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Abstract

We study the stability properties of nonlinear multi-task regression in reproducing
Hilbert spaces with operator-valued kernels. Such kernels, a.k.a. multi-task kernels, are
appropriate for learning problems with nonscalar outputs like multi-task learning and
structured output prediction. We show that multi-task kernel regression algorithms are
uniformly stable in the general case of infinite-dimensional output spaces. We then de-
rive under mild assumption on the kernel generalization bounds of such algorithms, and
we show their consistency even with non Hilbert-Schmidt operator-valued kernels'. We
demonstrate how to apply the results to various multi-task kernel regression methods such
as vector-valued SVR and functional ridge regression.

Keywords: Algorithmic Stability; Multi-task kernels; Hilbert space valued RKHS; Re-
gression; Generalization bounds.

1. Introduction

A central issue in the field of machine learning is to design and analyze the generaliza-
tion ability of learning algorithms. Since the seminal work of Vapnik and Chervonenkis
(1971), various approaches and techniques have been advocated and a large body of lit-
erature has emerged in learning theory providing rigorous generalization and performance
bounds (Herbrich and Williamson, 2002). This literature has mainly focused on scalar-
valued function learning algorithms like binary classification (Boucheron et al., 2005) and
real-valued regression (Gyorfi et al., 2002). However, interest in learning vector-valued func-
tions is increasing (Micchelli and Pontil, 2005b). Much of this interest stems from the need
for more sophisticated learning methods suitable for complex-output learning problems such
as multi-task learning (Caruana, 1997) and structured output prediction (Bakir et al., 2007).
Developing generalization bounds for vector-valued function learning algorithms then be-
comes more and more crucial to the theoretical understanding of such complex algorithms.
Although relatively recent, the effort in this area has already produced several successful
results, including (Baxter, 2000; Maurer, 2005, 2006; Ando and Zhang, 2005). Yet, these
studies have considered only the case of finite-dimensional output spaces, and have focused
more on linear machines than nonlinear ones. To the best of our knowledge, the only work
investigating the generalization performance of nonlinear multi-task learning methods when
output spaces can be infinite-dimensional is that of Caponnetto and Vito (2006). In their

1. See Definition 1 for a precise statement of what we mean by Hilbert-Schmidt operator-valued kernel.
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study, the authors have derived from a theoretical (minimax) analysis generalization bounds
for regularized least squares regression in reproducing kernel Hilbert spaces (RKHS) with
operator-valued kernels. It should be noted that, unlike the scalar-valued function learning
setting, the reproducing kernel in this context is a positive-definite operator-valued func-
tion?. The operator has the advantage of allowing us to take into account dependencies
between different tasks and then to model task relatedness. Hence, these kernels are known
to extend linear multi-task learning methods to the nonlinear case, and are referred to as
multi-task kernels® (Micchelli and Pontil, 2005a; Evgeniou et al., 2005).

Evgeniou et al. (2005) refer to the issue of generalization bounds for multi-task kernel
based learning as an open question. The result proposed by Caponnetto and Vito (2006)
is restricted only to the least squares framework, and to our knowledge, no other work in
the literature has so far addressed this issue. This paper tries to fill this gap by estab-
lishing generalization bounds for other loss functions, such as vector-valued support vector
regression (SVR) and multi-task logistic regression (LR). Moreover, the convergence rates
in (Caponnetto and Vito, 2006), although optimal in the case of finite-dimensional output
spaces, require assumptions on the kernel that can be restrictive in the infinite-dimensional
case. Indeed, their proof depends upon the fact that the kernel is Hilbert-Schmidt (see
Definition 1) and this restricts the applicability of their results when the output space is
infinite-dimensional. To illustrate this, let us consider the identity operator-based multi-
task kernel K(-,-) = k(-,-)I, where k is a scalar-valued kernel and I is the identity operator.
This kernel which was already used by Brouard et al. (2011) and Grunewalder et al. (2012)
for structured output prediction and conditional mean embedding, respectively, does not
satisfy the Hilbert-Schmidt assumption (see Remark 2), and therefore the results of (Capon-
netto and Vito, 2006) cannot be applied in this case (for more details see Section 5). It is
also important to note that, since the analysis of Caponnetto and Vito (2006) is based on a
measure of the complexity of the hypothesis space independently of the algorithm, it does
not take into account the properties of learning algorithms.

In this paper, we address these issues by studying the stability of multi-task kernel
regression algorithms when the output space is a (possibly infinite-dimensional) Hilbert
space. The notion of algorithmic stability, which is the behavior of a learning algorithm
following a change of the training data, was used successfully by Bousquet and Elisseeff
(2002) to derive bounds on the generalization error of deterministic scalar-valued learning
algorithms. Subsequent studies extended this result to cover other learning algorithms
such as randomized, transductive and ranking algorithms (Elisseeff et al., 2005; Cortes
et al., 2008; Agarwal and Niyogi, 2009), both in i.i.d* and non-i.i.d scenarios (Mohri and
Rostamizadeh, 2010). But, none of these papers is directly concerned with the stability
of nonscalar-valued learning algorithms. It is the aim of the present work to extend the
stability results of (Bousquet and Elisseeff, 2002) to cover vector-valued learning schemes
associated with multi-task kernels. Specifically, we make the following contributions in this
paper: 1) we show that multi-task kernel regression algorithms are uniformly stable for the
general case of infinite-dimensional output spaces, 2) we derive under mild assumption on
the kernel generalization bounds of such algorithms, and we show their consistency even

2. The kernel is a matrix-valued function in the case of finite dimensional output spaces.
3. In the context of this paper, operator-valued kernels and multi-task kernels mean the same thing.
4. The abbreviation “i.i.d.” stands for “independently and identically distributed”
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with non Hilbert-Schmidt operator-valued kernels (see Definition 1), 3) we demonstrate
how to apply these results to various multi-task regression methods such as vector-valued
support vector regression (SVR) and functional ridge regression, 4) we provide examples
of infinite-dimensional multi-task kernels which are not Hilbert-Schmidt, showing that our
assumption on the kernel is weaker than the one in (Caponnetto and Vito, 2006).

The rest of this paper is organized as follows. In Section 2 we introduce the necessary
notations and briefly recall the main concepts of operator-valued kernels and the corre-
sponding Hilbert-valued RKHS. Moreover, we describe in this section the mathematical
assumptions required by the subsequent developments. In Section 3 we state the result es-
tablishing the stability and providing the generalization bounds of multi-task kernel based
learning algorithms. In Section 4, we show that many existing multi-task kernel regression
algorithms such as vector-valued SVR and functional ridge regression do satisfy the stabil-
ity requirements. In Section 5 we give examples of non Hilbert-Schmidt operator-valued
kernels that illustrate the usefulness of our result. Section 6 concludes the paper.

2. Notations, Background and Assumptions

In this section we introduce the notations we will use in this paper. Let (2, F,P) be a prob-
ability space, X a Polish space, ) a (possibly infinite-dimensional) separable Hilbert space,
H a separable Reproducing Kernel Hilbert Space (RKHS) € Y% with K its reproducing
kernel, and L())° the space of continuous endomorphisms of ) equipped with the opera-
tor norm. Let A > 0 and (X1, Y1),...., (X, Ym) be m iid. copies of the pair of random
variables (X,Y") following the unknown distribution P.

We consider a training set Z = {(x1,41), ..., (Tm, Ym)} consisting of a realization of m
i.i.d. copies of (X,Y), and we denote by Z* = Z \ (r;,%;) the set Z where the couple (z;, ;)
is removed. Let ¢ : ) x H x X — R™ be a loss function. We will describe stability and
consistency results in Section 3 for a general loss function, while in Section 5 we will provide
examples to illustrate them with specific forms of ¢. The goal of multi-task kernel regression
is to find a function f, H > f: X — ), that minimizes a risk functional

R(f) = / (y, f(2),2)dP(z,y).

The empirical risk of f on Z is then
1 m
R 9 - 9
emp f m kz_lc Yk | xk

and its regularized version is given by

Rreg(fa Z) = Remp(fa Z) + >‘||f||’2H

We will denote by

fZ:argminRTeg(fa Z)a (1)
feH

the function minimizing the regularized risk over H.

5. We denote by My = M (y) the application of the operator M € L()) toy € V.
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Let us now recall the definition of the operator-valued kernel K associated to the RKHS
H when Y is infinite dimensional. For more details see (Micchelli and Pontil, 2005b).

Definition 1 The application K : X x X — L()) is called the Hermitian positive-definite
reproducing operator-valued kernel of the RKHS H if and only if :

(i) Yx € X,Vy € ), the application
K(,o)y: X =Y
7 K2 x)y
belongs to H.
(ii) Vf e H,Vr e X, Vy €,
(F(@),9)y = (F, K(2)y)
(i1i) Vxi,x0 € X,

K(z1,22) = K(x9,21)" € L(Y), (* denotes the adjoint)

(v) Vn > 1, V(z;,i € {1.n}), (z},i € {l.n}) € X", V(y;,1 € {1.n}), (y,,i € {1.n}) € Y™,

k=0

(i) and (ii) define a reproducing kernel, (iii) and (iv) correspond to the Hermitian and
positive-definiteness properties, respectively.

Moreover, the kernel K will be called Hilbert-Schmidt if and only if Vo € X, 3(y;)ien, a base
of Y, such that Tr(K(z,x)) = > ,cn | (K (2, 2)y:, i)y | < 0o. This is equivalent to saying
that the operator K (z,x) € L(Y) is Hilbert-Schmidt.

We now discuss the main assumptions we need to prove our results. We start by the
following hypothesis on the kernel K.

Hypothesis 1 dx > 0 such that Vz € X,

HK(&?,%)HOP < ’i27

K
where [ (@, 3)]lop = sup 1 22

is the operator norm of K(x,xz) on L(}).
vey  lylly

Remark 2 [t is important to note that Hypothesis 1 is weaker than the one used in (Capon-
netto and Vito, 2006) which requires that K is Hilbert-Schmidt and sup,cy Tr(K(z,x)) <
+o0. While the two assumptions are equivalent when the output space Y is finite dimen-
stonal, this is no longer the case when, as in this paper, dim)Y = +oo. Moreover, we
can observe that if the hypothesis of (Caponnetto and Vito, 2006) is satisfied, then our
Hypothesis 1 holds (see proof below). The converse is not true (see Section 5 for some
counterexamples).
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PROOF OF REMARK 1 : Let K be a multi-task kernel satisfying the hypotheses of (Capon-
netto and Vito, 2006), i.e K is Hilbert-Schmidt and sup,cy 77 (K (x,2)) < 4o0c. Then,

dn>0,Vr e X, (ex-) an orthonormal basis of ), 3 (iﬂ) an orthogonal family of
) jen 7/ jeN

H with >y thH% < 7 such that Yy € ),

K(z,z)y = Z <h;”,hf>?{ <y,e;'?>y €.

at

Z el, e‘]‘?>y ey
0

Thus, Vi € N

Hence ) )
HK(.CC, x)”op = Sup ||K(x7 w)emy

_Supz :E f7h§>rH< o %>y

€N

= supz

€N
< sup ||hf||H Z 1hE (13 < n*.
€N 7

O

As a consequence of Hypothesis 1, we immediately obtain the following elementary
Lemma which allows us to control ||f(x)||y with ||f]|. This is crucial to the proof of our
main results.

Lemma 3 Let K be a Hermitian positive kernel satisfying Hypothesis 1. Then Vf € H,
1f @)y < &l £l

PROOF :

1£ @)1 = (f(2), f())y

= ([, K(s2) f(2))y

= (K(,2)"f, f(2))y = (K(z, ) f, f(2))y
= (K(z,2)f, f>

< IR K (2, 2)llop < £2IIF117

O

Moreover, in order to avoid measurability problems, we assume that, Vy;,y2 € ), the
application :

XxX —R

(z1,22) — (K(z1,22)Y1,91)y
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is measurable. Since H is separable, this implies that all the functions used in this paper
are measurable (for more details see (Caponnetto and Vito, 2006)).
A regularized multi-task kernel based learning algorithm with respect to a loss function
c is the function defined by:
U@ xyr—-n
neN (2)
Z = [z,

where f7 is determined by equation (1). This leads us to introduce our second hypothesis.

Hypothesis 2 The minimization problem defined by (1) is well posed. In other words, the
function fy exists for all Z and is unique.

Now, let us recall the notion of uniform stability of an algorithm.

Definition 4 An algorithm Z — fz is said to be B uniformly stable if and only if: Ym > 1,
V1 <i<m,VZ a training set, and ¥(x,y) € X x Y a realisation of (X,Y) Z-independent,

|C(y,fZ,.T) —C(y,fzi,l')| < B

From now and for the rest of the paper, a §-stable algorithm will refer to the uniform
stability. We make the following assumption regarding the loss function.

Hypothesis 3 The application (y, f,x) — c(y, f,z) is C-admissible, i.e. convexr with re-
spect to f and Lipschitz continuous with respect to f(x), with C its Lipschitz constant.

The above three hypotheses are sufficient to prove the g-stability for a family of multi-task
kernel regression algorithms. However, to show their consistency we need an additional
hypothesis.

Hypothesis 4 3M > 0 such that ¥(x,y) a realization of the couple (X,Y), and ¥Z a
training set,
C(ymfZax) < M.

Note that the Hypotheses 2, 3 and 4 are the same as the ones used in (Bousquet and
Elisseeff, 2002). Hypothesis 1 is a direct extension of the assumption on the scalar-valued
kernel to multi-task setting.

3. Stability of Multi-Task Kernel Regression

In this section, we state a result concerning the uniform stability of regularized multi-task
kernel regression. This result is a direct extension of Theorem 22 in (Bousquet and Elisseeff,
2002) to the case of infinite-dimensional output spaces. It is worth pointing out that its
proof does not differ much from the scalar-valued case, and requires only small modifications
of the original to fit the operator-valued kernel approach. For the convenience of the reader,
we present in Appendix A the proof taking into account these modifications.



STABILITY OF MULTI-TASK KERNEL REGRESSION ALGORITHMS

Theorem 5 Under the assumptions 1, 2 and 3, the regularized multi-task kernel based
learning algorithm A : Z — f defined in (2) is B stable with

C?K?
T 2mA’

g

PROOF : See Appendix A. O

Note that the 8 obtained in Theorem 5 is a O(%) This allows to prove the consistency
of the multi-task kernel based estimator from a result of (Bousquet and Elisseeff, 2002).

Theorem 6 Let Z — f; be a [-stable algorithm, whose cost function ¢ satisfies Hypothe-
sis 4. Then, Ym > 1, V0 < § < 1, the following bound holds :

P <E<c<Y, 12,X)) < Remp(f2, Z) + 28 + (4m + M) m%‘”) >1-s

PROOF : See theorem 12 in (Bousquet and Elisseeff, 2002). O

Since the right term of the previous inequality tends to 0 when m — oo, theorem 6
proves the consistency of a class of multi-task kernel regression methods even when the
dimensionality of the output space is infinite. We give in the next section several examples
to illustrate the above results.

4. Stable Multi-Task Kernel Regression Algorithms

In this section, we show that multi-task extension of a number of existing kernel-based re-
gression methods exhibit good uniform stability properties. In particular, we focus on func-
tional ridge regression (RR) (Kadri et al., 2010), vector-valued support vector regression
(SVR) (Brudnak, 2006), and multi-task logistic regression (LR) (Zhu and Hastie, 2002).
We assume in this section that all of these algorithms satisfy Hypothesis 2.

Functional response RR. It is an extension of ridge regression (or regularized least
squares regression) to functional data analysis domain (Kadri et al., 2010), where the goal
is to predict a functional response by considering the output as a single function obser-
vation rather than a collection of individual observations. The operator-valued kernel RR
algorithm is linked to the square loss function, and is defined as follows:

. o _ )\ .
argmin ;:1 ly — f(@)]l3 + Al fll%

We should note that Hypothesis 3 is not satisfied in the least squares context. However, we
will show that the following hypothesis is a sufficient condition to prove the stability when
Hypothesis 1 is verified (see Lemma 7).

Hypothesis 5 3C, > 0 such that |Y||y < Cy a.s.
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Lemma 7 Let c(y, f,x) = ly — f(«)|3. If Hypotheses 1 and 5 hold, then

|e(y, fz,2) =y, fzi,2)| < Cllfz(x) = fz:(2)ly,

=)
A
It is important to note that this Lemma can replace the Lipschitz property of ¢ in the proof
of Theorem 5.
ProoF orF LEMMA 7 : First, note that ¢ is convex with respect to its second argument.
Since H is a vector space, 0 € H. Thus,

with C = 2C,(1 +

)‘HfZHQ < Rreg(fZa Z) < Rreg(oa Z)

<L Emj [l (3)
m

k=1

2
<Cy,

where the first line follows from the definition of f; (see Equation 1), and in the third line
we used the bound on Y. This inequality is uniform over Z, and thus holds for f:.
Moreover, Vo € X,

1fz(@)|3 = (fz(2), fz(x))y
= (K(2,2)fz, f2)n
2

C
<K (2, 2)llopll f2 15, < w2

A
Hence,
1Y = fz(X)lly < Yy + [Ifz(X)]ly
C 4
<Cy+ ijx, )
where we used Lemma 3 and (3), then
lly = fz(@)3 — lly = fzi (@)
=lly = fz@)lly = lly = fzi(@)ly| < [y = fz(@)lljy + v = fz:(@)]|»]
< 26,01+ 5 f2() — f7 @)y
]

Hypothesis 4 is also satisfied with M = (C/2)2. We can see that from Equation 4. Using
Theorem 5, we obtain that the RR algorithm is S-stable with

2.2 K \2

mA ’
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and one can apply Theorem 6 to obtain the following generalization bound, with probability
at least 1 — ¢ :

1 402523 (1 + )2
E(e(Y, f2.X)) < Rempl(f2, 2) + ——"— V2

1 K 8r2 In(1/9)
+\/;C§(1+ﬁ)2)(/\+1) 5

Vector-valued SVR. It was introduced in (Brudnak, 2006) to learn a function f : R"* — R?
which maps inputs z € R™ to vector-valued outputs y € R%, where d is the number of tasks.
In the paper, only the finite-dimensional output case was addressed, but a general class
of loss functions associated with the p-norm of the error was studied. In the spirit of the
scalar-valued SVR, the e-insensitive loss function which was considered has the following
form: c(y, f,x) = ‘||y - f(x)Hp‘6 = max(||ly — f(x)||, — €,0), and from this general form of
the p-norm formulation, the special cases of 1-, 2- and oo-norms was discussed. Since in our
work we mainly focus our attention to the general case of any infinite-dimensional Hilbert
space ), we consider here the following vector-valued SVR algorithm:

m

1
arg min — c(yi, f, i) + M| fl3,
ngHmZ (i ) + Al £ 113

1=

where the associated loss function is defined by:

iflly = f(@)lly <e
ly —e  otherwise.

c(y, f,x) = |lly = f(@)lly], = { (,),y — f(=)

This algorithm satisfies Hypothesis 3. Hypothesis 4 is also verified with M = Cy(1 + \%)

when Hypothesis 5 holds. This can be proved by the same way as the RR case. Theorem 5
gives that the vector-valued SVR algorithm is S-stable with

H2

5= 2mx

We then obtain the following generalization bound, with probability at least 1 — §:

1 K2 1 2k2 K In(1/9)
E(c(Y, fz,X)) SRemp(fZ,Z)+m)\+\/;()\+Cy(1+\f)\)) 5

Multi-task LR. As in the case of SVR, kernel logistic regression (Zhu and Hastie, 2002)
can be extended to the multi-task learning setting. The logistic loss can then be expanded
in the manner of the e-insensitive loss , that is ¢(y, f,z) = In (1 + e*<y’f(z)>y>. It is easy to
see that the multi-task LR algorithm satisfies Hypothesis 3 with C' = 1 and Hypothesis 4
since ¢(y, f,z) < In(2). Thus the algorithm is S-stable with

I<J2

= omA\’
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The associated generalization bound, with probability at least 1 — 4, is :

li2 2
E(c(Y, f2,X)) < Remp(fz, Z) + %7 - \/g<2’; +1n(2)) 5

Hence, we have obtained generalization bounds for the RR, SVR and LR algorithms even
when the kernel does not satisfy the Hilbert Schmidt property (see the following section for
examples of such kernels).

5. Discussion and Examples

We provide generalization bounds for multi-task kernel regression when the output space
is infinite dimensional Hilbert space using the notion of algorithmic stability. As far as
we are aware, the only previous study of this problem was carried out in (Caponnetto
and Vito, 2006). However, only learning rates of the regularized least squares algorithm
was provided when the operator-valued kernel is assumed to be Hilbert-Schmidt. We have
shown in Section 3 that one may use non Hilbert-Schmidt kernels with a large family of
loss functions and obtains theoretical guarantees. It should be pointed out that in the
finite-dimensional case the Hilbert-Schmit assumption is always satisfied, so it is important
to discuss applied machine learning situations where infinite-dimensional output spaces can
be encountered. Note that our bound can be recovered from (Caponnetto and Vito, 2006)
when both our and their hypotheses are satisfied

Functional regression. From a functional data analysis (FDA) point of view, infinite-
dimensional output spaces for operator estimation problems are frequently encountered in
functional response regression analysis, where the goal is to predict an entire function.
FDA is an extension of multivariate data analysis suitable when the data are curves, see
(Ramsay and Silverman, 2005) for more details. A functional response regression problem
takes the form y; = f(z;) + €¢; where both predictors x; and responses y; are functions in
some functional Hilbert space, most often the space L? of square integrable functions. In
this context, the function f is an operator between two infinite-dimensional Hilbert spaces.
Most previous work on this model suppose that the relation between functional responses
and predictors is linear. The functional regression model is an extension of the multivariate
linear model and has the following form:

y(t) = a(t) + B(t)x(t) + €(t)

for a regression parameter 8. In this setting, an extension to nonlinear contexts can be
found in (Kadri et al., 2010) where the authors showed how Hilbert spaces of function-
valued functions and infinite-dimensional operator-valued reproducing kernels can be used
as a theoretical framework to develop nonlinear functional regression methods. A multi-
plication based operator-valued kernel was proposed, since the linear functional regression
model is based on the multiplication operator.

Structured output prediction. One approach to dealing with this problem is kernel
dependency estimation (KDE) (Weston et al., 2003). It is based on defining a scalar-valued
kernel ky on the outputs, such that one can transform the problem of learning a mapping

10
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between input data x; and structured outputs y; to a problem of learning a Hilbert space
valued function f between x; and ®(y;), where ®(y;) is the projection of y; by ky into a real-
valued RKHS Hy. Depending on the kernel ky, the RKHS Hy can be infinite-dimensional.
In this context, extending KDE for RKHS with multi-task kernels was first introduced in
(Brouard et al., 2011), where an identity based operator-valued kernel was used to learn
the function f.

Conditional mean embedding. As in the case of structured output learning, the out-
put space in the context of conditional mean embedding is a scalar-valued RKHS. In the
framework of probability distributions embedding, Griinewélder et al. (Grunewalder et al.,
2012) have shown an equivalence between RKHS embeddings of conditional distributions
and multi-task kernel regression. On the basis of this link, the authors derived a sparse
embedding algorithm using the identity based operator-valued kernel.

Collaborative filtering. The goal of collaborative filtering (CF) is to build a model to
predict preferences of clients “users” over a range of products “items” based on informa-
tion from customer’s past purchases. In (Abernethy et al., 2009), the authors show that
several CF methods such as rank-constrained optimization, trace-norm regularization, and
those based on Frobenius norm regularization, can all be cast as special cases of spectral
regularization on operator spaces. Using operator estimation and spectral regularization as
a framework for CF permit to use potentially more information and incorporate additional
user-item attributes to predict preferences. A generalized CF approach consists in learning
a preference function f(-,-) that takes the form of a linear operator from a Hilbert space of
users to a Hilbert space of items, f(-,-) = (z, F'y) for some compact operator F'.

Now we want to emphasize that in the case of infinite dimensions Hypothesis 1 on the kernel
is not equivalent to that used in (Caponnetto and Vito, 2006). We have shown in Section 2
that our assumption on the kernel is weaker. To illustrate this, we provide below examples
of operator-valued kernels which satisfy Hypothesis 1 but are not Hilbert-Schmidt, as was
assumed in (Caponnetto and Vito, 2006).

Example 1 Identity operator. Let ¢ > 0, d € N*, X = R%, T be the identity morphism in
L(Y), and K (z,t) = exp(—c||lz — t||3) x I.The kernel K is positive, Hermitian, and

1K (2, 2)[lop = [[]lop = 1

Tr(K(z,z)) =Tr(I) = +oc. (5)

This result is also true for any kernel which can be written as K(xz,t) = k(x,t)I, where k
is a positive-definite scalar-valued kernel satisfying that sup,cy k(z,z) < oo. Identity based
operator-valued kernels are already used in structured output learning (Brouard et al., 2011)
and conditional mean embedding (Grunewalder et al., 2012).

Example 2 Multiplication operator - Separable case. Let k be a positive-definite scalar-
valued such that sup,cy k(z,z) < oo, T an interval of R, C > 0, and Y = L*(Z,R). Let
f € L®(Z,R) be such that || f|leo < C.

We now define the multiplication based operator-valued kernel K as follows

K(x,2)y(.) = k(z,2) f*(Jy() € V.

11
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Such kernels are suited to extend linear functional regression to nonlinear context (Kadri
et al., 2010). K 1is a positive Hermitian kernel but, even if K always satisfy Hypothesis 1,
the Hilbert-Schmidt property of K depends on the choice of f and may be difficult to verify.
For instance, let f(t) = S (exp(—t?) +1). Then

1K (2, 2)lop < Ch(z,2)
Tr(K (a,2)) = 3K @2y ) > ke, n) S 3 il = ©)

ieN €N

where (y;)ien is an orthonormal basis of Y (which exists, since Y is separable).

Example 3 Multiplication Operator - Non separable case®. Let I an interval of R, C > 0,
Y = L[*I,R), X ={f € L>®(Z,R) such that ||f|loc < C}.
Let K be the following operator-valued function:

K(z,2)y(.) ==()z()y(.) € V.
K is a positive Hermitian kernel satisfying Hypothesis 1. Indeed,

Jrt Oy (tdt \/JryA(t)dt <o

| K (z,x)||op = max < C*max

yey yll2 vey |yl

On the other hand, K (x,x) is not Hilbert-Schmidt for all choice of x (in fact it is not Hilbert
Schmidt as long as Je > 0 such that ¥t € Z, x(t) > € > 0). To illustrate this, let choose
T = %(ea:p(—tQ) + 1) as defined in the previous ezample. Then, for (y;)ien an orthonormal
basis of Y, we have

Tr(K(z,2)) = 3 (K (2, 2)y, i) Z/

iEN zEN
C
> 2Z/yz leyzlb = o0,
ieN 7L zeN

Example 4 Sum of kernels. This example is provided to show that in the case of multiple
kernels the sum of a non Hilbert-Schmidt kernel with an Hilbert-Schmidt one gives a non-
Hilbert-Schmidt kernel. This makes the assumption on the kernel of (Caponnetto and Vito,
2006) inconvenient for multiple kernel learning (MKL) (Kadri et al., 2012), since one would
like to learn a combination of different kernels which can be non Hilbert-Schmidt (like the
basic identity based operator-valued kernel).

Let k be a positive-definite scalar-valued kernel satisfying sup,cx k(z,z) < oo, YV a
Hilbert space, and yg € Y. Let K be the following kernel:

K(z,2)y = k(z,2) (y + (¥, Y0) Yo) -

K is a positive and Hermitian kernel. Note that a similar kernel was proposed for multi-
task learning (Kadri et al., 2012), where the identity operator is used to encode the relation

6. A kernel K(z,t) is called non separable, as opposed to separable, if it cannot be written as the product
of a scalar valued kernel k(z,t) and a L()) operator independent of the choice of z,t € X.
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between a task and itself, and a second kernel is added for sharing the information between
tasks. K satisfies Hypothesis 1, since

1K (@, 2)|op = max |k(z,2) (y + (g, 90) yo) |y < [k(z, 2)|(1 + [yol3)-
yEV |lylly=1
However, K is not Hilbert Schmidt. Indeed, it is the sum of a Hilbert Schmidt kernel (resp.
Ki(z,2)y = k(z,2)(y,v0)y0) and a Hilbert-Schmidt one (resp. Ka(z,z)y = k(z,2)y),
which is not Hilbert Schmidt. To see this, note that since the trace of Ky is the sum over
an absolutely summable family, and the trace is linear, so the trace of K is the sum of an
convergent series and a divergent one, hence it diverges, so K is not Hilbert Schmidt.

6. Conclusion

We have shown that a large family of multi-task kernel regression algorithms, including
functional ridge regression and vector-valued SVR, are S-stable even when the output space
is infinite-dimensional. This result allows us to provide generalization bounds and to prove
under mild assumptions on the kernel the consistency of these algorithms. In the future,
it will be interesting to derive learning bounds with optimal and fast rates for infinite-
dimensional multi-task kernel based algorithms.
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Appendix A. Proof of Theorem 5

First, since ¢ is convex with respect to f, we have V0 <t <1

c(y, fz +t(fzi — fz),2) — c(y, fz,2) < t(c(y, fzi,2) — c(y, fz,2)) .

Then, by summing over all couples (x,y) in Z¢,

Remp(fz +t(fzi = [2), Z°) = Remp(f2, Z°) <t (Remp(fz1, Z') = Remp(f2, Z%)) . (7)
Symmetrically, we also have

Remp(fz: +t(f2 = £21). Z2) = Remp(f21, Z') < t (Remp(f2, Z") = Bemp(fz:, 2)) . (8)

Thus, by summing (7) and (8), we obtain

Remp(f2 +t(fzi = [2), Z") = Remp(f2, Z")
+ Remp(fZi + t(fZ - fZi)a Zi) - Remp(fZi, Zi) <0.

Now, by definition of fz and fy:,

Rreg(fZaZ) - Rreg(fZ +t(fZi - fZ)aZ)
+ Rreg(fZia Zi) - Rreg(fZi + t(fZ - fZi)7Zi) <0.

By using (9) and (10) we get

c(Yi, fz,xi) — c(yi, fz +t(fzi — fz), x:)
+mA (|1 fz15 = 1z + t(fzi — f2I5 + 1203 — | f2i + t(fz — F2)l3) <0,

15



AUDIFFREN KADRI

hence, since ¢ is C-Lipschitz continuous with respect to f(z), and the inequality is true
vt € [0, 1],

172 = FailBy < 5 (120 = 12+ 608z — FW + Wil = s + 172 = £) )
L ey f2 4 (g — F2)imi) — clyis f2, )

< -
- 2tmA\
< o fzi@i) = fz(xi)lly

C
2mA
Ck
< =" fy —
which gives that
Ck
— f < —.
1fz = fzilln < 5
This implies that, V(z,y) a realization of (X,Y),

c(y, fz,2) — c(y, fzi,2)| < Cllfz(x) — fz:(2) ||y
< Ckllfz = fzillu
C2I€2
<
- 2mA
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