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Abstract

View-invariant object representations cre-
ated from feature pooling networks have
been widely adopted in state-of-the-art vi-
sual recognition systems. Recently, the re-
search community seeks to improve these
view-invariant representations further by ad-
ditional invariance and receptive field learn-
ing, or by taking on the challenge of process-
ing massive amounts of learning data. In this
paper we consider an alternate strategy of
directly modeling complex invariances of ob-
ject features. While this may sound like a
naive and inferior approach, our experiments
show that this approach can achieve compet-
itive and state-of-the-art accuracy on visual
recognition data sets such as CIFAR-10 and
STL-10. We present an highly applicable dic-
tionary learning algorithm on complex invari-
ances that can be used in most feature pool-
ing network settings. It also has the merits of
simplicity and requires no additional tuning.
We also discuss the implication of our exper-
iment results concerning recent observations
on the usefulness of pre-trained features, and
the role of direct invariance modeling in in-
variance learning.

1. Introduction

The learning of view invariant representation has been
a widely adopted strategy in recent state-of-the-art
visual recognition systems. The value of such repre-
sentation rests on their ability to distinguish different
objects of concern despite large amounts of different
viewing angles, deformations, lighting conditions and
other view related complications in object images.

Learning these representations is not trivial, and the
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most successful approach is to employ a feature pool-
ing network, which comes primarily in two archetypes.
The first type of these feature pooling networks is
multi-layered and convolutional, the most representa-
tive being convolutional neural network (LeCun et al.,
1998; 2004) and its related deep variants (Lee et al.,
2008; 2009). A host of other supervised feature pooling
networks (Serre et al., 2005; Pinto et al., 2008), mostly
inspired by the structure of the human visual cortex,
carry a similar architecture. The second type of these
feature pooling networks is more flat in structure, and
are primarily descendants of the simple bag-of-features
methods (Csurka et al., 2004). They commonly use
spatial pyramids of some sort (Lazebnik et al., 2006;
Yang et al., 2009; Yu & Zhang, 2010), and operate on
image patches.

Despite their differences in implementation, these fea-
ture pooling networks share at least one key element -
the use of spatial pooling, which provides local trans-
lational invariance for object features. While their
empirical performance is impressive, the view invari-
ance provided by local translational invariance remains
limited. Some recent work in the research commu-
nity have thus been exploring ways to go beyond local
translation invariance to improve representation learn-
ing in this regard.

There are at least three major approaches under ex-
ploration. The first is invariance learning, which in-
volves the learning of complex invariances, i.e. invari-
ances other than translational invariance, from extra
data such as video(Zou et al., 2012; Gregor & LeCun,
2011) or by exploiting innate statistics of object im-
ages (Coates et al., 2012; Le et al., 2010; 2011). The
second approach is massive parallelism (Ciresan et al.,
2010; Krizhevsky et al., 2012; Le et al., 2012), which
involves scaling up the network and attempts to push
the limits of these feature pooling networks using large
amount of data and parallelism. The third approach
is receptive field learning (Jia et al., 2012; Feng et al.,
2011), which either breaks from the tried-and-tested
rule of locality, or goes beyond just being spatially lo-
cal (Boureau et al., 2011).
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In this study we explore, to the best of our knowledge,
a rather neglected alternative: the possibility of the
direct modeling of complex invariances in object fea-
tures. We know the head of cat can tilt, and one side of
a car looks the same as the other. These knowledge ap-
pear trivial but to our feature pooling networks, they
are not trivial and are not easily provided by transla-
tion invariance alone1. We wonder, how would such
an approach compare to the three major approaches
mentioned above?

Direct modelling of complex view invariances might
sound like a naive approach, but we have to point out
much success of existing feature pooling networks is
attributed to the direct modeling of translational in-
variance. Our heavy reliance on local translational in-
variance can be traced to the work of (Hubel & Wiesel,
1962), which discovers the local translation invariance
of simple features in the lowest level of the visual
cortex. The direct modeling of this particular prior
knowledge has turned out to be an effective strategy.

There are other good reasons to consider this alterna-
tive. Learning is often costly. Learning implies risk
of overtraining, complexity and requirement of data.
Indeed, the current direction tends to require consid-
erable additional data, such as video datasets (Zou
et al., 2012), or in some cases massive amount of unla-
beled data (Le et al., 2012; Coates et al., 2012). Direct
modeling clearly has its own merits.

So in this paper we present a novel method of us-
ing prior knowledge to create feature dictionaries with
complex invariances. We also present an improvement
that gives the algorithm a higher applicability. De-
spite the simplicity of the approach, we are able to
obtain state-of-the-art accuracy on standard bench-
marks such as CIFAR-10 and STL-10, demonstrat-
ing that direct modeling of complex invariances is an
equally viable alternative to other recent approaches.
The method has the merits of not being susceptible to
overtraining, does not complicate parameter tuning,
works without additional data, and is easily applica-
ble to different feature pooling networks.

Figure 1. A simplified depiction of the base system. Dotted
lines denote encoding while solid lines denote pooling. No-
tice that in the actual implementation the network mapping
is in 2D and it has considerably higher number of connec-
tions.

2. The Base System

We first describe the base system we use in the study.
Our base system starts from raw images and the
pipeline is shown in Figure 1. It consists of two lay-
ers with successively larger receptive field2 size. Exact
size would depend on the task involved but for a 32px
× 32px input image the first layer will have receptive
size of 4px and the second 8px.

The overall classification pipeline is very similar to a
classical feature pooling network, except we have com-
bined the designs of several notable studies and state-
of-the-art designs in the area. This gives us a rea-
sonably good baseline to represent performance of a
well-optimized translation-invariance only system. It
also serves as an exemplar setup to which our soon
proposed algorithm could best be applied.

Each layer involves a coding operation and a pooling
operation. Coates el al. (Coates & Ng, 2011a) has re-
cently demonstrated that relatively simple dictionary
learning and encoding can already give us sufficiently
good performance, and we have adopted a similar im-
plementation. In each layer, we extract local patches
convolutionally from the input and encode them us-
ing an overcomplete patch dictionary D of size M .

1While basic feature detectors like SIFT or HOG is by
itself rotation and scale invariant, notice that this property
does not transfer to the object features constructed. Also,
object features are likely to be built upon certain mid level
features, so often they are no longer amenable to typical
image transforms. This makes complex invariances for ob-
ject features far more complicated than that of lower level
ones.

2Receptive field denotes the local area within which cod-
ing or pooling operations take place.
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The patch dictionary is learned in prior unsupervised
from random local patches via the K-means approach
and encoded using either triangle activation or sparse
coding3. The training of the patch dictionary starts
from the lowest layer, and then we train the dictio-
nary in the next layer based on results in the previ-
ous. This greedy layer-wise strategy is pioneered and
demonstrated to be effective by (Hinton et al., 2006).

The encoded representations are highly redundant and
are pooled (max or average, no significant difference
empirically in our case) across larger receptive fields
to form a pooled representation. We will adopt a stan-
dard 2 × 2 pooling grid which has been shown to be
sufficient good in several related studies. Like most
feature pooling networks, For instance, the 8px by 8px
patches of the first layer are encoded and pooled in a
2x2 grid across a 16px by 16px receptive field4. The
length of the pooled representation depends on the
number of features in the patch dictionary. In our
case, it will be four times the number of maps due to
the 2x2 grid used.

The encoding and pooling are repeated for each layer,
so all layers other than the first will be operating on
input from a space dependent on the previous layer’s
patch dictionary. It is considered a good practice to
normalize and whiten the output of each layer. At the
end of the pipeline, a simple linear classifier, a linear
SVM in this case, will use the output representation
to predict the class labels. As a common practice,
sometimes the output representation will be appended
with the output from the previous layers to maximize
its effect to classification accuracy.

2.1. Performance of Base System

We shall see that the base system gives competitive
performance in many image classification tasks. This
gives us confidence that further performance gains will
be a result of our proposed improvements, and that
they are of interest to state-of-the-art.

As we proceed, we assume the readers are familiar
with most of the mentioned and implied principles that
drive the performance of the base system. For a review
and systematic introduction, please refer to (Coates &
Ng, 2011a; Bengio et al., 2012).

Table 1. List of complex invariances on object features in
natural environments.

Can be Modeled Directly

Rotation (20 degree), Rotation (45 degree),
Rotation (90 degree), Scaling (85%),
Vertical Mirror, Horizontal Mirror,
Shearing(Left-Right), Shearing(Top-Bottom),
Stretching(Left-Right), Stretching(Top-Bottom),
Contrast Inversion

Cannot be Modeled Directly

Out-of-Plane Rotations,
Warping, Perspective Transforms, Lighting Conditions

3. Algorithm Details

The strategy of direct modeling of complex variance
would, first, require prior knowledge on complex vari-
ance of object features. A reasonable list of complex
invariances is given in Table 1. By reasonable we mean
it has to be an intuitive capability of a typical human
observer. For instance, a human observer would likely
recognize the right side of a car given a sample of its
left side. So invariance to horizontal mirroring would
be a reasonable candidate. Among the list, some of
them are obviously difficult to model directly, like out-
of-plane rotation. The rest would constitute our list
of candidates to model as invariances and would be
subject to elimination by simple experiments.

Formally, let us denote a complex invariance simply
as I. We model I as a set of image transforms
I = [T1...TK ] that operates on image patches of size
appropriate to the layer. For instance, invariance to
slight in-plane rotation could be represented by the
two transforms that rotate an image patch clockwise
and counter-clockwise by say 20 degrees respectively.

Suppose we are interested in constructing an I-
invariant dictionary. Given a patch dictionary D =
[d1d2...dM ] that corresponds to M activation values,
for each feature dj ∈ D, we would desire its activa-
tion aj to be invariant to transforms in I. One in-
tuitive way would be to extend the concept of spatial
pooling to complex invariances. Spatial pooling, in
essence, makes a feature translation-invariant by pool-
ing the feature and their locally translated occurrences
together. Applying to our case, we would have to pool
activations of dj , T1(dj) ... TK(dj) together (via max-
pool or otherwise) to form an I-invariant activation

3Both encoding are said to perform well under sufficient
amount of labeled data. For exact implementation details,
see (Coates & Ng, 2011a)

4px = pixel
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a′j , i.e.

a′j = max(aj , a
T1
j , aT2

j ...aTK
j ); (1)

where aTk
j would be activation to Tk(dj). This re-

sponse behavior will fit with the known response be-
havior or neurons in higher layers of visual cortex
(Pinto et al., 2008).

This would appear trivial if we are operating on raw
pixels - we will just calculate T1(dj) ... TK(dj) and cre-
ate additional dictionaries. But this can only happen
in lowest layer of the feature pooling network. At the
lowest layer, however, we are mainly interested in ori-
entation selectivity, not complex invariances. In higher
layers where complex invariances would matter, the
image patches would be represented in a completely
different feature space5. To perform direct calculation
we would need a set of corresponding transforms T ′

1

... T ′
K that operates in the said feature space, but

there are no obvious ways to obtain them.

Figure 2. Conceptual explanation of VIK. In this example,
we have a dog-face feature dj that we wish to apply rota-
tion to, but it is in a high-level representation so there are
no obvious means for direct calculation. Instead, during
the K-means clustering process in which it is created, we
rotate the raw image patches that are members of this par-
ticular cluster, and equivalently feature, and utilize them
to compute the supposedly rotated cluster in high level rep-
resentation. We now have a pair of features that we can
establish rotation invariance with.

3.1. The View-Invariant K-means (VIK)

This is where our algorithm would enter the scene.
This algorithm, which we will call view-invariant K-
means (VIK), is modified from the simple K-means
dictionary learning in (Coates & Ng, 2011a). Assume
that we are given a set of image patches y1...yn ex-
tracted from the receptive fields of a layer of con-

5More accurately, it will be represented in a feature
space defined by previous layer’s dictionary and pooling
function.

cern. The image patches are expected to have gone
through one or more lower layers, so each yi is al-
ready converted to a pooled, overcomplete represen-
tation f(yi) where f is a mapping that provides an
abstraction over the process. Each representation in
Y = [f(y1)...f(yn)] is assumed normalized with zero
mean and whitened, as mentioned in our description
of the base system. The learning algorithm is as fol-
lows:

1. Learn a patch dictionary D of desired size M < n
from

min
D,C
||DC − Y ||2 (2)

such that ||dj || = 1 and ||Ci||0 = 1 for all i,j.

Here || denotes l2 norm and ||0 denotes zero
“norm” that simply counts the number of non-
zeroes. The optimization can be solved by alter-
nating between the dictionary D and the member-
ship matrix C as in regular K-means clustering.

2. For each image transform Tk in designated com-
plex invariance I, compute transformed input ma-
trix Y Tk = [f(Tk(y1))...f(Tk(yn))], which is how
the input patches would be represented if they are
all under transform Tk.

3. Produce view dictionary DTk of size M by using
the transpose of the membership function:

DTk = Y TkCT /diag(1TCT ) (3)

Here each feature dTk
j is normalized and would be

a transformed version of dj , i.e. ≈ T ′
k(dj).

The result of the algorithm is K view dictionaries
DT1 ...DTK for the K image transforms in I. They
are, together with the original D, called a I-invariant
version of dictionary D. A conceptual visualization of
the algorithm is shown in Figure 2.

To encode an input using the I-invariant dictionary
[D DT1 ...DTK ] we compute activation aj for j = 1...M
by an “in-dictionary” pooling:

max(aj , a
T1
j , aT2

j ...aTK
j ); (4)

where aT1
j is the activation of dTk

j . This echoes our
intuition in (1). It works for both triangle coding or
sparse coding, but for sparse coding sum pooling works
much better.

By inspection, this “trick” on K-means should work
well for the linear image transforms we have short-
listed. To confirm the effectiveness of the method, let
us proceed to conduct a preliminary experiment on the
CIFAR10 data set.
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Table 2. Preliminary experiments on CIFAR-10, 400 exam-
ples per class.

Method Dict Size Accuracy

Multi-VIK 6400 70.5% ± 0.8%
Base system 1600 68.7% ± 0.3%
Base system (M=6000) 6000 70.3% ± 0.4%

3.2. Preliminary Experiments on CIFAR-10

The CIFAR-10 dataset6 contains 50,000 32px × 32px
images in 10 categories as training data and 10,000
testing data. The first layer was setup with 4px × 4px
receptive fields and dictionary of size 200, and the sec-
ond layer 8px × 8px receptive fields and dictionary of
size 400. The rests followed what we have described
in the base system. For our purpose, we limited our-
selves to 400 labeled example per class to reduce the
influence of the SVM classifier on the final accuracy
relative to that of the quality of the features.

In the base system, the object features are mainly in
the output of the second layer, which is the end of
the pipeline. To accommodate our proposed view-
invariant K-means (VIK) learning, we constructed a
new layer on top. We introduced a third layer with re-
ceptive field size of 16px × 16px, a reasonable size for
an object feature, e.g. a cat’s head7 The first two layers
would remain to be encoded using triangle activation
based on a patch dictionary learned via K-means.

For the new third layer we learn a patch dictionary D
as usual. It was of size 1600, sufficiently large for our
purpose. We then went through the list in Table 1 one
by one. For each complex invariance I we constructed
an I-invariant version of D denoted by DI and we
used the combined output of D and DI as final rep-
resentation. We then measured the accuracy of the
setup on CIFAR testing set by using several random
folds of training set (400 example per class).

We identified four complex invariances that give the
best gains in accuracy: rotation (45 degrees), rotation
(90 degrees), horizontal flip, and contrast inversion.
Some others gave little to no gains, such as vertical

6http://www.cs.toronto.edu/ kriz/cifar.html
7This assumption can only hold true for datasets like

CIFAR-10 and STL-10, where size of objects of concerned
are relatively controlled and each image contains only one
dominant object. This helps significantly in experimenting
with view invariance, like limiting complex invariances to
one specific layer here. Without this assumption, as in
the case of PASCAL and Caltech-101, the pooling network
has to be much more complicated. For a more detailed
reasoning on choice of datasets for study of invariance, see
(Pinto et al., 2008).

Table 3. Classification accuracies for CIFAR-10, 400 exam-
ples per class.

Method Accuracy

Mix-VIK 72.6% ± 0.7%
Base System 70.3% ± 0.4%

(Coates & Ng, 2011b), 3 layers 70.7% ± 0.7%
(Coates & Ng, 2011a), Sparse 66.4% ± 0.8%
(Coates & Ng, 2011a), VQ 64.4% ± 1.0%

flip and shearing. On hindsight this result is rather
intuitive. You rarely see, say, a dog’s head going up-
side down, or part of a car sheared, so invariance to
these transforms would likely be less useful. Combin-
ing the four best DI into what we call a multi-VIK
dictionary D′ gave us a significant gain on test accu-
racy, as seen in Table 2.

The result of this simple experiment is surprising. Our
modeling of the short-listed complex invariances would
appear crude. We have not optimized any of their pa-
rameters. However, the preliminary results has shown
that the simple model can already give meaningful re-
sults.

3.3. Mix-VIK: Improving the Multi-VIK
Dictionary

Now we have shown that direct modeling of complex
variance can indeed improve a feature pooling system’s
accuracy in a visual recognition task. A key weakness
to this naive implementation is the multi-VIK dictio-
nary D′, as constructed in the above session, consists
of highly correlated features. For any original feature
d there will be multiple versions of the same feature
with different invariance. A dictionary of similar size
to D′ created using generic K-means would give us, in
general, a more diverse basis.

In the case above, D′ would alone contribute an output
representation size of 1600 × 4 × 4 = 25,600 due to
the four invariances and 2 × 2 pooling. A generic dic-
tionary of size 6400 would give a similarly sized output
representation. In Table 2 we can see that an increased
dictionary size alone does lead to similar gain in per-
formance. In such a case, the multi-VIK would be an
interesting proof of concept, but it would not be too
useful in practice.

This motivates us to seek a more efficient approach.
We will call this approach mix-VIK dictionary learn-
ing. To create a mix-VIK dictionary, we would per-
form the following steps:
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1. Create a large generic K-means patch dictionary
D. Say, in our example case here, 6400 in size.

2. For each feature dj , randomly select a complex
invariance Ip from the set of complex invariances
I1, I2 ... IN that we have selected to build invari-
ance to. In our example case, we will be randomly
selecting from the two rotations, horizontal flip,
and contrast inversion.

3. Using the VIK learning algorithm above, replace
feature dj with a Ip-invariant version of dj . No-
tice that different features will have different in-
dictionary pooling as defined in (4).

4. Repeat until a designated fraction or all original
features in D are converted.

The mix-VIK dictionary created using this simple
strategy will have the benefit of having the same di-
verse basis of a similarly sized generic dictionary but
at the same time enhanced with a variety of complex
invariances. Repeating our experiment on CIFAR-10
we achieve an accuracy of 72.6%, significantly surpass-
ing the gain provided by a similarly sized multi-VIK
dictionary.

The mix-VIK dictionary is a clear improvement over
the multi-VIK dictionary. When the linearly increased
computation cost is affordable, using a mix-VIK dic-
tionary has almost no downside compared to using a
conventional K-means one.

4. Results on Benchmark Datasets

Now we should attempt to fine tune our feature pool-
ing network and the mix-VIK dictionaries to see how
its performance compare to other related and state-
of-the-art systems. As a common practice, one would
append output from lower layers to the final output
to give maximal performance, so we followed the prac-
tice. Using cross-validation to fine-tune parameters in
various level, we report our performance on CIFAR-10
using partial data (400 example per class) in Table 3.

Our accuracy on the dataset using a mix-VIK dictio-
nary of 6400 in size is 72.6%, which is a significant im-
provement over the best published result under similar
setup. This result is particularly notable because the
main difference between our system and the other sys-
tems in comparison is the mix-VIK dictionary, which
requires no additional data to train and has very few
free parameters.

Table 4. Classification accuracies for STL-10, in compari-
son with state-of-the-art and competitive models.

Method Accuracy

Mix-VIK 63.7%
Base system (M=6000) 59.6%

(Zou et al., 2012) 61%
(Coates & Ng, 2011b) 60.1%
(Coates & Ng, 2011a) 59%
(Le et al., 2011) 52.9%

4.1. Results on STL-10

To facilitate comparison with other studies, we also
utilized the STL-10 dataset (Coates et al., 2010),
which is more tailored to evaluating feature pooling
systems, particularly those using unsupervised feature
learning. The 10 object class dataset contains an un-
labeled set of 100,000 object images for unsupervised
training purposes, and a much smaller training set to
restrict the amount of labeled data used to 100 sam-
ples per class for each training fold. We used the same
system as in CIFAR-10 and retrained the system on
the unlabeled data set provided. To accommodate the
even smaller labeled data set, we switched our encod-
ing in the third layer to use sparse coding to reduce
overtraining.

Our results are reported in Table 4. We have the very
encouraging result of achieving state-of-the-art perfor-
mance in the STL-10 dataset. A key comparison is
the best result so far among other similar research, re-
ported by (Zou et al., 2012), which involved learning
of complex invariances from temporal information in
additional video data using a simulated fixation strat-
egy. We achieved similar improvements over our own
baseline (4.1%). The result is clearly surprising - while
we have utilized a larger dictionary size, we have used
no additional data like video or any kind. We have
learned the mix-VIK dictionary based only on crude
prior knowledge like rotation transforms and mirror-
ing, and the learning algorithm itself is easily imple-
mentable. This suggests that direct modeling of com-
plex invariance in object features is a competitive and
viable strategy to invariance learning. We will follow
up on this surprising result in the discussion.

4.2. Results on Full Training Set, CIFAR-10

Here we wish to point out that there is a curious lack of
explicit mention of one intuition in our representation
learning literature: that view invariance is only partic-
ularly useful when amount of labeled training data is
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Table 5. Classification accuracies for CIFAR-10, full
dataset, in comparison with state-of-the-art (without data
augmentation) and competitive models.

Method Accuracy

Our Method 81.9%
Base system (M=6000) 81.6%

(Jia et al., 2012) 83.11%
(Coates & Ng, 2011b) 82%
(Krizhevsky, 2010) 78.9%
(Yu & Zhang, 2010) 74.5%

small. Consider the imaginary case in which we have
asymptotically large amount of labeled data such that
every view of the objects of concern is available as an
example. In such a case view invariance can be consid-
ered unnecessary. So conversely if we have only very
few examples, we would have a much stronger desire
to relate a limited amount of data to potentially many
other unseen views of the same object. In such a case,
highly view invariant features would be important.

In this study our focus is complex view invariance, our
priority is thus to experiment with limited amount of
labeled training data, as we just did. So if we now
apply our system and train it using a full CIFAR-10
training set, which contains 5,000 examples per cat-
egory, we should expect the benefit of the mix-VIK
dictionary to decline. Furthermore, invariance implies
a reduction in selectivity. So when the view invariance
of the object features are becoming less useful in large
amount of labeled data, will it become a liability?

Our experiment using full training set of CIFAR-10
is reported in Table 5. As we can see, our strat-
egy remained highly competitive to state-of-the-art,
only with the improvement over the base system be-
ing much lower. This confirms our prediction. Fortu-
nately, the mix-VIK dictionary did not appear to have
negative impact to the performance.

We believe this finding has deeper implications than
it appears. We will follow up in discussion in Section
5.2.

On a sidenote, we actually sought to verify that our
performance gain is indeed due to the modeling of com-
plex invariances. We tried our system on the MINST
dataset of digits, and none of our mix-VIK dictionar-
ies brought improvement to our baseline performance.
This is a positive result, because for digits, complex in-
variances should not apply at all(e.g. we do not write
a 3 rotated by 90 degress), so the (lack of) results fit
with our expectation.

5. Discussion

As far as we know, this is the first in-depth exploration
and empirical report on the effectiveness of direct mod-
eling of complex invariances in object features. The
algorithm proposed and its improved version are sim-
ple to implement, and requires no additional data or
parameter tuning. It only requires very simple prior
knowledge so that we can have a set of image trans-
forms as candidate invariances in the beginning. While
this is only an early exploration, the results are defi-
nitely encouraging and the direct modeling of complex
invariance should warrant further exploration.

We believe the study has other implications that are
related to a number of works in the area of represen-
tation learning, particularly studies in the three main
approaches we have mentioned in the introduction. We
shall go through each approach one by one.

5.1. To Learn or Not to Learn?

In Section 4.1 we see that our direct modeling of com-
plex invariance has produced similar gains in accuracy
compared to learned invariances in (Zou et al., 2012).
It is, however, unjustified to say that direct modeling
of view invariance is a substitute of invariance learn-
ing because both approaches are in early exploration
stage. What we can learn from the result, however,
is that direct modeling is more effective than one’s in-
tuition would suggest, and that we wonder where the
line is when we seek to learn invariance from data.

Indeed, in the study we specifically compared to (Zou
et al., 2012), the fixation tracking is meant to improve
learning by, in principle, not wasting effort to learn
translation invariance so more complex invariances can
emerge. Would the invariance learning benefit from
focusing on learning what is beyond the crude com-
plex invariances we have directly modeled as well? We
believe that would be an interesting direction to look
into.

The other possibility is that a mix-VIK dictionary
should intuitively contain redundant, or simply use-
less view-invariant features. It would be desirable to
eliminate useless features in the VIK dictionary so we
can maximize the effective of our final representation.
Could the established findings from invariance learning
studies that exploit innate data characteristic, such as
multi-way locality (Boureau et al., 2011) or its innate
sparsity (Le et al., 2010; 2011; 2012), help in selecting
the best complex invariant features?

Incorporating prior knowledge has been known to be a
rather effective way to improve machine learning sys-
tems in general. Through our empirical results, we
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can claim that using our prior knowledge on complex
invariance is more reliable than we would intuitively
believe, and could well be a tool that algorithm de-
signers might find useful.

5.2. Unsupervised Learning not Useful?

There are recent observations (Krizhevsky et al., 2012;
Ciresan et al., 2010; Bengio et al., 2012) that unsuper-
vised representation learning does not seem to bring
improvement to a visual recognition task when sig-
nificant amount of labeled data is available or made
available by data augmentation. In our experiment
with full training set, CIFAR-10, we see a decline of
the benefits of view invariance in features as amount of
labeled data goes up. Since a primary goal of most un-
supervised representation learning is view invariance of
features, our experimental results could be related to
this phenomenon.

Of course, the long pipeline of most feature pooling
networks does make it hard to isolate benefits of dif-
ferent elements. However, in the above studies, the
amount of labeled data is multiples of original train-
ing data, or far more. It is reasonable to speculate
that with such amount of labeled data, the effect of
view invariance would be almost negligible.

This insight would be more productive if we realize
that visual tasks with few training samples should be
considered a different case compared with those with
many training samples, each with their own applica-
tions. Humans, on the other hand, are masters of view
invariance and low-sample learning. One could not
imagine if a human would, say, need thousands of la-
beled samples to recognize their own possessions, or
new born babies.

We would encourage fellow researchers in the field to
experiment on both full training set and partial train-
ing set (400 examples per class with at least 10 ran-
dom folds to eliminate noises) when they experiment
on CIFAR-10 dataset. The dataset offers an oppor-
tunity to see difference and tradeoff between the two
learning cases that is not possible in, say, STL-10 or
some other datasets.

5.3. Applicability of VIK Learning

One of the strengths of VIK learning is that a mix-VIK
dictionary works and behaves like any typical dictio-
nary in a feature pooling network except it provides us-
able complex invariance at some additional linear cost.
This gives the approach the merit of being applicable
to any other designs where a conventional patch dic-
tionary is used. For example, recent works in receptive

field learning we have mentioned in the introduction,
e.g. (Jia et al., 2012), should be eligible to mix-VIK
learning to get further gain in accuracy because recep-
tive field learning is, intuitively, largely independent of
dictionary learning.

Using full training set, CIFAR-10, we test our system
on the task by adding a extra 3 × 3 pooling layer 3,
which can be considered a receptive field improvement.
We are successful in getting around 2% accuracy im-
provement with some fine tuning on a limited mix-VIK
dictionary8, supporting that gains from receptive field
improvements are indeed independent of gains in com-
plex view invariance.

The costs of independently performing receptive field
learning and complex invariance modeling may appear
formidable. A rigorous analysis or a proposal to lessen
the cost, however, is beyond the scope of this paper. A
key insight is that while it may sound otherwise, direct
modeling of complex invariance is not a substitute of
other approaches in representation learning. We be-
lieve, via our design, it is sufficiently self-contained to
be a handy tool in many cases.

6. Conclusion

In this paper, we explored the possibility of directly
modeling complex invariances in object features and
employ it directly in visual recognition tasks. While
this strategy may initially appear to be a naive ap-
proach compared to invariance learning, we discover
that it can bring surprisingly good results. By extend-
ing the concept of spatial pooling to complex invari-
ance, we proposed a novel dictionary learning method
called view-invariant K-means (VIK). We also pro-
posed an improved algorithm that allows us to cre-
ate what we call a mix-VIK dictionary, with which we
achieve state-of-arts results in STL-10 dataset, best
published results in CIFAR-10 with partial data, and
highly competitive results with full data. The suc-
cess of the experiments suggests that direct modeling
of complex invariance is more reliable than we would
intuitively believe, and we should rethink its role in
representation learning. We have also related our ex-
perimental results to a recent observation in large-scale
supervised deep networks, and suggested several pos-
sible future works for invariance learning.

8The denser receptive field is a heavy burden on the
representation size and hence a heavy cost to our subse-
quent supervised training process. For this reason we were
not able use a complete VIK-dictionary.
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