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Abstract

As the sheer volume of available benchmark
datasets increases, the problem of joint learn-
ing of classifiers and knowledge-transfer be-
tween classifiers, becomes more and more
relevant. We present a hierarchical ap-
proach which exploits information sharing
among different classification tasks, in multi-
task and multi-class settings. It engages
a top-down iterative method, which begins
by posing an optimization problem with an
incentive for large scale sharing among all
classes. This incentive to share is gradually
decreased, until there is no sharing and all
tasks are considered separately. The method
therefore exploits different levels of sharing
within a given group of related tasks, with-
out having to make hard decisions about the
grouping of tasks. In order to deal with
large scale problems, with many tasks and
many classes, we extend our batch approach
to an online setting and provide regret analy-
sis of the algorithm. We tested our approach
extensively on synthetic and real datasets,
showing significant improvement over base-
line and state-of-the-art methods.

1. Introduction

Information sharing can be a very powerful tool in vari-
ous domains. Consider visual object recognition where
different categories typically share much in common:
cars and trucks can be found on the road and both
classes have wheels, cows and horses have four legs
and can be found in the field together, etc. Accord-
ingly, different information sharing approaches have
been developed (Torralba et al., 2007; Obozinski et al.,
2007; Quattoni et al., 2008; Amit et al., 2007; Duchi &
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Singer, 2009; Kim & Xing, 2010; Shalev-Shwartz et al.,
2011; Kang et al., 2011) .

In this paper we focus on the multi-task and multi-
class settings, where the learning is performed jointly
for many tasks or classes. Multi-task (Caruana, 1997)
is a setting where there are several individual tasks
which are trained jointly, e.g., character recognition for
different writers. Multi-class is the case where there is
only a single classification task involving several possi-
ble labels (object classes), where the task is to assign
each example a single label.

Intuitively the more data and tasks or classes there
are, the more one can benefit from sharing information
between them. Recent approaches (Obozinski et al.,
2007; Quattoni et al., 2008; Amit et al., 2007; Duchi &
Singer, 2009; Shalev-Shwartz et al., 2011) to informa-
tion sharing consider all tasks as a single group without
discriminating between them. However, applying such
approaches to datasets with many diverse tasks focus
the learning on shared information among all tasks,
which might miss out on some relevant information
shared between a smaller group of tasks.

To address this challenge, our work takes a hierarchi-
cal approach to sharing by gradually enforcing differ-
ent levels of sharing, thus scaling up to scenarios with
many tasks. The basic intuition is that it is desirable
to be able to share a lot of information with a few
related objects, while sharing less information with a
larger set of less related objects. For example, we may
encourage modest information sharing between a wide
range of recognition tasks such as all road vehicles, and
separately seek more active sharing among related ob-
jects such as all types of trucks.

Previous work investigating the sharing of information
at different levels either assume that the structure of
sharing is known, or solve the hard problem of cluster-
ing the tasks into sharing groups (Torralba et al., 2007;
Kang et al., 2011; Jawanpuria & Nath, 2012; Kim &
Xing, 2010; Zhao et al., 2011). The clustering ap-
proach solves a hard problem and can be used most ef-
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fectively with smaller data-sets, while clearly when the
hierarchy is known methods which take advantage of it
should be preferred. But under those condition where
these methods are not effective, our implicit approach
enables different levels of sharing without knowing the
hierarchy or finding it explicitly.

More specifically, we propose a top-down iterative fea-
ture selection approach: It starts with a high level
where sharing features among all classes is induced.
It then gradually decreases the incentive to share in
successive levels, until there is no sharing at all and
all tasks are considered separately in the last level. As
a result, by decreasing the level of incentive to share,
we achieve sharing between different subsets of tasks.
The final classifier is a linear combination of diverse
classifiers, where diversity is achieved by varying the
regularization term.

The diversity of regularization we exploit is based on
two commonly used regularization functions: the l1
norm (Tibshirani, 1996) which induces feature spar-
sity, and the l1/l2 norm analyzed in (Obozinski et al.,
2007) which induces feature sparsity while favoring
feature sharing between all tasks. Recently the sparse
group lasso (Friedman et al., 2010) algorithm has
been introduced, a linear combination of the lasso and
group-lasso (Yuan & Lin, 2006) algorithms, which can
yield sparse solutions in a selected group of variables,
or in other words, it can discover smaller groups than
the original group constraint (l1/l2 ).

The importance of hierarchy of classes (or taxonomy)
has been acknowledged in several recent recognition
approaches. A supervised known hierarchy has been
used to guide classifier combination (Zweig & Wein-
shall, 2007), learn distance matrices (Hwang et al.,
2011; Verma et al., 2012), induce orthogonal trans-
fer down the hierarchy (Zhou et al., 2011) or detect
novel classes (Weinshall et al., 2008). Recent work on
multi-class classification (Bengio et al., 2010; Gao &
Koller, 2011; Yang & Tsang, 2011) has also tried to
infer explicitly some hierarchical discriminative struc-
ture over the input space, which is more efficient and
accurate than the traditional multi-class flat structure.
The goal in these methods is typically to use the dis-
covered hierarchical structure to gain efficient access
to data. This goal is in a sense orthogonal (and com-
plementary) to our aim at exploiting the implicit hi-
erarchical structure for information sharing for both
multi-task and multi-class problems.

The main contribution of this paper is to develop an
implicit hierarchical regularization approach for infor-
mation sharing in multi-task and multi-class learning
(see Section 2). Another important contribution is the

extension to the online setting where we are able to
consider a lot more learning tasks simultaneously, thus
benefiting from the many different levels of sharing in
the data (see Section 3 for algorithm description and
regret analysis). In Section 4 we describe extensive
experiments on both synthetic and seven popular real
datasets. In Section 5 we briefly present the extension
of our approach to a knowledge-transfer setting. The
results show that our algorithm performs better than
baseline methods chosen for comparison, and state of
the art methods described in (Kang et al., 2011; Kim
& Xing, 2010). It scales well to large data scenarios,
achieving significantly better results even when com-
pared to the case where an explicit hierarchy is known
in advance (Zhao et al., 2011).

2. Hierarchical regularization cascade

We now describe our learning approach, which learns
while sharing examples between tasks. We focus only
on classification tasks, though our approach can be
easily generalized to regression tasks.

Notations Let k denote the number of tasks or
classes. In the multi-task setting we assume that each
task is binary, where x ∈ Rn is a datapoint and
y ∈ {−1, 1} its label. Each task comes with its own
sample set Si = {(xs,ys)}mi

s=1, where mi is the sam-
ple size and i ∈ {1...k}. In the multi-class setting we
assume a single sample set S = {(xs,ys)}ms=1, where
ys ∈ {1..k}. Henceforth, when we refer to k classes
or tasks, we shall use the term tasks to refer to both
without loss of generality.

Let n denote the number of features, matrix W ∈
Rn×k the matrix of feature weights being learnt jointly
for the k tasks, and wi the i’th column of W. Let
b ∈ Rk denote the vector of threshold parameters,
where bi is the threshold parameter corresponding to
task i. ||W||1 denotes the l1 norm of W and ||W||1,2
denotes its l1/l2 norm- ||W||1,2 =

∑n
j=1 ||wj ||2, where

wj is the j’th row of matrix W and ||wj ||2 its l2 norm.

The classifiers we use for the i’th task are linear clas-
sifiers of the form f i(x) = wi ∗ x + bi. Binary task
classification is obtained by taking the sign of f i(x),
while multi-class classification retrieves the class with
maximal value of f i(x).

To simplify the presentation we henceforth omit the
explicit reference to the bias term b; in this notation b
is concatenated to matrix W as the last row, and each
datapoint x has 1 added as its last element. Whenever
the regularization of W is discussed, it is assumed that
the last row of W is not affected. The classifiers now
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take the form f i(x) = wi ∗ x.
To measure loss we use the binary and multi-class
hinge loss functions (Crammer & Singer, 2002). The
multitask loss is defined as follows:

L({Si}ki=1,W) =

k∑
i=1

∑
s∈Si

max(0, 1− ys ∗ f i(xs)) (1)

Without joint regularization this is just the sum of
the loss of k individual tasks. The multi-class loss is
defined as:

L(S,W)=
∑
s∈S

max(0, 1 + max
ys=i,j �=i

(f j(xs)−f i(xs))) (2)

For brevity we will refer to both functions as L(W).
Note that the choice of the hinge loss is not es-
sential, and any other smooth convex loss function
(see (Wright et al., 2009)) can be used.

2.1. Hierarchical regularization

We construct a hierarchy of regularization functions in
order to generate a diverse set of classifiers that can
be combined to achieve better classification. The con-
struction of the regularization cascade is guided by the
desire to achieve different levels of information sharing
among tasks. Specifically, at the highest level in the
hierarchy we encourage classifiers to share information
among all tasks by using regularization based on the
l1/l2 norm. At the bottom of the hierarchy we induce
sparse regularization of the classifiers with no sharing
by using the l1 norm. Intermediate levels capture de-
creasing levels of sharing (going from top to bottom),
by using for regularization a linear combination of the
l1 and l1/l2 norms. We denote the regularization term
of level l by ψl:

ψl(W) = φl((1− λl)||W||1,2 + λl||W||1) (3)

where λl is the mixing coefficient and φl is the regu-
larization coefficient. The regularization coefficient of
the last row of Wl corresponding to bias b is 0.

For each individual task (column of Wl) we learn L
classifiers, where each classifier is regularized differ-
ently. Choosing the L mixing terms λl ∈ [0..1] di-
versely results in inducing L different levels of sharing,
with maximal sharing at λl = 0 and no incentive to
share at λl = 1.1

2.2. Cascade algorithm

Learning all diversely regularized classifiers jointly in-
volves a large number of parameters which increases

1Note that while each regularization term ψl induces
the sparsity of Wl, the output classifier

∑L
l=1 W

l may not
be sparse.

multiplicatively with the number of levels L. A large
number of parameters could harm the generalization
properties of any algorithm which attempts to solve
the optimization problem directly. We therefore devel-
oped an iterative approach presented in Algorithm 1,
where each level is optimized separately using the op-
timal value from higher levels in the hierarchy.

Specifically, we denote by L the preset number of lev-
els in our algorithm. In each level only a single set
of parameters Wl is being learnt, with regularization
uniquely defined by λl. We start by inducing maximal
sharing with λ1 = 0. As the algorithm proceeds λl

monotonically increases, inducing decreased amount of
sharing between tasks as compared to previous steps.
In the last level we set λL = 1, to induce sparse regu-
larization with no incentive to share.

Thus starting from l = 1 up to l = L, the algorithm
for sparse group learning cascade solves

Wl = argmin
W

L(W +Wl−1) + ψl(W) (4)

The learnt parameters are aggregated through the
learning cascade, where each step l of the algorithm
receives as input the learnt parameters up to that
point- Wl−1. Thus the combination of input parame-
ters learnt earlier together with a decrease in incentive
to share is intended to guide the learning to focus on
more task/class specific information as compared to
previous steps.

Note also that this sort of parameter passing between
levels works only in conjunction with the regulariza-
tion; without regularization, the solution of each step
is not affected by the solution from previous steps. In
our experiments we set λl = l−1

L−1 for all l ∈ {1..L},
while the set of parameters {φl}Ll=1 is chosen using
cross-validation.

Algorithm 1 Regularization cascade

Input : L , {λl}Ll=1, {φl}Ll=1

Output : W

1. W1 = argmin
W

L(W) + φ1||W||1,2

2. for l = 2 to L

(a) W = argmin
W

L(W +Wl−1) +

φl((1− λl)||W||1,2 + λl||W||1)
(b) Wl = Wl−1 +W

3. W = WL
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2.3. Batch optimization

At each step of the cascade we have a single uncon-
strained convex optimization problem, where we mini-
mize over a smooth convex loss function summed with
a non-smooth regularization term (4). This type of
optimization problems has been studied extensively in
the optimization community in recent years (Wright
et al., 2009; Beck & Teboulle, 2009). We used two pop-
ular optimization methods (Daubechies et al., 2004;
Beck & Teboulle, 2009), which converge to the single
global optimum with rate of convergence O( 1

T 2 ) for
(Beck & Teboulle, 2009). Both are iterative procedures
which solve at iteration t the following sub-problem:

min
Θt

(Θt −Θt−1)∇L(Θt) +
αt

2
||Θt −Θt−1||22 + φψ(W t)

where ψ(W t) = ((1−λ)||Wt||1,2+λ||Wt||1) and αt is
a constant factor corresponding to the step size of it-
eration t. This sub-problem has a closed form solution
presented in (Sprechmann et al., 2011), which yields
an efficient implementation for solving a single itera-
tion of Algorithm 1. The complexity of the algorithm
is L times the complexity of solving (4).

3. Online algorithm

When the number of training examples is very large, it
quickly becomes computationally prohibitive to solve
(4), the main step of Algorithm 1. We therefore devel-
oped an online algorithm which solves this optimiza-
tion problem by considering one example at a time -
the set of parameters Wl is updated each time a new
mini-sample appears containing a single example from
each task.

In order to solve (4) we adopt the efficient dual-
averaging method proposed by (Xiao, 2010), which is
a first-order method for solving stochastic and online
regularized learning problems. Specifically we build on
the work of (Yang et al., 2010), who presented a closed
form-solution for the case of sparse group lasso needed
for our specific implementation of the dual-averaging
approach. The update performed at each time step by
the dual averaging method can be written as:

Wt = argmin
W

ŪW + ψl(W) +
γ√
t
h(W) (5)

where U denotes the subgradient of Lt(W + Wl−1)
with respect to W, Ū the average subgradient up to
time t, h(W) = 1

2 ||W||22 an auxiliary strongly con-
vex function, and γ a constant which determines the
convergence properties of the algorithm.

Algorithm 2 describes our online algorithm. It follows
from the analysis in (Xiao, 2010) that the run-time

and memory complexity of the online algorithm based
on update (5) is linear in the dimensionality of the
parameter-set, which in our setting is nk. Note that
in each time step a new example from each task is
processed through the entire cascade before moving
on to the next example.

Algorithm 2 Online regularization cascade

Input : L, γ, {φl}Ll=1, {λl}Ll=1

Initialization: Ŵl
0 = 0, Ūl

0 = 0 ∀l ∈ {1..L} , W0
t =

0 ∀t
1. for t = 1,2,3,... do

(a) for l = 1 to L

i. Given Lt(W+Wl−1), compute a subgra-
dient Ul

t ∈ ∂Lt(W +Wl−1)

ii. Ūl
t =

t−1
t Ūl

t−1 +
1
tU

l
t

iii. Ŵl
t = argmin

W
Ūl

tW + ψl(W) + γ√
t
h(W)

iv. Wl
t = Wl−1

t + Ŵl
t

(b) Wt = WL
t

3.1. Regret analysis

In online algorithms, regret measures the differ-
ence between the accumulated loss over the sequence
of examples produced by the online learning algo-
rithm, as compared to the loss with a single set
of parameters used for all examples and optimally
chosen in hindsight. For T iterations of the al-
gorithm, we can write the regret as RT (W∗) =∑T

t=1(Lt(Wt) + ψ(Wt) − Lt(W∗) − ψ(W∗)), where
W∗ = argmin

W

∑T
t=1(Lt(W) + ψ(W)).

At each time step t, Algorithm 2 chooses for each level
l > 1 of the cascade the set of parameters Ŵl

t, to be
added to the set of parameters Wl−1

t calculated in the
previous level of the cascade. Thus the loss in level l
at time t Lt,Wl−1

t
(Ŵ) = Lt(Ŵ + Wl−1

t ) depends on

both the example at time t and the estimate Wl−1
t

obtained in previous learning stages of the cascade.
We define the following regret function that compares
the performance of the algorithm at level l to the best
choice of parameters for all levels up to level l:

Rl
T (Ŵ

l
∗) =

T∑
t=1

(Lt,Wl−1
t

(Ŵl
t) + ψl(Ŵl

t))−

T∑
t=1

(Lt,Wl−1
∗

(Ŵl
∗) + ψl(Ŵl

∗)) (6)

where Ŵl
∗ = argmin

W

∑T
t=1(Lt,Wl−1

∗
(W) + ψl(W)),
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W0
∗ = 0 and Wl

∗ =
∑l

k=1 Ŵ
k
∗ .

We note that the key difference between the usual def-
inition of regret above and the definition in (6) is that
in the usual regret definition we consider the same loss
function for the learnt and optimal set of parameters.
In (6), on the other hand, we consider two different
loss functions - Lt,Wl−1

t
and Lt,Wl−1

∗
, each involving a

different set of parameters derived from previous levels
in the cascade.

We now state the main result, which provides an upper
bound on the regret (6) and thus proves convergence.

Theorem 1. Suppose there exist G and D such that
∀t, l ||Ul

t|| < G and h(W) < D2, and suppose that

Rl
T (Ŵ

l
∗) ≥ −C

√
T ; then

Rl
T (Ŵ

l
∗) ≤ A

√
T +B(T + 1)

3
4 (7)

where A = (γD2 + G2

γ ), B = 4
3 (l − 1)G

√
2M
σ A, C =

−(M − 1)(γD2 + G2

γ ) for some constant M > 1, and
σ denotes the convexity parameter of ψ.

Proof. See Appendix A in suppl. material.

4. Experiments

Comparison Methods. We compare our algo-
rithms to three baseline methods, representing three
common optimization approaches: ’NoReg’ - where
learning is done simply by minimizing the loss function
without regularization. ’L12’ - a common approach to
multi-task learning where in addition to minimizing
the loss function we also regularize for group sparse-
ness (enforcing feature sharing) using the l1/l2 norm.
’L1’- a very common regularization approach where
the loss function is regularized in order to induce spar-
sity by using the l1 norm. All methods are optimized
using the same algorithms described above, where for
the non-hierarchical methods we set L = 1, for ’NoReg’
we set φ = 0, for ’L12’ we set λ = 0, and for ’L1’ we
set λ = 1. The parameter φ for ’L12’ and ’L1’ is also
chosen using cross validation.

We also use for comparison three recent approaches
which exploit relatedness at multiple levels. (i) The
single stage approach of (Kang et al., 2011) which si-
multaneously finds the grouping of tasks and learns
the tasks. (ii) The tree-guided algorithm of (Kim &
Xing, 2010) which can be viewed as a two stage ap-
proach, where the tasks are learnt after a hierarchical
grouping of tasks is either discovered or provided. We
applied the tree-guided algorithm in three conditions:
when the true hierarchy is known, denoted ’TGGL-
Opt’; when it is discovered by agglomerative cluster-

Figure 1. Synthetic data results. The ’Y’-axis measures
the average accuracy over all tasks, where accuracy re-
sults correspond to 10 repetitions of the experiment. Left:
performance as a function of sample size (’X’-axis). We
show comparisons of both the batch and online algorithms,
where ’H’ denotes our hierarchical Algorithm with 5 levels,
and ’L11’ ,’L12’ and ’NoReg’ - the different baseline meth-
ods. Right: Performance as a function of the number of
random features. We show comparison to the tree-guided
group lasso algorithm based on the true hierarchy ’TGGL-
Opt’, clustered hierarchy ’TGGL-Cluster’ and random hi-
erarchy ’TGGL-Rand’.

ing (as suggested in (Kim & Xing, 2010)), denoted
’TGGL-Cluster’; or when randomly chosen (random
permutation of the leafs of a binary tree), denoted
’TGGL-Rand’. (iii) The method described in (Zhao
et al., 2011) which is based on the work of (Kim &
Xing, 2010) and extends it to a large scale setting
where a hierarchy of classes is assumed to be known.

4.1. Synthetic data

In order to understand when our proposed method is
likely to achieve improved performance, we tested it in
a controlled manner on a synthetic dataset we had cre-
ated. This synthetic dataset defines a group of tasks
related in a hierarchical manner: the features corre-
spond to nodes in a tree-like structure, and the num-
ber of tasks sharing each feature decreases with the
distance of the feature node from the tree root. We
tested to see if our approach is able to discover (im-
plicitly) and exploit the hidden structure thus defined.
The inputs to the algorithm are the sets of examples
and labels from all k tasks {Si}ki=1, without any knowl-
edge of the underlying structure.

Classification performance: We start by showing in
Fig. 1-left that our hierarchical algorithm achieves the
highest accuracy results, both for the batch and online
settings. For the smallest sample size the ’L12’ base-
line achieves similar performance, while for the largest
sample size the ’L1’ baseline closes the gap indicating
that given enough examples, sharing of information be-
tween classes becomes less important. We also see that
the online Algorithm 2 converges to the performance
of the batch algorithm after seeing enough examples.

The advantage of the hierarchical method is not due
simply to the fact that it employs a combination of
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classifiers, but rather that it clearly benefits from shar-
ing information. Specifically, when the cascade was ap-
plied to each task separately, it achieved only 93.21%
accuracy as compared to 95.4% accuracy when applied
to all the 100 tasks jointly.

To evaluate our implicit approach we compared it to
the Tree-Guided Group Lasso (Kim & Xing, 2010)
(TGGL) where the hierarchy is assumed to be known
- either provided by a supervisor (the true hierar-
chy), clustered at pre-processing, or randomly chosen.
Fig. 1-right shows results for 100 tasks and 20 posi-
tive examples each. We challenged the discovery of
task relatedness structure by adding to the original
feature representation a varying number (500-4000) of
irrelevant features, where each irrelevant feature takes
the value ’-1’ or ’1’ randomly. Our method performs
much better than TGGL with random hierarchy or
clustering-based hierarchy. Interestingly, this advan-
tage is maintained even when TGGL gets to use the
true hierarchy, with up to 1500 irrelevant features, pos-
sibly due to other beneficial features of the cascade.

4.2. Real data

Small Scale (Kang et al., 2011) describe a multi-
task experimental setting using two digit recog-
nition datasets MNIST (LeCun et al., 1998) and
USPS (Hull, 1994), which are small datasets with only
10 classes/digits. For comparison with (Kang et al.,
2011), we ran our method on these datasets using
the same representations, and fixing L = 3 for both
datasets. Table 1 shows all results, demonstrating
clear advantage to our method. The results of our ba-
sic baseline methods ’NoReg’ and ’L1’ achieve similar
or worse results,2 comparable to the single task base-
line approach presented in (Kang et al., 2011). Thus,
the advantage of the cascade ’H’ does not stem from
the different optimization procedures, but rather re-
flects the different approach to sharing.

Table 1. Error rates on digit datasets
USPS MNIST

H 6.8% ± 0.2 13.4% ± 0.5
Kang et al. 8.4% ± 0.3 15.2% ± 0.3

Medium Scale We tested our batch approach with
four medium sized data sets: Cifar100 (Krizhevsky &
Hinton, 2009), Caltech101, Caltech256 (Griffin et al.,
2007) and MIT-Indoor Scene dataset (Quattoni & Tor-
ralba, 2009) with 100, 102, 257 and 67 categories in
each dataset respectively. We tested both the multi-
class and multi-task settings. For the multi-task set-

2’NoReg’ - 9.5% ± 0.2 and 17% ± 0.5 for USPS and
MNIST respectively; ’L1’ - 8.8% ± 0.5 and 16% ± 0.8 for
USPS and MNIST respectively.

ting we consider the 1-vs-all tasks. For Cifar-100 we
fixed L = 5 for the number of levels in the cascade, and
for the larger datasets of Caltech101/256 and Indoor-
Scene we used L = 4.

We also investigated a variety of features: for the
Cifar-100 we used the global Gist representation em-
bedded in an approximation of the RBF feature space
using random projections as suggested by (Rahimi &
Recht, 2007), resulting in a 768 feature vector. For the
Caltech101/256 we used the output of the first stage
of Gehler et al’s kernel combination approach (Gehler
& Nowozin, 2009) (which achieves state of the art re-
sults on Caltech101/256) as the set of features. For
the MIT-Indoor Scene dataset we used Object Bank
features (Li et al., 2010), which achieves state-of-the-
art results on this and other datasets.

We tested the Cifar-100 dataset in the multi-task and
multi-class settings. We used 410 images from each
class as the training set, 30 images as a validation
set, and 60 images as the test set. For the multi-task
setting we considered the 100 1-vs-rest classification
tasks. For each binary task, we used all images in the
train set of each class as the positive set, and 5 exam-
ples from each class in the ’rest’ set of classes as the
negative set. The experiment was repeated 10 times
using different random splits of the data. Results are
shown in Table 2, showing similar performance for the
cascade and the competing Tree-Guided Group Lasso
method.

Table 2. Cifar-100: accuracy results. ’Baselines’ denotes -
’L1’, ’L12’ and ’NoReg’ which showed similar performance.

multi-class 1-vs-rest
H 21.93 ± 0.38 79.91 ± 0.22

Baselines 18.23 ± 0.28 76.98 ± 0.17
TGGL-Cluster - 79.97 ± 0.10
TGGL-Rand - 80.25 ± 0.10

In our experiments with the MIT-Indoor Scene dataset
we used 20, 50 and 80 images per scene category as
a training set, and 80, 50 and 20 images per cate-
gory as test set respectively. We repeated the experi-
ment 10 times for random splits of the data, including
the single predefined data split provided by (Quat-
toni & Torralba, 2009) as a benchmark. Fig. 2-left
shows the classification results of the cascade, which
significantly outperformed the baseline methods and
the previously reported state of the art result of (Li
et al., 2010) on the original data split of (Quattoni
& Torralba, 2009), using the exact same feature repre-
sentation. We also significantly outperformed ’TGGL-
Cluster’ and ’TGGL-Rand’.

With Caltech101 and Caltech256 we used the data
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Figure 2. Real data results. ’Y’-axis measures the average
accuracy over all tasks. Left, Multiclass accuracy results on
the MIT-Indoor-Scene dataset, for 4 experimental condi-
tions: 20, 50, and 80 images used for training respectively,
and ’OrigSplit’ - the single predefined split of (Quattoni
& Torralba, 2009). Right, Multi-task 1-vs-rest results for
the Caltehc256 dataset, where ’LPB’ denotes our imple-
mentation of the binary version of the approach presented
in (Gehler & Nowozin, 2009) (see text). The ’X’-axis varies
with sample size.

provided by (Gehler & Nowozin, 2009) for compar-
isons in both their original multi-class scenario and a
new multi-task scenario. We tested our approach us-
ing the exact same experimental setting of (Gehler &
Nowozin, 2009) given the scripts and data provided
by the authors. In the original multi-class setting ad-
dressed in (Gehler & Nowozin, 2009) our results com-
pare to their state-of-the-art results both for 30 train-
ing images (78.1%) in the Caltech101 and for 50 images
(50%) in the Caltech256.

In the multi-task scenario we trained a single 1-vs-
rest classifier for each class. In addition to our regular
baseline comparisons we implemented a variant of the
ν-LPB method, which was used in (Gehler & Nowozin,
2009) as the basis to their multi-class approach.

Fig. 2-right, shows results for the multi-task setting
on the Caltech256. First we note that our algorithm
outperforms all other methods including ν-LPB. We
also note that given this dataset all regularization ap-
proaches exceed the NoReg baseline, indicating that
this data is sparse and benefits from information shar-
ing. (Results for the Caltech101 are similar and have
therefore been omitted.)

Large Scale We demonstrate the ability of our on-
line method to scale up to large datasets with many
labels and many examples per each label by testing
it on the ILSVRC(2010) challenge (Berg et al., 2010).
This is a large scale visual object recognition challenge,
with 1000 categories and 668-3047 examples per cate-
gory. With so many categories the usual l1/l2 regular-
ization is expected to be too crude, identifying only a
few shared features among such a big group of diverse
classes. On the other hand, we expect our hierarchical
method to capture varying levels of useful information
to share.

We compared our method to the hierarchical scheme
of (Zhao et al., 2011) (using their exact same fea-
ture representation). Rather than compute the hier-
archy from the data, their method takes advantage of
a known semantic word-net hierarchy, which is used
to define a hierarchical group-lasso regularization and
calculate a similarity matrix augmented into the loss
function. The comparison was done on the single split
of the data provided by the challenge (Berg et al.,
2010) .

Table 3. ILSVRC(2010): Classification accuracy of the
best of N decisions, Top N .

Top 1 Top 2 Top 3 Top 4 Top 5
Alg 2 0.285 0.361 0.403 0.434 0.456
Zhao 0.221 0.302 0.366 0.411 0.435

Table 3 shows our performance as compared to that
of (Zhao et al., 2011). We show accuracy rates when
considering the 1-5 top classified labels. In all settings
we achieve significantly better performance using the
exact same image representation and much less labeled
information.

4.3. Discussion

For small and medium scale datasets we see that our
cascade approach and the batch Algorithm 1 outper-
form the baseline methods significantly. For the large
scale dataset the online Algorithm 2 significantly out-
performs all other baseline methods. It is interesting
to note that even when the alternative baseline meth-
ods perform poorly, implying that the regularization
functions are not beneficial on their own, combining
them as we do in our hierarchical approach improves
performance. This can be explained by the fact that
a linear combination of classifiers is known to improve
performance if the classifiers are accurate and diverse.

When comparing to the recent related work of (Kim
& Xing, 2010) denoted TGGL, we see that our im-
plicit approach performs significantly better with the
synthetic and MIT-Indoor scene datasets, while on the
Cifar dataset we obtain similar results. With the syn-
thetic dataset we saw that as the clustering of the task
hierarchy becomes more challenging, TGGL with clus-
tering degrades quickly while the performance of our
method degrades more gracefully. We expect this to
be the case in many real world problems where the un-
derlining hierarchy is not known in advance. Further-
more, we note that with the small scale digit datasets
our approach outperformed significantly the reported
results of (Kang et al., 2011). Finally, we note that our
approach can be used in a pure online setting while
these two alternative methods cannot.



Hierarchical Regularization Cascade for Joint Learning

We also compared with a third method (Zhao et al.,
2011) using the ILSVRC(2010) challenge (Berg et al.,
2010); this is a challenging large scale visual catego-
rization task, whose size - both the number of cate-
gories and the number of examples per category, pro-
vides the challenges particularly suitable for our ap-
proach. The online algorithm makes it possible to scale
up to such a big dataset, while the hierarchical shar-
ing is important with possibly many relevant levels of
sharing between the tasks. Particularly encouraging
is the improvement in performance when compared to
the aforementioned work where an explicit hierarchy
was provided to the algorithm.

5. Knowledge-Transfer

We now briefly outline two natural extensions of our
multi-task learning algorithms to achieve knowledge-
transfer to novel related tasks which arrive with too
few training examples.3 The transfer of information
is based on the cascade of matrices {Wl}Ll=1 learnt
during pre-training. The extension of the batch al-
gorithm is based on dimensionality reduction of pre-
trained models. The extension of the online method
maintains the same regularization structure and pa-
rameters of the online multi-task setting.

Batch Method The method is based on project-
ing the data into the subspaces defined by the learnt
models {Wl}Ll=1. Consequently the new task is rep-
resented in L sub-spaces that capture the structure of
the shared information between the previous k tasks.
Specifically, we define each projection matrix Pl by the
first z columns of the orthonormal matrix Ul, where
svd(Wl) = UlΣVl. At each level l we project the
new data-points onto Pl. Thus the modeling of the
new task involves z ∗ L parameters, wherein the l’th
level data is projected onto the unique subspace char-
acteristic of level l. In order to pass the parameters to
the next level we project back to the original feature
space.

Online Method We assume that a related set of
tasks has been learnt using the online Algorithm 2. In
order to initialize the online learning of a new single
task or group of tasks, we concatenate the parameters
of the new tasks to the previously learnt parameters,
thus influencing the structure of the newly learnt task
parameters.

The batch method is particularly useful when the
data lies in a high dimensional feature space, and
the number of examples from the novel task is too

3See Appendix D in suppl. material for detailed algo-
rithms and results of our knowledge-Transfer methods.

small to learn effectively in such a space. The online
approach is particularly useful for bootstrapping the
online learning of novel classes, achieving higher per-
formance at the early stages of the learning as com-
pared to a non transfer approach. Results are shown
in Fig. 3.

(a) (b)

Figure 3. Experimental results. The ’Y’-axis corresponds
to average accuracy over all tasks, and the ’X’-axis to the
sample size. KT-On denotes the online knowledge-transfer
method. KT-Batch denotes the batch knowledge-transfer
method. NoKT denotes the no knowledge-transfer control:
the multi-task batch algorithm with L = 1 and φ = 0.
(a) Results with the synthetic data described above. 99
tasks were used as the pre-trained tasks and a single task
as the unknown novel task. The experiment was repeated
100 times, each repetition choosing a different task as the
novel task. (b) Results for the large size ILSVRC2010 ex-
periment. 1000 1-vs-rest tasks were considered, each task
separating a single class from the rest. 900 tasks where
chosen as the known and 100 as the unknown.

6. Summary

We presented a cascade of regularized optimization
problems designed to induce implicit hierarchical shar-
ing of information in multi-task, multi-class and
knowledge-transfer settings. We described efficient
batch and online learning algorithms implementing the
cascade. For the online algorithm we provided regret
analysis from which it follows that the average regret
of our learning method converges. The method was
tested on synthetic data and seven real datasets, show-
ing significant advantage over baseline methods, and
similar or improved performance as compared to alter-
native state of the art methods.
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