b,\mathbf{r}) - f(b,\mathbf{r})|d(b,\mathbf{r}) \\ &\leq \int_{b,\mathbf{r}} (b-\mathbf{r}^{\top}\boldsymbol{\beta}(c_{n},S_{n}))^{2}d\hat{\mu}_{n}(b,\mathbf{r}) + C \int_{b,\mathbf{r}} |f_{n}(b,\mathbf{r}) - f(b,\mathbf{r})|d(b,\mathbf{r}), \end{split}$$

where the last inequality follows from the definition of C. Notice that $\int_{b,\mathbf{r}} |f_n(b,\mathbf{r}) - f(b,\mathbf{r})| d(b,\mathbf{r})$ goes to zero almost surely when $c_n \downarrow 0$ and $nc_n^{m+1} \uparrow \infty$. Hence the theorem follows.

As mentioned in the paper, the assumption that $\|\beta(c_n, S_n)\|_2 \leq H$ in Theorem 7 can be removed, then we have **Theorem 2.** Let $\{c_n\}$ converge to zero sufficiently slowly. Then

$$\lim_{n \to \infty} \sqrt{\int_{b, \mathbf{r}} (b_i - \mathbf{r}_i^\top \boldsymbol{\beta}(c_n, S_n))^2 dP(b, \mathbf{r})} = \sqrt{\int_{b, \mathbf{r}} (b_i - \mathbf{r}_i^\top \boldsymbol{\beta}(P))^2 dP(b, \mathbf{r})}$$

almost surely.

We now prove this hearem. We establish the following lemma first.

Lemma 2. Partition the support of P as V_1, \dots, V_T such that the l_{∞} radius of each set is less than $\frac{c_n}{\sqrt{m}}$. If a distribution μ satisfies

$$\mu(V_t) = \#((b_i, \mathbf{r}_i^{\top}) \in V_t)/n; \ t = 1, \cdots, T,$$
(17)

then $\mu \in \hat{P}(n)$.

Proof. Let $Z_i = [y_i - \frac{c_n}{\sqrt{m}}, y_i + \frac{c_n}{\sqrt{m}}] \times \prod_{j=1}^m [X_{ij} - \frac{c_n}{\sqrt{m}}, X_{ij} + \frac{c_n}{\sqrt{m}}]$, recall that X_{ij} is the *j*th element of \mathbf{r}_i . Notice that the l_∞ radius of V_t is less than $\frac{c_n}{\sqrt{m}}$, we have

$$(b_i, \mathbf{r}_i^{\top}) \in V_t \Rightarrow V_t \subseteq Z_i.$$

Therefore, for any $S \subseteq \{1, \dots, n\}$, the following holds

$$\mu(\bigcup_{i\in S} Z_i) \ge \mu(\bigcup V_t | \exists i \in S : (b_i, \mathbf{r}_i^\top) \in V_t)$$
$$= \sum_{t \mid \exists i \in S : (b_i, \mathbf{r}_i^\top) \in V_t} \mu(V_t) = \sum_{t \mid \exists i \in S : (b_i, \mathbf{r}_i^\top) \in V_t} \#((b_i, \mathbf{r}_i^\top) \in V_t)/n \ge |S|/n.$$

Hence $\mu \in P_n(\mathbf{X}, \mathcal{S}, \mathbf{y}, c_n)$ which implies $\mu \in \hat{P}(n)$.

Partition the support of P into T subsets such that the l_{∞} radius of each set is less than $\frac{c_n}{\sqrt{m}}$. Denote $\tilde{P}(n)$ as the set of probability measures satisfying Equation (17). Hence $\tilde{P}(n) \subseteq \hat{P}(n)$ by Lemma 1. Further notice that there exists a universal constant K such that $\|\boldsymbol{\beta}(c_n, S_n)\|_2 \leq K/c_n$ due to the fact that the square loss of the solution $\boldsymbol{\beta} = 0$ is bounded by a constant only depends on the support of P. Thus, there exists a constant C such that $\max_{b,\mathbf{r}} (b - \mathbf{r}^{\top} \boldsymbol{\beta}(c_n, S_n))^2 \leq C/c_n^2$. Follow a similar argument as the proof of Theorem 6, we have

$$\sup_{\mu \in \tilde{P}(n)} \sqrt{\int_{b,\mathbf{r}} (b - \mathbf{r}^{\top} \boldsymbol{\beta}(c_n, S_n))^2 d\mu_n(b, \mathbf{r})} \\ \leq \frac{\sqrt{n}}{n} \sqrt{\sum_{i=1}^n (b_i - \mathbf{r}_i^{\top} \boldsymbol{\beta}(P))^2} + \sum_{i=1}^t \max_{\forall g \in \bar{G}_i, \|\boldsymbol{\alpha}_g^{(i)}\|_2 \leq c_n} \boldsymbol{\alpha}^{(i)^{\top}} \boldsymbol{\beta} + \frac{1}{\sqrt{m}} c_n$$
(18)

and

$$\begin{split} &\int_{b,\mathbf{r}} (b-\mathbf{r}^{\top}\boldsymbol{\beta}(c_{n},S_{n}))^{2} dP(b,\mathbf{r}) \\ \leq &\inf_{\mu_{n}\in\tilde{P}(n)} \{\int_{b,\mathbf{r}} (b-\mathbf{r}^{\top}\boldsymbol{\beta}(c_{n},S_{n}))^{2} d\mu_{n}(b,\mathbf{r}) + \max_{b,\mathbf{r}} (b-\mathbf{r}^{\top}\boldsymbol{\beta}(c_{n},S_{n}))^{2} \cdot \int_{b,\mathbf{r}} |f_{\mu_{n}}(b,\mathbf{r}) - f(b,\mathbf{r})| d(b,\mathbf{r})\} \\ \leq &\sup_{\mu_{n}\in\tilde{P}(n)} \int_{b,\mathbf{r}} (b-\mathbf{r}^{\top}\boldsymbol{\beta}(c_{n},S_{n}))^{2} d\mu_{n}(b,\mathbf{r}) + 2C/c_{n}^{2} \inf_{\mu_{n}\in\tilde{P}(n)} \int_{b,\mathbf{r}} |f_{\mu_{n}}(b,\mathbf{r}) - f(b,\mathbf{r})| d(b,\mathbf{r}), \end{split}$$

here f_{μ} stands for the density function of a measure μ . Notice that $\tilde{P}(n)$ is the set of distributions satisfying Equation (17), hence $\inf_{\mu_n \in \tilde{P}(n)} \int_{b,\mathbf{r}} |f_{\mu_n}(b,\mathbf{r}) - f(b,\mathbf{r})| d(b,\mathbf{r})$ is upper-bounded by $\sum_{t=1}^{T} |P(V_t) - \#((b_i,\mathbf{r}_i^{\top}) \in V_t)|/n$, which goes to zero as n increases for any fixed c_n . Therefore,

$$2C/c_n^2 \inf_{\mu_n \in \tilde{P}(n)} \int_{b,\mathbf{r}} |f_{\mu_n}(b,\mathbf{r}) - f(b,\mathbf{r})| d(b,\mathbf{r}) \to 0,$$

if $c_n \downarrow 0$ sufficiently slow. Combining this with Inequality (18) proves the theorem.

References

Grötschel, Martin, Lovász, Lászlo, and Schrijver, Alexander. Geometric Algorithms and Combinatorial Optimization, volume 2. Springer, 1988.

Xu, H., Caramanis, C., and Mannor, S. Robust regression and lasso. *IEEE Transactions on Information Theory*, 56(7):3561–3574, 2010.