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Abstract

In this paper, we develop a novel approach for
sparse uncorrelated linear discriminant anal-
ysis (ULDA). Our proposal is based on char-
acterization of all solutions of the general-
ized ULDA. We incorporate sparsity into the
ULDA transformation by seeking the solu-
tion with minimum ¢;-norm from all mini-
mum dimension solutions of the generalized
ULDA. The problem is then formulated as
a {1-minimization problem and is solved by
accelerated linearized Bregman method. Ex-
periments on high-dimensional gene expres-
sion data demonstrate that our approach
not only computes extremely sparse solutions
but also performs well in classification. Ex-
perimental results also show that our ap-
proach can help for data visualization in low-
dimensional space.

1. Introduction

Linear discriminant analysis (LDA) is a popular tool
for both classification and dimension reduction that
seeks an optimal linear transformation of the data in-
to a low-dimensional space, where the data achieves
maximum class separability (Fukunaga, 1990; Hastie
et al., 2009). The optimal transformation is comput-
ed by solving a generalized eigenvalue problem. LDA
has been widely employed in numerous applications
in science and engineering, including microarray da-
ta analysis, information retrieval and face recognition.
Despite the simplicity and popularity of LDA, there
are two deficiencies that restrict its application in high-
dimensional data analysis, where the dimension of the
data space is usually thousands. One deficiency is that
the classical LDA can not be applied directly to under-
sampled problems, that is, the dimension of the data
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space is larger than the number of data samples, due
to singularity of the scatter matrices; the other is the
lack of sparsity in the LDA solution.

To overcome the first problem, many extensions
of the classical LDA have been proposed. These
extensions include uncorrelated LDA (ULDA) (Jin
et al, 2001; Ye, 2005; Chu et al., 2011), regu-
larized LDA (Friedman, 1989), GSVD-based LDA
(LDA/GSVD)(Howland & Park, 2004), and least
squares LDA (Ye, 2007). Of these approaches, ULDA
has an advantage over other approaches, that is, the
feature vectors extracted by ULDA are mutually un-
correlated in the low-dimensional space. This property
is highly desirable for feature extraction in many appli-
cations in order to contain minimum redundancy (Ye

et al., 2004; 2006).

Sparsity in the LDA solution is generally desirable for
high-dimensional data analysis as it makes the inter-
pretation of the extracted features much easier. For
LDA, each extracted feature in the transformed space
is a linear combination of all the features of original
data and the coefficients of such linear combination are
generally nonzero, which makes the interpretation of
the extracted features difficult. To overcome this prob-
lem, many attempts have been made to incorporate
sparsity into the LDA transformation, for instance,
the greedy algorithms ESLDA and GSLDA (Moghad-
dam et al., 2006), the Penalized LDA (PLDA) (Wit-
ten & Tibshirani, 2011), and the Sparse Discriminant
Analysis (SLDA) (Clemmensen et al., 2011). Almost
all existing sparse LDA algorithms introduce sparsi-
ty by adding ¢; penalty (i.e., Lasso penalty (Tibshi-
rani, 1996)) or its variants of the transformation ma-
trix to objective functions, and thus, the computed
sparse transformation is not a solution of LDA but an
approximation. Besides interpretability, sparse LDA
may be motivated by robustness to the noise, or com-
putational efficiency in prediction. Some significant
applications of sparse LDA can be found in (Dundar
et al., 2005; Fung & Ng, 2007; Wu et al., 2009).

In this paper we study sparse ULDA (SULDA) which
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extracts mutually uncorrelated features and computes
sparse LDA transformation, simultaneously. We first
characterize all solutions of the generalized ULDA vi-
a solving the optimization problem proposed in (Ye,
2005), then compute the sparse solution of ULDA by
finding the minimum ¢;-norm solution from all the
solutions with minimum dimension. Finding mini-
mum /¢i-norm solution can be formulated as a ¢;-
minimization problem, which is solved by Accelerat-
ed Linearized Bregman method (Yin et al., 2008; Cai
et al., 2009; Yin, 2010; Huang et al., 2011). Differen-
t from existing sparse LDA algorithms, our approach
seeks a sparse solution of ULDA directly from the so-
lution set of ULDA, so the computed sparse transfor-
mation is a solution of ULDA, which further implies
that the extracted features by SULDA are mutually
uncorrelated.

This paper is organized as follows. We briefly review
LDA and ULDA in Section 2 and derive a characteri-
zation of all solutions of generalized ULDA In Section
3. Based on the characterization we develop a novel s-
parse ULDA algorithm SULDA in Section 4, then test
SULDA on real world data and compare its perfor-
mance with existing sparse LDA algorithms in Section
5. Finally, we conclude this paper in Section 6.

2. Overview of LDA and ULDA

Given a data matrix A € R™*" consisting of n sam-
ples from R™. We assume A = [a1 as - a,] =
[.Al Ao Ak],whereajeRm (1 <j<n),
n is the sample size, k is the number of class and
A; € R™*™ with n; denoting the number of data
in the ith class. So we have n = Zle n;. Classical
LDA aims to compute an optimal linear transforma-
tion GT € R™ that maps a; in the m-dimensional
space to a vector a’ in the I-dimensional space

GT:a; e R™ = aF € R,
where [ < m, so that the class structure in the original

data is preserved in the [-dimensional space.

In discriminant analysis (Fukunaga, 1990), the
between-class scatter matrix Sp, within-class scatter
matrix S, and total scatter matrix S; are defined as:

k
1 , ,
—— (A1) (i) _ T
Sy - ;nz(c c)(c o),
1 , .
S DO IR S
n i=1a;€A;
1 n
Sp =~ Zl(aj —)(a; — )7,
=

where ¢ = %{Aiei with ¢; = [1 117 ¢ R™
denotes the centroid of class ¢ and ¢ = %Ae with
e=[1---1]7 € R" denotes the global centroid. It fol-
lows from the definition that S; = S, + S,,. Moreover,
let
Hy, =

[\/7?1(0(1) — C) ... M(C(k) _ C)] c Rka,

1
Hy=—=[A; — el oo Ay — cPel] e R,
vn

Si-

1
Ht:%[al—c

then the scatter matrices can be expressed as

an — | = A—cel € R™*",

Sy =H,H}, S,=H,HY, S, =HH' (1)
Trace of the scatter matrices can be used to mea-
sure the quality of the class structure, where Trace(S5)
measures the distance between classes and Trace(.S,,)
measures the closeness of the data within the classes

over all k£ classes.

In the low-dimensional space mapped by the linear
transformation GT € R!*™_ the between-class, within-
class and total scatter matrices are of the forms

Sk =a678,G, Sk=qG"s,G, SE=G"S,G.

An optimal transformation G7 should maximize
Trace(S{) and minimize Trace(S%) simultaneously,
which results in a common criterion for classical LDA:

G* = argmgx{Trace((StL)*leL)}. (2)

In classical LDA (Fukunaga, 1990), the optimization
problem above is solved by computing all the eigen-
pairs

Spx = ASpx, A#0,

and thus, the optimal G* consists of eigenvectors of
S, 1Sy corresponding to all nonzero eigenvalues, pro-
vided that S; is nonsingular. Since rank(S,) < k —1,
the reduced dimension by classical LDA is at most
k —1. Classical LDA can not be applied directly when
S; is singular, which is the case for undersampled prob-
lems.

To deal with the singularity of Sy, many generaliza-
tions of classical LDA have been proposed. One popu-
lar generalization is the generalized ULDA (Ye, 2005;
Jin et al., 2001)

G* = Trace((SF)H) Sk
arg  max  Trace((5;)™5y)

=arg max Trace(SL), 3
g max  Trace(Sy) (3)
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where (S£)H) denotes the pseudo-inverse (Golub &
Loan, 1996) of S&. Due to the constraint G S;G = I,
the extracted features are mutually uncorrelated in
the [-dimensional space. An algorithm, based on the
simultaneous diagonalization of the scatter matrices,
was proposed in (Ye, 2005) for computing the opti-
mal solution of optimization problem (3). Recently,
an eigendecomposition-free and SVD-free ULDA algo-
rithm was developed in (Chu et al., 2011) to improve
the efficiency of the generalized ULDA. Some applica-
tions of ULDA can be found in (Jin et al., 2001; Ye
et al., 2004; 2006).

3. Characterization of all solutions of
generalized ULDA

We characterize all solutions of the optimization prob-
lem (3) explicitly in Theorem 1, which is based on
singular value decomposition (SVD) (Golub & Loan,
1996) and simultaneous diagonalization of scatter ma-
trices. The detailed proof is given in the Appendix.

Theorem 1. Let the reduced SVD of H; be
Hy = US VY, (4)

where U; € R™*7 and V; € R™*7 are column orthog-
onal, and Xy € RV*7 is diagonal and nonsingular with
~v = rank(H:) = rank(S;). Next, let the reduced SVD
of X7 UT Hy be

> 0T H, = PSyQY, (5)

where P, € R, Q, € R**? are column orthogo-
nal, ¥y € R is diagonal and nonsingular. Then
q = rank(Hy) = rank(Sy), and G is a solution of the
optimization problem (3) if and only if ¢ <1 <+ and

G= (s '[P Mi]+ M) 2, (6)

where My € RY*(=9 s column orthogonal satisfy-
ing MTP, =0, My € R™*! is an arbitrary matriz
satisfying MTU, =0, and Z € R is orthogonal.

A similar result as Theorem 1 has been established
in (Chu et al., 2011), where the optimal solution to
the optimization problem (3) is computed by means
of economic QR decomposition with/without column
pivoting.

When we compute the optimal linear transformation
G* of LDA for data dimensionality reduction, we pre-
fer the dimension of the transformed space to be as
small as possible. Hence, we parameterize all mini-
mum dimension solutions of the optimization problem
(3) in Corollary 2 which is a special case of Theorem
(1) with I = q.

Corollary 2. G € R™ ! is a minimum dimension
solution of the optimization problem (3) if and only if
l=q and

G = (U ' P+ My)Z, (7)

where Mo € R™*4 is any matriz satisfying MU, =
0 and Z € R?*? is orthogonal.

Another motivation for considering minimum dimen-
sion solutions of (3) is that results in (Chu et al.,
2011) show that among all solutions of the optimiza-
tion problem (3), minimum dimension solutions max-
imize the ratio Trace(S{)/Trace(SL), which is also
an important measure of class discrimination in LDA
(Fukunaga, 1990).

From both equations (6) and (7), we see that the op-
timal solution G* of generalized ULDA equals to the
summation of two factors, UlEt_l [Pl Ml} Z in the
range space of Sy and MsZ in the null space of 5.
Since the factor My Z belongs to null(S,) N null(S,,),
it does not contain discriminative information. How-
ever, with the help of factor My Z we can construct a
sparse solution of ULDA in the next section.

4. Sparse ULDA

Note from Corallary 2 that G is a minimum dimension
solution of the optimization problem (3) if and only if
equality (7) holds, which is equivalent to

vlcg=x;'pz, 2T'z=1. (8)

The main idea of our sparse ULDA algorithm is to
find the sparsest solution of ULDA from all G satisfy-
ing (8). A natural way to do this is to find a matrix
G that minimizes the ¢p-norm (cardinality). Howev-
er, fp-norm is non-convex and NP-hard. Therefore, in
our sparse ULDA, we replace the fyp-norm with its con-
vex relaxation ¢1-norm, which results in the following
optimization problem
G* = arg min IGl1
GeRmxa
st. UF'G=x;'P2z, 2T2=1
(9)
i-11Gil-

Note that Z € R?*? in (9) is orthogonal. However, on
one hand, there still lack numerically efficient meth-
ods for solving optimization problems over the set of
orthogonal matrices. On the other hand, it can intro-
duce at most ¢? additional zeros in G by optimizing
Z over all ¢ x g orthogonal matrices assuming the the
zero structure of the previous G is not destroyed; but,
usually, ¢ < k << m, so the number of the additional
zeros in G introduced by optimizing Z is very small

where [|G|]; is defined as |G|y = Y-,
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compared with mgq. So it is acceptable that G* in (9) is
computed with a fixed Z (Z = I, in our experiments).

When ¢ = 1, the ¢;-minimization problem (9) is re-
duced to the basis pursuit problem

x] = argmin{||z|}; : z € R", Ax = b}, (10)
which has been studied extensively (Yin et al., 2008;
Cai et al., 2009; Yin, 2010; Huang et al., 2011). This
means that the numerical methods for solving (10) can
be automatically extended to solve (9).

The linearized Bregman method (Yin et al., 2008; Cai
et al., 2009; Yin, 2010) is considered as one of the
most powerful methods for solving problem (10), and
it has been accelerated in a recent study (Huang et al.,
2011). The accelerated linearized Bregman method for
(10) is:

gl =68, (%),
Pl =gk — 7 AT (AP —b), k>0, (11)
TR = agof 4 (1 — ag)o”

)

where 7 = v = 7ATb, 6, p and 7 are positive pa-
rameters, ap = Qkkj?? and S, (-) is the componentwise

soft-thresholding operator

S, (z) = sign(z) © max{|z| — u,0}.

Extending the accelerated linearized Bregman method
(11) to the optimization problem (9), we get an ana-
logue as follows:

Gk+1 — QSM(V]CL
VEH = Uk U (UFGHY - 57 P 2), (12)
VEFL = qp VEFL 4 (1 — o) VE,

where V0 = V0 = 71U, %1 P, 2.

The convergence of the accelerated linear Bregman
method is given in the following theorem which is a
natural extension of results in (Cai et al., 2009; Yin,
2010; Huang et al., 2011).

1 —
Theorem 3. Assume that 0 < § < O, = 1,
0<7< %, and denote G* as the solution of optimiza-
tion problem (9) that has the minimal Frobenius norm

among all solutions, that is
G* = argmin{||G||r : G solves (9)}.

Then the sequence {G*} generated by (12) converges
to the unique solution of the optimization problem

_ 1
G, = argmin{p|| Gy + 5\\6‘”% :%.U G = P12},
(13)

Algorithm 1 Sparse ULDA (SULDA)

Input: data A € R™*™ and tolerance ¢ > 0
Compute the reduced SVDs (4) and (5)
Let Z=1, V=V =7U,%;'P 2
repeat

Compute G¥*+1 by (12)

error = |[ULG*' — S P 2| »
until error < e
Output: GF*!

that is,
lim |G* — G5 llp = 0.
k—o00

Moreover, we have
lim |G}, — G*||r =0.
H—>00

In particular, for any fixed &, there exists a finite p*
such that
G, =G", Vu>u".

Theorem 3 shows that the sequence {G*} generated
by accelerated linearized Bregman method converges
to the unique solution of (13). Moreover, if 4 is large
enough, then the limit point of {G*} is the solution of
(9) that has the minimal Frobenius norm.

We are now ready to present our sparse ULDA algo-
rithm, which is described in Algorithm 1. In Algorithm
1, we adopt the following stopping criterion

IUfG* =S PZ||F <, (14)
where € > 0 is a tolerance parameter. Let

Ay =UrGk—x'p z,
then UL G* = A, + 3, P 2, | Akllr < ¢, and
(G S,G* = I,+AT S PLZ+ 2T PTS A+ AL S Ay

The deviation of GTS,G from I, at the kth iteration
can be measured by

(GM)TSiG* — I||r
Va
IAEZEAkllF + 2] 2T P S Axl
Va
< BB AklF + 2052 Aklle
B Vi
_ B2l Arllr (2 + [[Zel2]| Akl F)
- Vi
< I H[2(2 + [|He|l2¢)e
- Vi
Thus, it is expected that the extracted features are
well uncorrelated if the tolerance € is small enough.

IN

= O(e). (15)
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5. Experimental Results

This section presents some experimental results com-
paring SULDA with other two sparse LDA algorithms,
PLDA (Witten & Tibshirani, 2011) and SLDA (Clem-
mensen et al., 2011). PLDA applies a Lasso penalty
in Fisher’s LDA framework, where the within-class s-
catter matrix is approximated by its diagonal. SLDA
applies an elastic net penalty to the Optimal Scor-
ing problem. The codes of PLDA! and SLDA? are
publicly avaiable from the authors in R and MATLAB,
respectively.

In the implementation of SULDA, we selected tuning
parameters & = 0.9, 7 = 1 (< }) and e = 1075.
The tuning parameter of PLDA was selected by 10-
fold cross-validation, while the tuning parameters of
SLDA were selected so that the computed transforma-
tion has comparable spasity with SULDA.

We performed our experimental studies using five gene
expression data sets: Colon, Leukemia, Prostate, SR-
BCT and Brain. Each data set was randomly split
into training and test data using the following algo-
rithm: within each class with n; data, we randomly
select [0.5n;| of them as training data and the rest
as testing data. The splitting was repeated 10 times.
The statistics of the data sets are listed in Table 1.

Table 1. Data stuctures: data dimension (m), training size
(n), the number of classes (k) and the number of testing
data (# Test).

Data set m n k  # Test
Colon 2000 31 2 31
Leukemia 3571 37 2 35
Prostate 6033 51 2 51
SRBCT 2308 32 4 31
Brain 5597 21 5 21

The results are summarized in Table 2, where ‘Accu-
racy’ denotes the classification accuracy obtained by
INN classifier for SLDA and SULDA, ‘Sparsity’ de-
notes the percentage of zero entries in the solution G,
that is,

the number of zeros in G

Sparsity = x 100%,

m*q

‘Orthogonality” measures the difference between

GTS,G and 1, which is defined as
IGT8:G — 14|l
Vi
Mttp://cran.r-project.org/web/packages/
penalizedLDA

http://www2.imm.dtu.dk/pubdb/views/
publication_details.php?id=5671

Orthogonality =

‘# Variable’ denotes the number of selected variables.

We can observe from Table 2 that the overall perfor-
mance of SULDA is better than the other two algo-
rithms. In particular, SULDA achieves the highest
classification accuracy for all data sets, followed by
SLDA which achieves higher accuracy than PLDA. Re-
garding sparsity and the number of selected variables,
SLDA and SULDA compute solutions with much high-
er sparsity than PLDA and select less variables, and
SULDA achieves slightly higher sparsity than SLDA.
An important advantage of SULDA over the other two
algorithms is that the extracted features in the low-
dimensional space are mutually uncorrelated. We see
from the ‘Orthogonality’ column of Table 2 that for

SULDA ”(;T&%"”F = O(e), which is consistent with
q

error bound (15). However, for the other two algo-

T
rithms W is relatively large, which implies
that the extracted features are far away from uncorre-

lated.

A 2-dimensional visualization of the SRBCT data is
shown in Figure 1, where the sample data were project-
ed onto the first two sparse discriminant vectors (i.e.,
[ = 2) computed by PLDA, SLDA and SULDA. We
can see from Figure 1 that SULDA has the best class
discrimination quality in the 2-dimensional space. For
PLDA, class 1 and 4 intersect, while for SLDA, class
3 and 4 intersect. However, for SULDA, classes are
well separated from each other and data points in the
same class are close (training data from the same class
were projected to the same point). In fact, when the
training data consists of n linearly independent data,
which is the case in our experiments, we can prove
that v = rank(S;) = n — 1, ¢ = rank(Sy) = k — 1
and rank(S;) = rank(Sp) +rank(S,,). In this case, the
minimum dimension solutions G of ULDA belongs to
range(S,) N null(S,,), which implies that GTH,, = 0,
and

GTaj =GP Va; € A4 (1<i<k),

that is, all training data form the same class (class %)
are projected to the same point (G7c(®).

6. Conclution and Future Work

In this paper, we develop SULDA, an efficient algorith-
m that performs sparse uncorrelated LDA, based on
the characterization of solutions of generalized ULDA.
Specifically, we characterize all solutions of the opti-
mization criterion (3) of generalized ULDA. Based on
the characterization we incorporate sparsity into the
transformation matrix by selecting the solution with
minimum ¢;-norm from all minimum dimension solu-
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Table 2. Numerical results for gene data over 10 training-test set splits: mean (and standard deviation) of classification
accuracy, sparsity, orthogonality and the number of selected variables.

Accuracy (%) Sparsity (%) Orthognality # Variable
Colon
PLDA 79.68 (4.82) 71.06 (8.41) 37.60 (8.86) 578.9 (168.2)
SLDA  80.97 (5.15)  97.94 (6.00e-4)  9.47 (1.64) 41.1 (1.2)
SULDA  83.87 (4.81) 98.49 (2.42¢-4) 3.38¢-6 (2.51e-6)  30.3 (0.5)
Leukemia
PLDA  91.43 (9.62)  75.94 (8.50) 81.40 (29.24) 859.3 (303.4)
SLDA  94.00 (2.84)  98.95 (4.0le-d)  26.97 (6.35) 37.5 (1.4)
SULDA  94.86 (2.95)  98.99 (8.86e-5)  2.46e-6 (2.12¢-6) 36.1 (0.3)
Prostate
PLDA  76.67 (14.95) 83.24 (11.29) 66.57 (44.87) 1,011.4 (681.2)
SLDA  90.20 (3.20)  97.97 (2.10e-4)  15.42 (1.54) 122.5 (1.3)
SULDA  91.37 (3.94) 99.17 (1.17e-16)  4.69e-6 (4.27e-6) 50 (0)
SRBCT
PLDA 9548 (4.35)  82.71 (6.14) 30.65 (9.47) 962.8 (324.8)
SLDA  97.74 (2.18)  97.92 (2.26e-4)  36.34 (5.03) 139.8 (2.7)
SULDA  99.35 (1.36) 98.65 (7.61e-05)  3.91e-6 (1.59¢-6)  79.6 (3.7)
Brain
PLDA 4524 (35.23)  %6.33 (18.30) 36.96 (47.17) 1,762.7 (2292.7)
SLDA 79.05 (8.16) 98.99 (6.40e-5) 6.57 (0.49) 223.7 (2.3)
SULDA  80.00 (6.66)  99.64 (5.07e-5)  7.49e-6 (2.47e-6) 77.4 (2.6)
5 F'LF)A 1 SLDA ‘ oa SULDA
o 2wl 0 o
B PO el o, o L=l
. x = _— _ 02 o ©
g 5 i % § o O
§ ’ o o s rf* E ’ * 02 £
é o gogo f °r X x © %O@QC%@OQ) % o .
O class1 (9&2)0 4 e & ’ +$§r * *EKEE = x x
-10l O class2 @ & o2 * X
Lo R

-15

-14 -12 -10 -8 -6 -4 -2 0 2 4 6

1st discriminant vector

1st discriminant vector

10 -0.1 0 0.1
1st discriminant vector

0.2 03

Figure 1. 2D visualization of the SRBCT data: the samples are projected onto the first two sparse discriminant vectors
obtained by PLDA (left), SLDA (middle) and SULDA (right), respectively.

tions of ULDA. The resulting ¢;-minimization problem
is solved by accelerated linearized Bregman method.

Different from existing sparse LDA algorithms,
SULDA seeks a sparse solution directly from the solu-
tion set of ULDA. Thus, the computed sparse trans-
formation is a solution of ULDA, instead of an ap-
proximation. This implies that features extracted by
SULDA are mutually uncorrelated, which ensures min-
imum redundancy in the low-dimensional space.

Computationally, SULDA is easy to implement as it
requires only matrix factorization (SVD) and multipli-
cation. The effectiveness of SULDA is supported by
experimental results using gene expression data. In
our experiments, SULDA consistently outperformed

its competitors in terms of both classification accu-
racy and interpretability (sparsity and number of used
variables). The resulting sparse transformation can al-
so be used to visualize observations and inspect class
discrimination in the low-dimensional space.

In the derivation of SULDA, we fixed the orthogonal
matrix Z. One future focus is to consider arbitrary
orthogonal Z and select the sparse solution of ULDA
from a larger solution set. Another potential extension
is to consider sparse kernel LDA using similar idea.

Moreover, it is well-known that LDA tends to give un-
desired results if samples in a class form several sepa-
rate clusters (i.e., multimodal), and many extensions
of LDA have been proposed to deal with this problem
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(Hastie & Tibshirani, 1996; Sugiyama, 2007). In the
future, we plan to extent the idea of SULDA to dis-
criminant analysis approaches that can handle multi-
modal labeled data.
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Appendix
A. Proof of Theorem 1

Proof. Let Uy € R™ (M=) vV, ¢ R P, €
R =9 and Q, € R¥*(~9 bhe column orthogonal
matrices such that U = [Ul Ug], V = [Vl Vg],
P = [Pl Pg] and Q = [Ql Qg] are orthogonal,
respectively. Then, it is obvious that

¥y 0

A A I

i

and

Sy = HH = [Uh%S  Us] {0 0

L 0] (s, Us)".
Note that S; = Sy + Sy, St, Sp and S,, are all sym-
metric and positive semi-definite, and S, = HbeT , SO
SpUs = 0 and it holds that

Sy 0

T
0 0 ]

Sy = [0 Ug][ ][Ulzlt 0,

?

where

Sy = (S, U Ho) (27 UL Hy)T

= (A%Q])(P%Q1)"
— [P P [Eog 8] P B

So, let Q = [UthPl Ui Ps Ug}, we have

I, 0 0 ¥2 0 0
S;=9|0 I,, 09", S,=9|0 0 ofQ7,
0 0 0 0 0 0
I,-% 0 0
Spw =25 —-5=9 0 I, 097,
0 0 0

For any G € R™ let Q'G = [6T GI GI]”
where Gy € R/, Gy € RO™9>! and G5 € R~
We have

GTS,G =GIGy + GGy, GTS,G =GT¥iG;.
Since it has been shown in (Ye, 2005) that
max Trace((SE)TSE) = TTace(St(HSb) = Trace(X}),
(16)

we get that G € R™*! is a solution of optimization
problem (3) if and only if

GTG, + GGy =1, Trace(GTX2G,) = Trace(X?).

GTG, + GTGy = I, implies that [ < 7, and there
exist G; € R™™0=D and G, € RO~9*(=1 guch that
[gl gl] is orthogonal, which gives that G1GY = I,—
2 G2

G1GT. Thus, we obtain

Trace(G] X7G1) = Trace(X7)

& Trace(X7G1GT) = Trace(X})

<~ g1 =0

= GG =1,

which, in return, implies ¢ <[ < -, and

G € R™*!is a solution of optimization problem (3)

G1 T
©G=07T |G|, 16T =1, [2} [g} -l
GS 2 2

e
G=0T |G, [gl]zﬁ)" QO}Z
PN G3 2 3

g <1<~, G3 € RO~9*x(=9ig column
orthogonal and Z € R'*!is orthogonal

& G= (U5 [PL PG3) +UaGs) 2,
where in the last equality we used
ot =[us ' US P U]
Since [Pl P2] and [Ul Ug] are orthogonal, it follows
that for any M; € RY*(=9) and M, € R™*

M is column orthogonal, and M? P, =0
& My = P>Gs, for some column orthogonal Gs,

and
M{Ul =0 My = UyGs, for some Gy € RM=7)xL,

Therefore, we have that G € R™*! is a solution of
optimization problem (3) if and only if ¢ < <~ and

G= (g [Pr M) +Ms) Z,

where M; € R7*(=9 is column orthogonal satisfying
MT P =0, My € R™*! is an arbitrary matrix satis-
fying MTU; =0, and Z € R™! is orthogonal. O



