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Abstract

We propose a learning algorithm for fair clas-
sification that achieves both group fairness
(the proportion of members in a protected
group receiving positive classification is iden-
tical to the proportion in the population as
a whole), and individual fairness (similar in-
dividuals should be treated similarly). We
formulate fairness as an optimization prob-
lem of finding a good representation of the
data with two competing goals: to encode the
data as well as possible, while simultaneously
obfuscating any information about member-
ship in the protected group. We show posi-
tive results of our algorithm relative to other
known techniques, on three datasets. More-
over, we demonstrate several advantages to
our approach. First, our intermediate rep-
resentation can be used for other classifica-
tion tasks (i.e., transfer learning is possible);
secondly, we take a step toward learning a
distance metric which can find important di-
mensions of the data for classification.

1. Introduction

Information systems are becoming increasingly reliant
on statistical inference and learning to render all sorts
of decisions, including the setting of insurance rates,
the allocation of police, the targeting of advertising,
the issuing of bank loans, the provision of health care,
and the admission of students. This growing use of
automated decision-making has sparked heated debate
among philosophers, policy-makers, and lawyers. Crit-
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ics have voiced concerns with bias and discrimination
in decision systems that rely on statistical inference
and learning.

Systems trained to make decisions based on historical
data will naturally inherit the past biases. These may
be ameliorated by attempting to make the automated
decision-maker blind to some attributes. This how-
ever, is difficult, as many attributes may be correlated
with the protected one. The basic aim then is to make
fair decisions, i.e., ones that are not unduly biased for
or against protected subgroups in the population.

Two important goals of fair classification that have
been articulated are: group fairness, and individual
fairness. Group fairness, also known as statistical par-
ity, ensures that the overall proportion of members in a
protected group receiving positive (negative) classifica-
tion are identical to the proportion of the population as
a whole. While statistical parity is an important prop-
erty, it may still lead to undesirable outcomes that are
blatantly unfair to individuals, such as discriminat-
ing in employment while maintaining statistical parity
among candidates interviewed by deliberately choos-
ing unqualified members of the protected group to be
interviewed in the expectation that they will fail. Indi-
vidual fairness addresses this by ensuring that any two
individuals who are similar with respect to a particular
task should be classified similarly.

Only recently have machine learning researchers con-
sidered this issue. Several papers, e.g., (Luong et al.,
2011; Kamishima et al., 2011), aim to achieve the first
goal, group fairness, by adapting standard learning ap-
proaches in novel ways, primarily through a form of
fairness regularizer, or by re-labeling the training data
to achieve statistical parity. In a different line of work,
(Dwork et al., 2011) develop an ambitious framework
which attempts to achieve both group and individ-
ual fairness. In their setup, the goal is to define a
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probabilistic mapping from individuals to an interme-
diate representation such that the mapping achieves
both. This construction allows the initial mapping,
perhaps supervised by an impartial party or regulator
concerned with fairness, to produce representations of
individuals that can then be used in the second step by
multiple vendors to craft classifiers to maximize their
own objectives, while maintaining fairness. However,
there are several obstacles in their approach. First,
a distance metric that defines the similarity between
the individuals is assumed to be given. This may be
unrealistic in certain settings, and to some extent the
problem of establishing fairness in classification (more
specifically simultaneously achieving the twin goals)
is reduced to the problem of establishing a fair dis-
tance function. This was the most challenging aspect
of their framework, as was acknowledged in their pa-
per. Secondly, their framework is not formulated as a
learning problem, as it forms a mapping for a given set
of individuals without any procedure for generalizing
to novel unseen data.

Our work builds on this earlier framework in that
we try to achieve both group and individual fairness.
However, we extend their approach in several impor-
tant ways. First, we develop a learning approach to
solving the fairness problem. Secondly we learn a re-
stricted form of a distance function as well as the in-
termediate representation, thus making a step toward
eliminating the assumption that the distance function
is given apriori. Thirdly, we explicitly formulate the
problem in a novel way that we feel deserves further
study. Namely, we formulate fairness as an optimiza-
tion problem of finding an intermediate representation
of the data that best encodes the data (i.e., preserving
as much information about the individual’s attributes
as possible), while simultaneously obfuscates aspects of
it, removing any information about membership with
respect to the protected subgroup. That is, we at-
tempt to learn a set of intermediate representations to
satisfy two competing goals: (i) the intermediate rep-
resentation should encode the data as well as possible;
and (ii) the the encoded representation is sanitized in
the sense that it should be blind to whether or not
the individual is from the protected group. We fur-
ther posit that such an intermediate representation is
fundamental to progress in fairness in classification,
since it is composable and not ad hoc; once such a
representation is established, it can be used in a black-
box fashion to turn any classification algorithm into a
fair classifier, by simply applying the classifer to the
sanitized representation of the data.

The remainder of the paper is organized as follows.
First we introduce our model formulation, and de-

scribe how we use it to learn fair representations. Sec-
tion 3 reviews relevant work, and Section 4 presents
experimental results on some standard datasets, com-
paring our model to some earlier ones with respect to
the fairness and accuracy of the classifications.

2. Our Model

2.1. Overview and notation

The main idea in our model is to map each individual,
represented as a data point in a given input space, to a
probability distribution in a new representation space.
The aim of this new representation is to lose any infor-
mation that can identify whether the person belongs to
the protected subgroup, while retaining as much other
information as possible. Here we formulate this new
representation in terms of a probabilistic mapping to a
set of prototypes; note, however, that this is only one
of many possible forms of intermediate representation.
Finally, we also optimize these representations so that
any classification tasks using them are maximally ac-
curate.

To formalize the approach we first introduce some no-
tation and assumptions:

• X denotes the entire data set of individuals. Each
x ∈ X is a vector of length D where each compo-
nent of the vector describes some attribute of the
person.

• S is a binary random variable representing
whether or not a given individual is a member
of the protected set; we assume the system has
access to this attribute.

• X0 denotes the training set of individuals.

• X+ ⊂ X, X+
0 ⊂ X0 denotes the subset of indi-

viduals (from the whole set and the training set
respectively) that are members of the protected
set (i.e., S = 1), and X− and X−0 denotes the
subsets that are not members of the protected set,
i.e., S = 0.

• Z is a multinomial random variable, where each
of the K values represents one of the intermediate
set of ”prototypes”. Associated with each proto-
type is a vector vk in the same space as the indi-
viduals x.

• Y is the binary random variable representing the
classification decision for an individual, and f :
X → Y is the desired classification function.

• d is a distance measure on X, e.g., simple Eu-
clidean distance: d(xn,vk) = ||xn − vk||2.
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A key property that the learned mapping attempts to
ensure is that membership in the protected group is
lost. We formulate this using the notion of statistical
parity, which requires that the probability that a ran-
dom element from X+ maps to a particular prototype
is equal to the probability that a random element from
X− maps to the same prototype:

P (Z = k|x+ ∈ X+) = P (Z = k|x− ∈ X−),∀k (1)

Given the definitions of the prototypes as points in
the input space, a set of prototypes induces a natural
probabilistic mapping from X to Z via the softmax:

P (Z = k|x) = exp(−d(x,vk))/

K∑
j=1

exp(−d(x,vj)) (2)

The model is thus defined as a discriminative clus-
tering model, where the prototypes act as the clusters.
Each input example is stochastically assigned to a pro-
totype, which are in turn used to predict the class for
that example. Statistical parity induces an interesting
constraint on the prototype assignments, forcing the
associated probabilities to be the same in expectation
for the protected and unprotected groups.

2.2. Learning fair representations

The goal in our model, which we denote LFR (Learned
Fair Representations), is to learn a good prototype set
Z such that:

1. the mapping from X0 to Z satisfies statistical par-
ity;

2. the mapping to Z-space retains information in X
(except for membership in the protected set); and

3. the induced mapping from X to Y (by first map-
ping each x probabilistically to Z-space, and then
mapping Z to Y ) is close to f .

Each of these aims corresponds to a term in the objec-
tive function we use to learn the representations. In
this learning system, there are only two sets of param-
eters to be learned: the prototype locations {vk} and
the parameters {wk} that govern the mapping from
the prototypes to classification decisions y.

For convenience, we use x1, ..,xN to denote N samples
of the training set. We also use corresponding indica-
tor variables s1, ..., sN , to denote whether xn ∈ X+

0 ,
∀n ∈ N . We use y1, .., yN as the outcome for x1, ...,xN

in the training set. We define Mn,k as the probability
that xn maps to vk, via Eqn. 2:

Mn,k = P (Z = k|xn) ∀n, k (3)

Given this setup, the learning system minimizes the
following objective:

L = Az · Lz +Ax · Lx +Ay · Ly (4)

where Ax, Ay, Az are hyper-parameters governing the
trade-off between the system desiderata.

In order to achieve statistical parity, we want to ensure
Eqn. 1, which can be estimated using the training data
as:

M+
k = M−k ,∀k (5)

M+
k = Ex∈X+P (Z = k|x) =

1

|X+
0 |

∑
n∈X+

0

Mn,k (6)

and M−k is defined similarly.

Hence the first term in the objective is:

Lz =

K∑
k=1

∣∣M+
k −M

−
k

∣∣ (7)

The second term constrains the mapping to Z to be
a good description of X. We quantify the amount
of information lost in the new representation using a
simple squared-error measure:

Lx =

N∑
n=1

(xn − x̂n)2 (8)

where x̂n are the reconstructions of xn from Z:

x̂n =

K∑
k=1

Mn,kvk (9)

These first two terms encourage the system to encode
all information in the input attributes except for those
that can lead to biased decisions.

The final term requires that the prediction of y is as
accurate as possible:

Ly =

N∑
n=1

−yn log ŷn − (1− yn) log(1− ŷn) (10)

Here ŷn is the prediction for yn, based on marginalizing
over each prototype’s prediction for Y , weighted by
their respective probabilities P (Z = k|xn):

ŷn =

K∑
k=1

Mn,kwk (11)

We constrain the wk values to be between 0 and 1.
Hence the prototype classification predictions them-
selves can be viewed as probabilities.
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In order to allow different input features to have dif-
ferent levels of impact, we introduce individual weight
parameters for each feature dimension, αi, which act
as inverse precision values in the distance function:

d(xn,vk, α) =

D∑
i=1

αi(xni − vki)2 (12)

Finally, we extend the model by using different param-
eter vectors α+ and α− for the protected and unpro-
tected groups respectively. We optimize these param-
eters jointly with {vk}Kk=1,w, to minimize the objec-
tive; details on the optimization can be found below.

2.3. Explaining the model design choices

The first term in the objective enforces group fair-
ness, as defined by statistical parity. We note how-
ever that Lz is not a direct encoding of the aim that
the classification decisions are fair. The motivation
for this indirect approach derives from our philosophy
of a two-step system construction by two parties: an
impartial party attempting to enforce fairness, and a
vendor attempting to classify individuals. The impar-
tial party builds mapping from individuals to new rep-
resentations of individuals satisfying statistical parity,
and then the vendor will be restricted to mapping the
representations to outcomes. These two mappings are
composed in order to obtain a fair classification of the
individuals.Our learning algorithm attempts to drive
Lz to zero. If Lz at test time is small, then

∑
k |P (Z =

k|S = 1)−P (Z = k|S = 0)|, and it is not hard to show
that this implies that |P (S = 1|Z = k) − P (S = 1)|,
and |P (S = 0|Z = k)−P (S = 0)| are small. Hence the
mutual information between Z and S is small, and we
have accomplished the goal of obsfucating information
about the protected group.

Furthermore we can show that even though the parity
constraint does not directly address classification, un-
der the current model formulation the two are closely
linked. The key property is that if the parity con-
straint is met, then the two groups are treated fairly
with respect to the classification decisions:

1

|X+
0 |

∑
n∈X+

0

Mn,k =
1

|X−0 |

∑
n∈X−

0

Mn,k ⇒

1

|X+
0 |

∑
n∈X+

0

Mnw =
1

|X−0 |

∑
n∈X−

0

Mnw⇒

1

|X+
0 |

∑
n∈X+

0

y+
n =

1

|X−0 |

∑
n∈X−

0

y−n .

This property follows from the linear classification
approach.

Another key property of the model is the fact that the
mapping to Z is defined for any individual x ∈ X.

This permits generalization to new examples distinct
from those in the training set.

Allowing the model to adapt the weights on the in-
put dimensions takes a step towards learning a good
distance metric. The use of the same mapping func-
tion for all individuals in the group encourages indi-
vidual fairness, as nearby inputs are mapped to similar
representations. Adapting the weights per group al-
lows the model some flexibility in encoding similarities
between individuals within a group. The model can
thus address the ”inversion” problem (Dwork et al.,
2011), where different qualities may be deemed impor-
tant with respect to classification decisions for the two
groups. For example, in one community high grades
in economics may be a good predictor of success in
university (and therefore correlated with admittance),
whereas in another community excellence in sports
may be a better predictor of success in university. The
distance metric can then weight sports and economics
grades appropriately for the two sets.

3. Related Work
Previous machine learning research into fair classifica-
tion can be divided into two general strategies. One
involves modifying the labels of the examples, i.e., the
f(X0) values, so that the proportion of positive labels
are equal in the protected and unprotected groups.
A classifier is then trained with these new labels, as-
suming that equal-opportunity of positive labeling will
generalize to the test set (Pedreschi et al., 2008; Kami-
ran & Calders, 2009; Luong et al., 2011). We term
this a data-massaging strategy. The second type of
approach, a regularization strategy, adds a regularizer
to the classification training objective that quantifies
the degree of bias or discrimination (Calders & Ver-
wer, 2010; Kamishima et al., 2011). The system is
then trained to maximize accuracy while minimizing
discrimination.

A good example from the first class is that of (Kamiran
& Calders, 2009), where they ”massage” the training
data labels to remove the discrimination with the least
possible changes. The initial step involves ranking the
training examples based on the posterior probabilities
of positive labels obtained from a Naive-Bayes classi-
fier trained on the original dataset. They then select
the set of highest-ranked negatively-labeled items from
the protected set and change their labels. The size of
this set is chosen to make the proportion of positive
labels equal in the two groups; the ranking approach is
used to minimize the impact on the system’s accuracy
in predicting the classification labels. The modified
data is then used for learning a classifier for future de-
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cisions. They also use Naive-Bayes to learn a classifier
based on the modified dataset.

A recent example of a regularization strategy is the
work of Kamishima et al (2011); they quantified the
degree of prejudice based on mutual information, and
added this as a regularizer in a logistic regression
model. Our model more closely resembles this reg-
ularization approach, as the statistical parity is a reg-
ularizer incorporated into the classification objective.
Two key differences are that fairness in LFR is defined
in terms of the intermediate representation rather than
the classification decisions, and that we explicitly at-
tempt to retain information in the input attributes
with the exception of membership in the protected
group. This enables the intermediate representation
to potentially be used for other classification decisions.

A third approach in the literature is the “Fairness
Through Awareness” work (Dwork et al., 2011). Here
a mapping to an intermediate representation is ob-
tained by optimizing the classification decision crite-
ria while satisfying a Lipschitz condition on individ-
uals, which stipulates that nearby individuals should
be mapped similarly. One important difference in our
model is that our approach naturally produces out-of-
sample representations, whereas this earlier work left
open the question of how to utilize this fair mapping
for future unseen examples.

On the computational side one notable piece of related
work is the information bottleneck approach (Tishby
et al., 1999). The aim in information bottleneck is
to compress the information in some source variable
X while preserving information about another rele-
vant variable Y . The optimization is cast as finding
a new representation that simultaneously maximizes
the mutual information with Y while minimizing the
information about X. Our method similarly attempts
to learn a representation that trades off mutual in-
formation, and maximizes it with a relevant variable
Y . However in our formulation the representation at-
tempts to minimize mutual information with only a
portion of the input (S) while maximizing the retained
information about the remainder of X.

More broadly there is a large body of work on fairness
in social choice theory, game theory, economics, and
law. Among the most relevant are theories of fairness
and algorithmic approaches to apportionment, e.g.,
Young’s, Equity, Moulin’s Fair Division and Collective
Welfare, Roemer’s Equality of Opportunity and The-
ories of Distributed Justice, and Rawl’s A Theory of
Justice. Concerns about the impact of classification in-
clude: maintaining a fair marketplace, bias, impedence
of autonomy and identity formation, and the fear that

segmented access to information undermines shared
experience and therefore the informational commons
considered important to democracy. Recent papers
(Dwork & Mulligan, 2012; Zarsky, 2012) articulate
these concerns related to classification, and point out
that there are no current proposals at present to reg-
ulate or build systems addressing these concerns.

Finally, there is a close connection between individual
fairness—treating similar people similarly—and differ-
ential privacy (Dwork et al., 2006). Differential pri-
vacy is a definition of privacy designed for privacy-
preserving analysis of data; it ensures that the output
of any analysis is essentially equally likely to occur on
any pair of databases differing only in the data of a
single individual. Thus, differential privacy requires
that algorithms behave similarly on similar databases,
while individual fairness requires that classification
outcomes will be similar for similar individuals. An-
other view of this relationship is that differential pri-
vacy involves a constraint with respect to the rows of a
data matrix, while fairness involves a constraint with
respect to the columns. The analogy is well founded,
as techniques from differential privacy may be used to
achieve individual fairness (Dwork et al., 2011).

4. Experiments

4.1. Comparisons, datasets, and protocol

For comparison, we implemented the four variations of
the models in (Kamiran & Calders, 2009), using Naive-
Bayes in both the ranking and classification phase of
their algorithm; the variants either use separate or
combined classifiers in each phase. We denote this
the FNB model, for Fair Naive-Bayes. We also imple-
mented the logistic regression method with a regular-
izer proposed by (Kamishima et al., 2011), and opti-
mized the setting of the regularization parameter. We
denote this the RLR model, for Regularized Logistic
Regression. We also trained an un-regularized version
of logistic regression, denoted LR, as a baseline.

We defined a performance metric to apply to the val-
idation set in order to determine the best variant and
hyper-parameter setting for each method. We chose
to focus on two measurements—the accuracy and dis-
crimination in the model output—since both of these
were considered in the earlier work on the FNB method
(Kamiran & Calders, 2009) and the RLR approach
(Kamishima et al., 2011). In addition, in order to
evaluate individual fairness, we define a metric that
assesses the consistency of the model classifications lo-
cally in input space; values close to one indicate that
similar inputs are treated similarly.
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• Accuracy: measures the accuracy of the model
classification prediction:

yAcc = 1− 1

N

N∑
n=1

|yn − ŷn| (13)

• Discrimination: measures the bias with respect
to the sensitive feature S in the classification:

yDiscrim = |
∑

n:sn=1 ŷn∑
n:sn=1 1

−
∑

n:sn=0 ŷn∑
n:sn=0 1

| (14)

This is a form of statistical parity, applied to the
classification decisions, measuring the difference
in the proportion of positive classifications of indi-
viduals in the protected and unprotected groups.

• Consistency: compares a model’s classification
prediction of a given data item x to its k-nearest
neighbors, kNN(x):

yNN = 1− 1

Nk

∑
n

|ŷn −
∑

j∈kNN(xn)

ŷj | (15)

We applied the kNN function to the full set of
examples to obtain the most accurate estimate of
each point’s nearest neighbors.

Here we present results of the methods on two datasets
which are available from the UCI ML-repository
(Frank & Asuncion, 2010). The German credit dataset
has 1000 instances which classify bank account holders
into credit class Good or Bad. Each person is described
by 20 attributes. In our experiments we consider
Age as the sensitive attribute, following (Kamiran &
Calders, 2009). The Adult income dataset has 45,222
instances. The target variable indicates whether or not
income is larger than 50K dollars, and the sensitive fea-
ture is Gender, as in (Kohavi, 1996; Kamishima et al.,
2011)). Each datum is described by 14 attributes.

The final, considerably larger dataset we experimented
with is derived from the Heritage Health Prize mile-
stone 1 challenge (www.heritagehealthprize.com). It
contained 147,473 patients, described using the same
139 features as the winning team, Market Makers. The
goal is to predict the number of days a person will
spend in the hospital in a given year. To convert
this into a binary classification task, we simply pre-
dict whether they will spend any days in the hospital
that year. We split the patients into two groups based
on Age (> 65). For details on the datasets see the
Supplementary Material.

All methods were trained in the same way for all
datasets. For each variant of FNB, and each setting
of the hyper-parameters in the other two methods, we
evaluated the performance metrics on the validation

set. For our method, LFR, we applied L-BFGS to min-
imize Eqn. 4. We performed a simple grid search to
find a good set of hyper-parameters in Eqn. 4: Ax was
0.01, and we chose Ay, Az to be the values from the
set S = {0.1, 0.5, 1, 5, 10}. We also included Az = 0.
For RLR, we optimized the regularization parameter
η ∈ {0, 0.5, 1.0, 1.5, 3.0}.

4.2. Results and analysis

A key issue is what measure should be used for model
selection; that is, which criteria will be used to evalu-
ate a model’s performance on the validation set with
a particular setting of hyper-parameters. Here we
focus on two measures. In the first the selection
was based on minimizing the discrimination criteria
yDisc, reflecting the primary aim of ensuring fair-
ness. The second selection was based on maximizing
the difference between accuracy and discrimination:
Delta = yAcc − yDisc. In each case we compare the
performance of the respective models on a test dataset,
examining both the accuracy and discrimination in Y .
The results are summarized in Figure 1; LR = Logis-
tic Regression (a baseline method); FNB = Fair Naive
Bayes; RLR = Regularized Logistic Regression; and
LFR = Learned Fair Representations, our new model.

In these results it is clear that our model is capable of
pushing the discrimination to very low values, while
maintaining fairly high accuracy. The results are con-
sistent in all three datasets, and across the validation
criteria.

In particular, the Fair Naive Bayes method has dif-
ficulty in maintaining low values of discrimination at
test time. It performs quite well on the Adult dataset,
but its performance suffers considerably when the size
of the problem increases, as in the Health dataset. The
Regularized Logistic Regression has more consistent
success in limiting discrimination while preserving ac-
curacy, but still does not match our method’s perfor-
mance overall. This is quite surprising, since our LFR
model is not directly minimizing discrimination but
instead optimizing a proxy evaluated on the interme-
diate representations. In addition our model is also
trying to preserve information about the data.

We can also compare the models with respect to indi-
vidual fairness. We use the yNN measure (Eqn. 15) to
evaluate the consistency of each model’s classification
decisions. The results for the models that were se-
lected based on discrimination are shown in Figure 2.
For each dataset our model obtained better individual
fairness; this is likely due to the optimization criteria
rewarding Z’s preservation of information about X.
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Figure 1. Results on test sets for the three datasets (Ger-
man, Adult, and Health), for two different model selec-
tion criteria: minimizing discrimination and maximizing
the difference between accuracy and discrimination.

For the remainder of this section, we focus on the
model that maximizes the difference between accuracy
and discrimination. We can gain some insight into our
method by analyzing various aspects of the learned
representations. First we note that a stated aim of
our learning method is to encode as much information
as possible about each individual while removing in-
formation about membership in the protected set. We
can evaluate the degree to which the system succeeded
in accomplishing this at test time, in several ways.

First we can measure how much information about S
is contained in the latent representation by building a
predictor that learns to predict S from Z:

ŝn =

K∑
k=1

Mn,kuk (16)

We optimize this predictor to minimize its difference
with the actual sn, and then evaluate test predictions
for S using an sAcc score analogous to yAcc:

sAcc = 1− 1

N

N∑
n=1

|sn − ŝn| (17)

Note that even though we optimize the predictor in
effect to maximize sAcc, in contrast to yAcc which we

German Adult Health
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. Individual fairness: The plot shows the consis-
tency of each model’s classification decisions, based on the
yNN measure. Legend as in Figure 1.

German Adult Health
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0.4

0.6

0.8

1.0

Raw
Proto

Figure 3. The plot shows the accuracy of predicting the
sensitive variable (sAcc) for the different datasets. Raw in-
volves predictions directly from all input dimensions except
for S, while Proto involves predictions from the learned fair
representations.

want to be as close to 1 as possible, we want sAcc to
be low. We can evaluate how much information about
S is removed by the mapping to Z by comparing sAcc
to its upper and lower bound. A simple upper bound
(based on a linear predictor) predicts ŝ from the rest of
the input vector X except for S; a lower bound is 0.5,
which corresponds to random guessing. Results for
the three datasets of predicting S from the raw data
(our simple upper bound) versus from the prototype
representations in the trained models (as in Eqn. 16)
are shown in Figure 3. In all cases the accuracy
has moved significantly towards the lower bound of
0.5, showing that the information regarding learned
representations has been significantly obfuscated.

This demonstrates that the sensitive information has
been obfuscated, but is specific to the method of pre-
dicting S. Another evaluation involves looking directly
at statistical parity in the representations at test time.
An upper bound on how much information about S is
contained in the new representations can be gained
by finding the maximum amount of bias across the
prototypes; in the Adult dataset for example, this is:
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maxk |P (Z = k|S = 1) − P (Z = k|S = 0)| = 0.0027.
Similar results were obtained for the other datasets.
As discussed in Section 2.2, this implies that the mu-
tual information between S and Z is very small, and
thus Z represents a sanitized version of the input where
S has been essentially forgotten.

An additional interesting aspect of the model concerns
the learned distance metric. The model is capable of
learning different precision parameters along each in-
put dimension, or feature i. When we rank the fea-
tures based on the magnitude of their difference be-
tween the two groups, |α+

i −α
−
i |, we find that the top-

ranked features can reveal something interesting about
the datasets. For example, in the Adult dataset, the
top-ranked feature represents whether the individual is
’never married’. Here the sensitive feature is gender;
the α for female is bigger than α for male on this fea-
ture. Similar results were obtained in both datasets.
This shows that our algorithm can adapt the distance
function to an inverted scenario where awareness of the
protected group may be relevant to classification.

4.3. Transferring fair representations

We also investigated the ability of our model to learn
multiple classifications from a common set of fair rep-
resentations. This is a form of transfer learning, in
which the learned fair representations may be used
for several different classifications, such as by differ-
ent vendors, or various decisions by the same vendor.

In order to examine this, we identified another dimen-
sion in the Adult dataset as the second classification
variable. We trained an LFR model on a modified
version of the dataset, in which this new dimension,
Age, was removed from each input example X. Oth-
erwise the setup was exactly as above, with Gender as
the sensitive variable S and Income as the target Y .
We used a validation set to again find the best setting
of the hyper-parameters. After training we used the
{Mnk} values as the representation of each individual
n, and trained a linear predictor for the new classifi-
cation problem, Age.

As a benchmark, we trained a linear predictor (LR)
for Age that mapped directly from the input x. The
question of interest is how much the learned repre-
sentations lose in accuracy versus how much fairness
is gained, relative to this direct prediction. In this
experiment, we found that the transferred representa-
tions suffered a small loss in accuracy (yAcc dropped
< 7%) while significantly removing bias in the classi-
fication (yDiscrim dropped > 97%).

5. Discussion

In this paper, we formulated fairness as an optimiza-
tion problem of finding an intermediate representation
of the data that best encodes the data while simultane-
ously obfuscates aspects of it, removing any informa-
tion about membership with respect to the protected
group. Our model maps each individual, represented
as a data point in a given input space, to a probability
distribution in a new representation space. Classifica-
tions can be made based on these new representations.
We implemented our algorithm on three data sets and
showed positive results compared to other known tech-
niques, and conducted an initial investigation into the
ability of our model to learn multiple classifications
from a common set of fair representations.

Fairness in classification is a growing concern with
tremendous societal importance, pulling in scholars
from many diverse areas, such as law, economics, and
public policy. For example, a new initiative on big data
mining, fairness and privacy has recently been estab-
lished (http://privacyobservatory.org/current/40-big-
data-mining-fairness-and-privacy). Researchers from
an algorithmic and machine learning perspective have
an important role to play in this new area.

A multitude of interesting and important open prob-
lems remain to be solved; here we mention just two.
First, all formulations of fairness thus far aim to elim-
inate all bias. However, in many circumstances, the
classification goal does have a direct correlation with
membership in the protected group. For example,
when predicting who is likely to succeed in university
(presumably a key criteria in admission decisions), it
might be the case that statistically individuals from a
certain population are much more likely to succeed in
university than the population at large. One way to
nonetheless maintain balance is a quota system, i.e.,
ensure that the proportions of positive classifications
is some value but not necessarily equal between the
groups; we can readily handle this case in our frame-
work. Yet it is more desirable to allow some other non-
quota control. Formulating a more general framework
for fairness that does not force equality or quotas is an
important problem. A related problem is understand-
ing how to deconstruct a given classifier to determine
to what extent it is fair.

Secondly, we would like to develop other forms of inter-
mediate representations beyond prototypes, utilizing
multi-dimensional distributed representations, which
may offer a richer space for achieving good classifica-
tions and transfer to new classifications, while main-
taining fairness.
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