Supplementary Material: $O(\log T)$ Projections for Stochastic Optimization of Smooth and Strongly Convex Functions

Lijun Zhang*

Tianbao Yang \dagger
Rong Jin*
Xiaofei He \ddagger
*Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA \dagger GE Global Research, San Ramon, CA 94583, USA
\ddagger State Key Laboratory of CAD\&CG, College of Computer Science, Zhejiang University, Hangzhou 310027, China

A. Proof of Lemma 1

We need the following lemma that characterizes the property of the extra-gradient descent.
Lemma 8 (Lemma 3.1 in (Nemirovski, 2005)). Let \mathcal{Z} be a convex compact set in Euclidean space \mathcal{E} with inner product $\langle\cdot, \cdot\rangle$, let $\|\cdot\|$ be a norm on \mathcal{E} and $\|\cdot\|_{*}$ be its dual norm, and let $\omega(\mathbf{z}): \mathcal{Z} \mapsto \mathbb{R}$ be a α-strongly convex function with respect to $\|\cdot\|$. The Bregman distance associated with ω for points $\mathbf{z}, \mathbf{w} \in \mathcal{Z}$ is defined as

$$
B_{\omega}(\mathbf{z}, \mathbf{w})=\omega(\mathbf{z})-\omega(\mathbf{w})-\langle\mathbf{z}-\mathbf{w}, \nabla \omega(\mathbf{w})\rangle
$$

Let \mathcal{U} be a convex and closed subset of \mathcal{Z}, and let $\mathbf{z}_{-} \in \mathcal{Z}$, let $\boldsymbol{\xi}, \boldsymbol{\eta} \in \mathcal{E}$, and let $\gamma>0$. Consider the points

$$
\begin{aligned}
& \mathbf{w}=\underset{\mathbf{y} \in \mathcal{U}}{\operatorname{argmin}}\left\{\left\langle\gamma \boldsymbol{\xi}-\nabla \omega\left(\mathbf{z}_{-}\right), \mathbf{y}\right\rangle+\omega(\mathbf{y})\right\}, \\
& \mathbf{z}_{+}=\underset{\mathbf{y} \in \mathcal{U}}{\operatorname{argmin}}\left\{\left\langle\gamma \boldsymbol{\eta}-\nabla \omega\left(\mathbf{z}_{-}\right), \mathbf{y}\right\rangle+\omega(\mathbf{y})\right\} .
\end{aligned}
$$

Then for all $\mathbf{z} \in \mathcal{U}$ one has

$$
\langle\mathbf{w}-\mathbf{z}, \gamma \boldsymbol{\eta}\rangle \leq B_{\omega}\left(\mathbf{z}, \mathbf{z}_{-}\right)-B_{\omega}\left(\mathbf{z}, \mathbf{z}_{+}\right)+\frac{\gamma^{2}}{\alpha}\|\boldsymbol{\eta}-\boldsymbol{\xi}\|_{*}^{2}-\frac{\alpha}{2}\left\{\left\|\mathbf{w}-\mathbf{z}_{-}\right\|^{2}+\left\|\mathbf{z}_{+}-\mathbf{w}\right\|^{2}\right\} .
$$

Proof of Lemma 1. We first state the inner loop in Algorithm 1 below.
for $t=1$ to M do
Compute the average gradient at \mathbf{w}_{t}^{k} over B^{k} calls to the gradient oracle

$$
\overline{\mathbf{g}}_{t}^{k}=\frac{1}{B^{k}} \sum_{i=1}^{B^{k}} \hat{\mathbf{g}}\left(\mathbf{w}_{t}^{k}, i\right)
$$

Update

$$
\mathbf{z}_{t}^{k}=\Pi_{\mathcal{D}}\left(\mathbf{w}_{t}^{k}-\eta \overline{\mathbf{g}}_{t}^{k}\right)
$$

Compute the average gradient at \mathbf{z}_{t}^{k} over B^{k} calls to the gradient oracle

$$
\overline{\mathbf{f}}_{t}^{k}=\frac{1}{B^{k}} \sum_{i=1}^{B^{k}} \hat{\mathbf{g}}\left(\mathbf{z}_{t}^{k}, i\right)
$$

Update

$$
\mathbf{w}_{t+1}^{k}=\Pi_{\mathcal{D}}\left(\mathbf{w}_{t}^{k}-\eta \overline{\mathbf{f}}_{t}^{k}\right)
$$

end for
To simplify the notation, we define

$$
\mathbf{g}_{t}^{k}=\nabla F\left(\mathbf{w}_{t}^{k}\right) \text { and } \mathbf{f}_{t}^{k}=\nabla F\left(\mathbf{z}_{t}^{k}\right)
$$

Let the two norms $\|\cdot\|$ and $\|\cdot\|_{*}$ in Lemma 8 be the vector ℓ_{2} norm. Each iteration in the inner loop satisfies the conditions in Lemma 8 by doing the mappings below:

$$
\mathcal{U}=\mathcal{Z}=\mathcal{E} \leftarrow \mathcal{D}, \omega(\mathbf{z}) \leftarrow \frac{1}{2}\|\mathbf{z}\|^{2}, \alpha \leftarrow 1, \gamma \leftarrow \eta, \mathbf{z}_{-} \leftarrow \mathbf{w}_{t}^{k}, \boldsymbol{\xi} \leftarrow \overline{\mathbf{g}}_{t}^{k}, \boldsymbol{\eta} \leftarrow \overline{\mathbf{f}}_{t}^{k}, \mathbf{w} \leftarrow \mathbf{z}_{t}^{k}, \mathbf{z}_{+} \leftarrow \mathbf{w}_{t+1}^{k}, \mathbf{z} \leftarrow \mathbf{w}_{*}
$$

Following Lemma 8, we have

$$
\begin{align*}
& \left\langle\mathbf{z}_{t}^{k}-\mathbf{w}_{*}, \eta \overline{\mathbf{f}}_{t}^{k}\right\rangle \\
\leq & \frac{\left\|\mathbf{w}_{t}^{k}-\mathbf{w}_{*}\right\|^{2}}{2}-\frac{\left\|\mathbf{w}_{t+1}^{k}-\mathbf{w}_{*}\right\|^{2}}{2}+\eta^{2}\left\|\overline{\mathbf{g}}_{t}^{k}-\overline{\mathbf{f}}_{t}^{k}\right\|^{2}-\frac{1}{2}\left\|\mathbf{w}_{t}^{k}-\mathbf{z}_{t}^{k}\right\|^{2} \\
\leq & \frac{\left\|\mathbf{w}_{t}^{k}-\mathbf{w}_{*}\right\|^{2}}{2}-\frac{\left\|\mathbf{w}_{t+1}^{k}-\mathbf{w}_{*}\right\|^{2}}{2}+3 \eta^{2}\left(\left\|\overline{\mathbf{g}}_{t}^{k}-\mathbf{g}_{t}^{k}\right\|^{2}+\left\|\overline{\mathbf{f}}_{t}^{k}-\mathbf{f}_{t}^{k}\right\|^{2}+\left\|\mathbf{g}_{t}^{k}-\mathbf{f}_{t}^{k}\right\|^{2}\right)-\frac{1}{2}\left\|\mathbf{w}_{t}^{k}-\mathbf{z}_{t}^{k}\right\|^{2} \\
\leq & \frac{\left\|\mathbf{w}_{t}^{k}-\mathbf{w}_{*}\right\|^{2}}{2}-\frac{\left\|\mathbf{w}_{t+1}^{k}-\mathbf{w}_{*}\right\|^{2}}{2}+3 \eta^{2}\left(\left\|\overline{\mathbf{g}}_{t}^{k}-\mathbf{g}_{t}^{k}\right\|^{2}+\left\|\overline{\mathbf{f}}_{t}^{k}-\mathbf{f}_{t}^{k}\right\|^{2}\right)+3 \eta^{2}\left\|\mathbf{g}_{t}^{k}-\mathbf{f}_{t}^{k}\right\|^{2}-\frac{1}{2}\left\|\mathbf{w}_{t}^{k}-\mathbf{z}_{t}^{k}\right\|^{2} \tag{11}\\
\leq & \frac{\left\|\mathbf{w}_{t}^{k}-\mathbf{w}_{*}\right\|^{2}}{2}-\frac{\left\|\mathbf{w}_{t+1}^{k}-\mathbf{w}_{*}\right\|^{2}}{2}+3 \eta^{2}\left(\left\|\overline{\mathbf{g}}_{t}^{k}-\mathbf{g}_{t}^{k}\right\|^{2}+\left\|\overline{\mathbf{f}}_{t}^{k}-\mathbf{f}_{t}^{k}\right\|^{2}\right)+3 \eta^{2} L^{2}\left\|\mathbf{w}_{t}^{k}-\mathbf{z}_{t}^{k}\right\|^{2}-\frac{1}{2}\left\|\mathbf{w}_{t}^{k}-\mathbf{z}_{t}^{k}\right\|^{2} \\
\leq & \frac{\left\|\mathbf{w}_{t}^{k}-\mathbf{w}_{*}\right\|^{2}}{2}-\frac{\left\|\mathbf{w}_{t+1}^{k}-\mathbf{w}_{*}\right\|^{2}}{2}+3 \eta^{2}\left(\left\|\overline{\mathbf{g}}_{t}^{k}-\mathbf{g}_{t}^{k}\right\|^{2}+\left\|\overline{\mathbf{f}}_{t}^{k}-\mathbf{f}_{t}^{k}\right\|^{2}\right)
\end{align*}
$$

where in the fifth line we use the smoothness assumption

$$
\left\|\mathbf{g}_{t}^{k}-\mathbf{f}_{t}^{k}\right\|=\left\|\nabla F\left(\mathbf{w}_{t}^{k}\right)-\nabla F\left(\mathbf{z}_{t}^{k}\right)\right\| \leq L\left\|\mathbf{w}_{t}^{k}-\mathbf{z}_{t}^{k}\right\|
$$

From the property of λ-strongly convex function and (11), we obtain

$$
\begin{aligned}
& F\left(\mathbf{z}_{t}^{k}\right)-F\left(\mathbf{w}_{*}\right) \\
\leq & \left\langle\mathbf{f}_{t}^{k}, \mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\rangle-\frac{\lambda}{2}\left\|\mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\|^{2} \\
= & \left\langle\overline{\mathbf{f}}_{t}^{k}, \mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\rangle+\left\langle\mathbf{f}_{t}^{k}-\overline{\mathbf{f}}_{t}^{k}, \mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\rangle-\frac{\lambda}{2}\left\|\mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\|^{2} \\
\leq & \frac{\left\|\mathbf{w}_{t}^{k}-\mathbf{w}_{*}\right\|^{2}}{2 \eta}-\frac{\left\|\mathbf{w}_{t+1}^{k}-\mathbf{w}_{*}\right\|^{2}}{2 \eta}+3 \eta\left(\left\|\overline{\mathbf{g}}_{t}^{k}-\mathbf{g}_{t}^{k}\right\|^{2}+\left\|\overline{\mathbf{f}}_{t}^{k}-\mathbf{f}_{t}^{k}\right\|^{2}\right)+\left\langle\mathbf{f}_{t}^{k}-\overline{\mathbf{f}}_{t}^{k}, \mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\rangle-\frac{\lambda}{2}\left\|\mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\|^{2}
\end{aligned}
$$

Summing up over all $t=1,2, \ldots, M$, we have

$$
\begin{aligned}
& \sum_{t=1}^{M} F\left(\mathbf{z}_{t}^{k}\right)-M F\left(\mathbf{w}_{*}\right) \\
\leq & \frac{\left\|\mathbf{w}_{1}^{k}-\mathbf{w}_{*}\right\|^{2}}{2 \eta}+3 \eta\left(\sum_{t=1}^{M}\left\|\overline{\mathbf{g}}_{t}^{k}-\mathbf{g}_{t}^{k}\right\|^{2}+\sum_{t=1}^{M}\left\|\overline{\mathbf{f}}_{t}^{k}-\mathbf{f}_{t}^{k}\right\|^{2}\right)+\sum_{t=1}^{M}\left\langle\mathbf{f}_{t}^{k}-\overline{\mathbf{f}}_{t}^{k}, \mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\rangle-\frac{\lambda}{2} \sum_{t=1}^{M}\left\|\mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\|^{2} .
\end{aligned}
$$

Dividing both sides by M and following Jensen's inequality, we have

$$
\begin{align*}
& F\left(\frac{1}{M} \sum_{t=1}^{M} \mathbf{z}_{t}^{k}\right)-F\left(\mathbf{w}_{*}\right) \\
\leq & \frac{1}{M} \sum_{t=1}^{M} F\left(\mathbf{z}_{t}^{k}\right)-F\left(\mathbf{w}_{*}\right) \\
\leq & \frac{\left\|\mathbf{w}_{1}^{k}-\mathbf{w}_{*}\right\|^{2}}{2 M \eta}+\frac{3 \eta}{M}\left(\sum_{t=1}^{M}\left\|\overline{\mathbf{g}}_{t}^{k}-\mathbf{g}_{t}^{k}\right\|^{2}+\sum_{t=1}^{M}\left\|\overline{\mathbf{f}}_{t}^{k}-\mathbf{f}_{t}^{k}\right\|^{2}\right)+\frac{1}{M} \sum_{t=1}^{M}\left\langle\mathbf{f}_{t}^{k}-\overline{\mathbf{f}}_{t}^{k}, \mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\rangle-\frac{\lambda}{2 M} \sum_{t=1}^{M}\left\|\mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\|^{2} \tag{12}
\end{align*}
$$

which gives the first inequality in Lemma 1.
Let $\mathrm{E}_{k-1}[\cdot]$ denote the expectation conditioned on all the randomness up to epoch $k-1$ and $\mathrm{E}_{k}^{t-1}[\cdot]$ denote the expectation conditioned on all the randomness up to the $t-1$-th iteration in the k-th epoch. Taking the conditional expectation of (12), we have

$$
\begin{align*}
& \mathrm{E}_{k-1}\left[F\left(\frac{1}{M} \sum_{t=1}^{M} \mathbf{z}_{t}^{k}\right)\right]-F\left(\mathbf{w}_{*}\right) \\
\leq & \frac{\left\|\mathbf{w}_{1}^{k}-\mathbf{w}_{*}\right\|^{2}}{2 M \eta}+\frac{3 \eta}{M}\left(\sum_{t=1}^{M} \mathrm{E}_{k-1}\left[\left\|\overline{\mathbf{g}}_{t}^{k}-\mathbf{g}_{t}^{k}\right\|^{2}\right]+\sum_{t=1}^{M} \mathrm{E}_{k-1}\left[\left\|\overline{\mathbf{f}}_{t}^{k}-\mathbf{f}_{t}^{k}\right\|^{2}\right]\right)+\frac{1}{M} \sum_{t=1}^{M} \mathrm{E}_{k-1}\left[\left\langle\mathbf{f}_{t}^{k}-\overline{\mathbf{f}}_{t}^{k}, \mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\rangle\right] \tag{13}
\end{align*}
$$

where we drop the last term, since it is negative. To bound $\mathrm{E}_{k-1}\left[\left\|\overline{\mathbf{g}}_{t}^{k}-\mathbf{g}_{t}^{k}\right\|^{2}\right]$, we have

$$
\begin{align*}
& \left.\mathrm{E}_{k-1}\left[\left\|\overline{\mathbf{g}}_{t}^{k}-\mathbf{g}_{t}^{k}\right\|^{2}\right]=\mathrm{E}_{k-1}\left[\left\|\frac{1}{B^{k}} \sum_{i=1}^{B^{k}} \hat{\mathbf{g}}\left(\mathbf{w}_{t}^{k}, i\right)-\mathbf{g}_{t}^{k}\right\|^{2}\right]=\mathrm{E}_{k-1}\left[\left\|\frac{1}{B^{k}} \sum_{i=1}^{B^{k}}\left(\hat{\mathbf{g}}\left(\mathbf{w}_{t}^{k}, i\right)-\mathbf{g}_{t}^{k}\right)\right\|^{2}\right]\right] \\
= & \frac{1}{\left[B^{k}\right]^{2}}\left(\sum_{i=1}^{B^{k}} \mathrm{E}_{k-1}\left[\left\|\hat{\mathbf{g}}\left(\mathbf{w}_{t}^{k}, i\right)-\mathbf{g}_{t}^{k}\right\|^{2}\right]+\mathrm{E}_{k-1}\left[\sum_{i \neq j}\left\langle\mathrm{E}_{k}^{t-1}\left[\hat{\mathbf{g}}\left(\mathbf{w}_{t}^{k}, i\right)-\mathbf{g}_{t}^{k}\right], \mathrm{E}_{k}^{t-1}\left[\hat{\mathbf{g}}\left(\mathbf{w}_{t}^{k}, j\right)-\mathbf{g}_{t}^{k}\right]\right\rangle\right]\right) \tag{14}\\
= & \frac{1}{\left[B^{k}\right]^{2}}\left(\sum_{i=1}^{B^{k}} \mathrm{E}_{k-1}\left[\left\|\hat{\mathbf{g}}\left(\mathbf{w}_{t}^{k}, i\right)-\mathbf{g}_{t}^{k}\right\|^{2}\right]\right) \leq \frac{G^{2}}{B^{k}},
\end{align*}
$$

where we make use of the facts $\hat{\mathbf{g}}\left(\mathbf{w}_{t}^{k}, i\right)$ and $\hat{\mathbf{g}}\left(\mathbf{w}_{t}^{k}, j\right)$ are independent when $i \neq j$, and

$$
\mathrm{E}_{k}^{t-1}\left[\hat{\mathbf{g}}\left(\mathbf{w}_{t}^{k}, i\right)-\mathbf{g}_{t}^{k}\right]=0, \mathrm{E}_{k}^{t-1}\left[\left\|\hat{\mathbf{g}}\left(\mathbf{w}_{t}^{k}, i\right)-\mathbf{g}_{t}^{k}\right\|^{2}\right] \leq \mathrm{E}_{k}^{t-1}\left[\left\|\hat{\mathbf{g}}\left(\mathbf{w}_{t}^{k}, i\right)\right\|^{2}\right] \leq G^{2}, \forall i=1, \ldots, B^{k}
$$

Similarly, we also have

$$
\begin{equation*}
\mathrm{E}_{k-1}\left[\left\|\overline{\mathbf{f}}_{t}^{k}-\mathbf{f}_{t}^{k}\right\|^{2}\right] \leq \frac{G^{2}}{B^{k}} \tag{15}
\end{equation*}
$$

Notice that $\overline{\mathbf{f}}_{t}^{k}$ is an unbiased estimate of \mathbf{f}_{t}^{k}, thus

$$
\begin{equation*}
\mathrm{E}_{k-1}\left[\left\langle\mathbf{f}_{t}^{k}-\overline{\mathbf{f}}_{t}^{k}, \mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\rangle\right]=\mathrm{E}_{k-1}\left[\left\langle\mathrm{E}_{k}^{t-1}\left[\mathbf{f}_{t}^{k}-\overline{\mathbf{f}}_{t}^{k}\right], \mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\rangle\right]=0 \tag{16}
\end{equation*}
$$

Substituting (14), (15), and (16) into (13), we get the second inequality in Lemma 1.

B. Proof of Lemma 4

Recall that $\overline{\mathbf{g}}_{t}^{k}=\frac{1}{B^{k}} \sum_{i=1}^{B^{k}} \hat{\mathbf{g}}\left(\mathbf{w}_{t}^{k}, i\right)$, thus

$$
\left\|\overline{\mathbf{g}}_{t}^{k}-\mathbf{g}_{t}^{k}\right\|=\left\|\frac{1}{B^{k}} \sum_{i=1}^{B^{k}} \hat{\mathbf{g}}\left(\mathbf{w}_{t}^{k}, i\right)-\mathbf{g}_{t}^{k}\right\|
$$

Since $\left\|\hat{\mathbf{g}}\left(\mathbf{w}_{t}^{k}, i\right)\right\| \leq G$, and $\mathrm{E}\left[\hat{\mathbf{g}}\left(\mathbf{w}_{t}^{k}, i\right)\right]=\mathbf{g}_{t}^{k}$, we have with a probability at least $1-\delta$

$$
\left\|\overline{\mathbf{g}}_{t}^{k}-\mathbf{g}_{t}^{k}\right\| \leq \frac{4 G}{\sqrt{B^{k}}} \log \frac{2}{\delta}
$$

We obtain (8) by the union bound and setting $\tilde{\delta} / 2=M \delta$. The inequality in (9) can be proved in the same way.

C. Proof of Lemma 5

We first state the Bernstein's inequality for martingales (Cesa-Bianchi \& Lugosi, 2006), which is used in the proof below.

Theorem 3. (Bernstein's inequality for martingales). Let X_{1}, \ldots, X_{n} be a bounded martingale difference sequence with respect to the filtration $\mathcal{F}=\left(\mathcal{F}_{i}\right)_{1 \leq i \leq n}$ and with $\left|X_{i}\right| \leq K$. Let

$$
S_{i}=\sum_{j=1}^{i} X_{j}
$$

be the associated martingale. Denote the sum of the conditional variances by

$$
\Sigma_{n}^{2}=\sum_{t=1}^{n} \mathrm{E}\left[X_{t}^{2} \mid \mathcal{F}_{t-1}\right]
$$

Then for all constants $t, \nu>0$,

$$
\operatorname{Pr}\left[\max _{i=1, \ldots, n} S_{i}>t \text { and } \Sigma_{n}^{2} \leq \nu\right] \leq \exp \left(-\frac{t^{2}}{2(\nu+K t / 3)}\right)
$$

and therefore,

$$
\operatorname{Pr}\left[\max _{i=1, \ldots, n} S_{i}>\sqrt{2 \nu t}+\frac{2}{3} K t \text { and } \Sigma_{n}^{2} \leq \nu\right] \leq e^{-t}
$$

To simplify the notation, we define

$$
\begin{aligned}
A & =\sum_{i=1}^{M}\left\|\mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\|^{2} \leq \frac{4 M G^{2}}{\lambda^{2}} \\
C & =\frac{4 G}{\sqrt{B^{k}}} \log \frac{8 M}{\tilde{\delta}}
\end{aligned}
$$

In the analysis below, we consider two different scenarios, i.e., $A \leq \eta G^{2} /\left[\lambda B^{k}\right]$ and $A>\eta G^{2} /\left[\lambda B^{k}\right]$.

C.1. $A \leq \eta G^{2} /\left[\lambda B^{k}\right]$

On event E_{1}, we can bound

$$
Z_{t}^{k} \leq\left\|\mathbf{f}_{t}^{k}-\overline{\mathbf{f}}_{t}^{k}\right\|\left\|\mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\| \leq \frac{\eta}{4}\left\|\mathbf{f}_{t}^{k}-\overline{\mathbf{f}}_{t}^{k}\right\|^{2}+\frac{1}{\eta}\left\|\mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\|^{2} \leq \frac{\eta}{4} C^{2}+\frac{1}{\eta}\left\|\mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\|^{2}
$$

Summing up over all $t=1,2, \ldots, M$,

$$
\begin{equation*}
\sum_{t=1}^{M} Z_{t}^{k} \leq \frac{\eta M C^{2}}{4}+\frac{1}{\eta} \sum_{t=1}^{M}\left\|\mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\|^{2} \leq \frac{\eta M C^{2}}{4}+\frac{G^{2}}{\lambda B^{k}} \tag{17}
\end{equation*}
$$

C.2. $A>\eta G^{2} /\left[\lambda B^{k}\right]$

Similar to the above proof, on event E_{1}, we bound

$$
\left|Z_{t}^{k}\right| \leq\left\|\mathbf{f}_{t}^{k}-\overline{\mathbf{f}}_{t}^{k}\right\|\left\|\mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\| \leq \frac{1}{\theta}\left\|\mathbf{f}_{t}^{k}-\overline{\mathbf{f}}_{t}^{k}\right\|^{2}+\frac{\theta}{4}\left\|\mathbf{z}_{t}^{k}-\mathbf{w}_{*}\right\|^{2} \leq \frac{C^{2}}{\theta}+\frac{\theta A}{4}
$$

where θ can be any nonnegative real number. Denote the sum of conditional variances by

$$
\Sigma_{M}^{2}=\sum_{t=1}^{M} \mathrm{E}_{k}^{t-1}\left[\left[Z_{t}^{k}\right]^{2}\right] \leq C^{2} \sum_{t=1}^{M}\left\|\mathbf{z}_{t}-\mathbf{w}_{*}\right\|^{2}=C^{2} A
$$

where $\mathrm{E}_{k}^{t-1}[\cdot]$ denote the expectation conditioned on all the randomness up to the $t-1$-th iteration in the k-th epoch.
Notice that A in the upper bound for $\left|Z_{t}^{k}\right|$ and Σ_{M}^{2} is a random variable, thus we cannot directly apply Theorem 3. To address this challenge, we make use of the peeling technique described in (Bartlett et al., 2005), and have

$$
\begin{aligned}
& \operatorname{Pr}\left(\sum_{t=1}^{M} Z_{t}^{k} \geq 2 \sqrt{C^{2} A \tau}+\frac{4}{3}\left(\frac{C^{2}}{\theta}+\frac{\theta A}{4}\right) \tau\right) \\
= & \operatorname{Pr}\left(\sum_{t=1}^{M} Z_{t}^{k} \geq 2 \sqrt{C^{2} A \tau}+\frac{4}{3}\left(\frac{C^{2}}{\theta}+\frac{\theta A}{4}\right) \tau, \frac{\eta G^{2}}{\lambda B^{k}}<A \leq \frac{4 M G^{2}}{\lambda^{2}}\right) \\
= & \operatorname{Pr}\left(\sum_{t=1}^{M} Z_{t}^{k} \geq 2 \sqrt{C^{2} A \tau}+\frac{4}{3}\left(\frac{C^{2}}{\theta}+\frac{\theta A}{4}\right) \tau, \max _{t}\left|Z_{t}^{k}\right| \leq \frac{C^{2}}{\theta}+\frac{\theta A}{4}, \Sigma_{M}^{2} \leq C^{2} A, \frac{\eta G^{2}}{\lambda B^{k}}<A \leq \frac{4 M G^{2}}{\lambda^{2}}\right) \\
\leq & \sum_{i=1}^{n} \operatorname{Pr}\left(\sum_{t=1}^{M} Z_{t}^{k} \geq 2 \sqrt{C^{2} A \tau}+\frac{4}{3}\left(\frac{C^{2}}{\theta}+\frac{\theta A}{4}\right) \tau, \max _{t}\left|Z_{t}^{k}\right| \leq \frac{C^{2}}{\theta}+\frac{\theta A}{4}, \Sigma_{M}^{2} \leq C^{2} A, \frac{\eta G^{2}}{\lambda B^{k}} 2^{i-1}<A \leq \frac{\eta G^{2}}{\lambda B^{k}} 2^{i}\right) \\
\leq & \sum_{i=1}^{n} \operatorname{Pr}\left(\sum_{t=1}^{M} Z_{t}^{k} \geq 2 \sqrt{\left(C^{2} \frac{\eta G^{2}}{\lambda B^{k}} 2^{i-1}\right)} \tau+\frac{4}{3}\left(\frac{C^{2}}{\theta}+\frac{\theta}{4} \frac{\eta G^{2}}{\lambda B^{k}} 2^{i-1}\right) \tau, \max _{t}\left|Z_{t}^{k}\right| \leq \frac{C^{2}}{\theta}+\frac{\theta}{4} \frac{\eta G^{2}}{\lambda B^{k}} 2^{i}, \Sigma_{M}^{2} \leq C^{2} \frac{\eta G^{2}}{\lambda B^{k}} 2^{i}\right) \\
\leq & \sum_{i=1}^{n} \operatorname{Pr}\left(\sum_{t=1}^{M} Z_{t}^{k} \geq \sqrt{2\left(C^{2} \frac{\eta G^{2}}{\lambda B^{k}} 2^{i}\right) \tau}+\frac{2}{3}\left(\frac{C^{2}}{\theta}+\frac{\theta}{4} \frac{\eta G^{2}}{\lambda B^{k}} 2^{i}\right) \tau, \max _{t}\left|Z_{t}^{k}\right| \leq \frac{C^{2}}{\theta}+\frac{\theta}{4} \frac{\eta G^{2}}{\lambda B^{k}} 2^{i}, \Sigma_{M}^{2} \leq C^{2} \frac{\eta G^{2}}{\lambda B^{k}} 2^{i}\right) \\
\leq & n e^{-\tau},
\end{aligned}
$$

where

$$
n=\left\lceil\log _{2} \frac{4 M B^{k}}{\eta \lambda}\right\rceil
$$

and the last step follows the Bernstein's inequality for martingales in Theorem 3. Setting

$$
\begin{aligned}
\theta & =\frac{3 \lambda}{4 \tau} \\
\tau & =\log \frac{4 n}{\tilde{\delta}}
\end{aligned}
$$

with a probability at least $1-\tilde{\delta} / 4$ we have

$$
\begin{align*}
& \sum_{t=1}^{M} Z_{t}^{k} \\
\leq & 2 \sqrt{C^{2} A \tau}+\frac{4}{3}\left(\frac{C^{2}}{\theta}+\frac{\theta A}{4}\right) \tau=2 \sqrt{C^{2} A \tau}+\frac{16 C^{2}}{9 \lambda} \tau^{2}+\frac{\lambda A}{4} \tag{18}\\
\leq & \frac{4}{\lambda} C^{2} \tau+\frac{\lambda A}{4}+\frac{16 C^{2}}{9 \lambda} \tau^{2}+\frac{\lambda A}{4}=\frac{4 C^{2}}{\lambda}\left(\log \frac{4 n}{\tilde{\delta}}+\frac{4}{9} \log ^{2} \frac{4 n}{\tilde{\delta}}\right)+\frac{\lambda A}{2} .
\end{align*}
$$

We complete the proof by combining (17) and (18).

D. Proof of Lemma 7

We follow the logic used in the proof of Lemma 2.
It is straightforward to check that

$$
B^{k}=\alpha \eta \lambda 2^{k-1}=\frac{2 \alpha \eta G^{2}}{V_{k}}
$$

When $k=1$, with a probability $(1-\tilde{\delta})^{1-1}=1$, we have

$$
\Delta_{1}=F\left(\mathbf{w}_{1}^{1}\right)-F\left(\mathbf{w}_{*}\right) \stackrel{(1)}{\leq} \frac{2 G^{2}}{\lambda}=\frac{G^{2}}{\lambda 2^{1-2}}=V_{1}
$$

Assume that with a probability at least $(1-\tilde{\delta})^{k-1}, \Delta_{k} \leq V_{k}$ for some $k \geq 1$. We now prove the case for $k+1$. Notice that N defined in (4) is larger than n defined in (10). From Lemma 6 , with a probability at least $1-\tilde{\delta}$, we have

$$
\begin{aligned}
& \Delta_{k+1}=F\left(\mathbf{w}_{1}^{k+1}\right)-F\left(\mathbf{w}_{*}\right) \\
\leq & \frac{\left\|\mathbf{w}_{1}^{k}-\mathbf{w}_{*}\right\|^{2}}{2 M \eta}+\frac{100 G^{2} \eta}{B^{k}} \log ^{2} \frac{8 M}{\tilde{\delta}}+\frac{G^{2}}{\lambda B^{k} M}\left[1+64 \log ^{2} \frac{8 M}{\tilde{\delta}}\left(\log \frac{4 N}{\tilde{\delta}}+\frac{4}{9} \log ^{2} \frac{4 N}{\tilde{\delta}}\right)\right] \\
\leq & \frac{\Delta_{k}}{4}+\frac{400}{\alpha} \log ^{2} \frac{8 M}{\tilde{\delta}} \frac{V_{k}}{8}+\frac{1}{\alpha}\left[1+64 \log ^{2} \frac{8 M}{\tilde{\delta}}\left(\log \frac{4 N}{\tilde{\delta}}+\frac{4}{9} \log ^{2} \frac{4 N}{\tilde{\delta}}\right)\right] \frac{V_{k}}{8} .
\end{aligned}
$$

Using the definition of α in (3), with a probability at least $(1-\tilde{\delta})^{k}$ we have,

$$
\Delta_{k+1} \leq \frac{1}{4} V_{k}+\frac{1}{8} V_{k}+\frac{1}{8} V_{k}=\frac{1}{2} V_{k}=V_{k+1}
$$

E. More Results for the Regularized Distance Metric Learning

Figure 3. Results for the regularized distance metric learning on the Mushrooms and Adult data sets. $F\left(W_{T}\right)$ is measured on 10^{4} testing pairs and the horizontal axis measures the training time. The experiments are repeated 10 times and the averages are reported.

