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Abstract

We examine the performance of an ensemble of randomly-projected Fisher Linear Discrim-
inant classifiers, focusing on the case when there are fewer training observations than data
dimensions. Our ensemble is learned from a sequence of randomly-projected representa-
tions of the original high dimensional data and therefore for this approach data can be
collected, stored and processed in such a compressed form.
The specific form and simplicity of this ensemble permits a direct and much more detailed
analysis than existing generic tools in previous works. In particular, we are able to de-
rive the exact form of the generalization error of our ensemble, conditional on the training
set, and based on this we give theoretical guarantees which directly link the performance
of the ensemble to that of the corresponding linear discriminant learned in the full data
space. To the best of our knowledge these are the first theoretical results to prove such
an explicit link for any classifier and classifier ensemble pair. Furthermore we show that
the randomly-projected ensemble is equivalent to implementing a sophisticated regulariza-
tion scheme to the linear discriminant learned in the original data space and this prevents
overfitting in conditions of small sample size where pseudo-inverse FLD learned in the data
space is provably poor.
We confirm theoretical findings with experiments, and demonstrate the utility of our ap-
proach on several datasets from the bioinformatics domain where fewer observations than
dimensions are the norm.

Keywords: Random Projections, Linear Discriminant Analysis, Ensemble Classifiers.

1. Introduction

Classification ensembles that use some form of randomization in the design of the base clas-
sifiers have a long and successful history in machine learning, especially in the case when
there are fewer training observations than data dimensions. Common approaches include:
Bagging (Breiman, 1996); random subspaces (Ho, 1998); random forests (Breiman, 2001).
Surprisingly, despite the well-known theoretical properties of random projections as dimension-
reducing approximate isometries (Dasgupta and Gupta, 2002; Achlioptas, 2003) and em-
pirical and theoretical studies demonstrating their usefulness when learning a single clas-
sifier (e.g. Bingham and Mannila, 2001; Fradkin and Madigan, 2003; Durrant and Kabán,
2010), results in the literature employing random projections to create weak learners for

c© 2013 R.J. Durrant & A. Kabán.



Durrant Kabán

ensemble classification are sparse compared to results for other approaches such as bagging
and random subspaces. On the other hand, given their appealing properties and tractabil-
ity to analysis, random projections seem like a rather natural choice in this setting. Those
empirical studies we could find on randomly-projected ensembles in the literature (Goel
et al., 2005; Folgieri, 2008; Schclar and Rokach, 2009) all report good performance from
the ensemble, but none attempt a theoretical analysis. Indeed for all of the randomiz-
ing approaches mentioned above, despite a wealth of empirical evidence demonstrating the
effectiveness of these ensembles, there are very few theoretical studies.

An important paper by Fumera et al. (2008) gives an approximate analytical model as
a function of the ensemble size, applicable to linear combiners, which explains the variance
reducing property of bagging. However, besides the inherent difficulties with the approach
of bias-variance decomposition for classification problems (e.g. Schapire et al., 1998), such
analysis only serves to relate the performance of an ensemble to its members and Fumera
et al. (2008) correctly point out that even for bagging, the simplest such approach and in
use since at least 1996, there is ‘no clear understanding yet of the conditions under which
bagging outperforms an individual classifier [trained on the full original data set]’. They
further state that, even with specific assumptions on the data distribution, such an analytical
comparison would be a complex task. In other words, there is no clear understanding yet
about when to use an ensemble vs. when to use one classifier.

Here we take a completely different approach to address this last open issue for a specific
classifier ensemble: Focusing on an ensemble of randomly projected Fisher linear discrimi-
nant (RP-FLD) classifiers as our base learners, we leverage recent random matrix theoretic
results to link the performance of the linearly combined ensemble to the corresponding
classifier trained on the original data. In particular, we extend and simplify the work of
Marzetta et al. (2011) specifically for this classification setting, and one of our main contri-
butions is to derive theoretical guarantees that directly link the performance of the randomly
projected ensemble to the performance of Fisher linear discriminant (FLD) learned in the
full data space. This theory is, however, not simply of abstract interest: We also show
experimentally that the algorithm we analyze here is highly competitive with the state-of-
the-art. Furthermore, our algorithm has several practically desirable properties: Firstly, the
individual ensemble members are learned in a very low-dimensional space from randomly-
projected data, and so training data can be collected, stored and processed entirely in this
form. Secondly, parallel implementation of our approach is straightforward since, both
for training and classification, the individual ensemble members can be run on separate
cores and the ensemble decision is then given by simply summing the individual classifier
outputs. Finally, our approach returns an inverse covariance matrix estimate for the full
d-dimensional data space, the entries of which are interpretable as conditional correlations
which are useful in a wide range of settings.

Our randomly projected ensemble approach can be viewed as a generalization of bagged
ensembles, in the sense that here we generate multiple instances of training data by project-
ing a training set of size N onto a subspace drawn uniformly at random with replacement
from the data space, whereas in bagging one generates instances of training data by draw-
ing N ′ 6 N training examples uniformly with replacement from a training set of size N .
However, in this setting, an obvious advantage of our approach over bagging is that it is
able to repair the rank deficiency of the sample covariance matrix we need to invert in order
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to build the classifier. In particular, we show that when there are fewer observations than
dimensions our ensemble implements a data space FLD with a sophisticated covariance reg-
ularization scheme (parametrized by an integer parameter) that subsumes a combination of
several previous regularization schemes. In order to see the clear structural links between
our ensemble and its data space counterpart we develop our theory in a random matrix
theoretic setting. We avoid a bias-variance decomposition approach since, in common with
the analysis of Schapire et al. (1998), a key property of our ensemble is that its effect is not
simply to reduce the variance of a biased classifier.

The structure of the remainder of the paper is as follows: We give some brief background
and describe the randomly projected FLD classifier ensemble. Next, we present theoretical
findings that give insight into how this ensemble behaves. We continue by presenting exten-
sive experiments on real datasets from the bioinformatic domain where FLD (and variants)
are a popular classifier choice even though often restricted to a diagonal covariance choice
because of high dimensionality and data scarcity (Guo et al., 2007; Dudoit et al., 2002).
Our experiments suggest that in practice, when the number of training examples is less than
the number of data dimensions, this ensemble approach outperforms the traditional FLD
in the data space both in terms of prediction performance and computation time. Finally,
we summarize and discuss possible future directions for this and similar approaches.

2. Preliminaries

We consider a binary classification problem in which we observe N i.i.d examples of labelled

training data TN = {(xi, yi)}Ni=1 where xi
i.i.d∼ Dx and each xi has an associated label

yi ∈ {0, 1}. We take the xi ∈ Rd to be d-dimensional real valued observations. We are
interested in comparing the performance of a randomly-projected ensemble classifier working
in the projected space Rk, k � d, to the performance achieved by the corresponding classifier
working in the data space Rd. We will consider Fisher’s linear discriminant classifier working
in both of these settings since FLD is a popular and widely used linear classifier (in the
data space setting) and yet it is simple enough to analyse in detail.
The decision rule for FLD learned from training data is given by:

ĥ(xq) := 1

{
(µ̂1 − µ̂0)T Σ̂−1

(
xq −

µ̂0 + µ̂1

2

)
> 0

}
where µ̂0, µ̂1, and Σ̂ are maximum likelihood (ML) estimates of the class-conditional means
and (shared) covariance matrix respectively, and 1(·) is the indicator function which returns
1 if its argument is true and 0 otherwise. In the setting considered here we assume that
N < d. Hence, Σ̂ will be singular and so one can either pseudo-invert or regularize Σ̂ to
obtain a working decision rule; both approaches are used in practice (Raudys and Duin,
1998).
To construct the randomly projected ensemble, we choose the number of ensemble members
M and the projection dimensionality k, and generate M random matrices R ∈Mk×d with
i.i.d entries rij ∼ N (0, σ2). We can take σ2 = 1 without loss of generality. Such matrices are
called random projection matrices in the literature (Arriaga and Vempala, 1999; Achlioptas,
2003)1.

1. We find empirically that, as one would expect, other common choices of random projection matrix with
zero-mean i.i.d sub-Gaussian entries (e.g. Achlioptas, 2003) do not affect the ensemble performance.
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Pre-multiplying the data with one of the matrices R maps the training examples to a k-
dimensional subspace of the data space Rd and, by linearity of expectation and of the
projection operator, the decision rule for a single randomly projected classifier is then given
by:

ĥR(xq) :=1

{
(µ̂1 − µ̂0)TRT

(
RΣ̂RT

)−1
R

(
xq −

µ̂0 + µ̂1

2

)
>0

}
For an ensemble, various different combination rules can be applied. The most common

choices include majority voting (when there is an odd number of classifiers in the ensemble)
and linear combination (Brown, 2009). We want to make the most of the weak learners’
confidence estimates so we choose to employ the averaged linear decisions of M base learners
as our combination rule which gives the following ensemble decision:

ĥens(xq) := 1

{
1

M

M∑
i=1

(µ̂1 − µ̂0)TRT
i

(
RiΣ̂R

T
i

)−1
Ri

(
xq −

µ̂1 + µ̂0

2

)
> 0

}
This combination rule is called ‘voting’ in the ensemble literature but, to avoid any possible
confusion with majority voting, we shall refer to it as ‘RP averaging’; it does not require
the number of classifiers in the ensemble to be odd for good generalization and, as we shall
see, it also has the advantage of analytical tractability.
We begin by examining the expected performance of the RP-FLD ensemble when the train-
ing set is fixed, which is central to linking the ensemble and data space classifiers, and then
later in Theorem 2 we consider random instantiations of the training set in order to give a
tail bound on the generalization error of the ensemble.
To begin, observe that by the law of large numbers the left hand side of the argument of
the ensemble decision rule converges to the following:

lim
M→∞

1

M

M∑
i=1

(µ̂1 − µ̂0)TRTi

(
RiΣ̂R

T
i

)−1
Ri

(
xq −

µ̂1 + µ̂0

2

)
=(µ̂1 − µ̂0)TE

[
RT
(
RΣ̂RT

)−1
R

](
xq −

µ̂1 + µ̂0

2

)
(1)

provided that this limit exists. It will turn out that for R ∈ Mk×d having i.i.d zero-mean
Gaussian entries rij ∼ N (0, 1), if k ∈ {1, ..., ρ− 2} ∪ {ρ+ 2, ..., d}, then this expectation is
indeed defined for each entry. From equation (1) we see that, for a fixed training set, in
order to quantify the error of the ensemble it is enough to consider the expectation (with
respect to random matrices R):

E

[
RT
(
RΣ̂RT

)−1
R

]
(2)

Before continuing, we should note that for the case k ∈ {1, ..., ρ− 2} Marzetta et al. (2011)
provide a procedure to compute this expectation exactly. However we are more interested
in how this expectation relates to characteristics of the maximum likelihood estimate of the
sample covariance Σ̂, since we shall see in Theorem 2 that improving the conditioning of this
matrix has a direct impact on the generalization error of the FLD classifier. Our approach
and proof techniques are therefore very different to those followed by Marzetta et al. (2011),
specifically we bound this expectation from both sides in the positive semi-definite ordering
in order to provide an estimate of the extreme eigenvalues of the inverse covariance matrix
implemented by our ensemble.
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3. Results

Our main theoretical results are the following two theorems: The first characterizes the
regularization effect of our ensemble, while the second bounds the generalization error of
the ensemble for an arbitrary training set of size N in the case of multivariate Gaussian
class-conditional distributions with shared covariance.

Theorem 1 (Regularization) Let Σ̂ ∈ Md×d be a symmetric positive semi-definite ma-
trix with rank ρ ∈ {3, ..., d−1}, and denote by λmax(Σ̂), λmin 6=0(Σ̂) > 0 its greatest and least
non-zero eigenvalues. Let k < ρ − 1 be a positive integer, and let R ∈ Mk×d be a random

matrix with i.i.d N (0, 1) entries. Let Ŝ−1 := E

[
RT
(
RΣ̂RT

)−1
R

]
, and denote by κ(Ŝ−1)

its condition number, κ(Ŝ−1) = λmax(Ŝ−1)/λmin(Ŝ−1). Then:

κ(Ŝ−1) 6
ρ

ρ− k − 1
· λmax(Σ̂)

λmin 6=0(Σ̂)

This theorem implies that for a large enough ensemble the condition number of the sum

of random matrices 1
M

∑M
i=1R

T
i

(
RiΣ̂R

T
i

)−1
Ri is bounded. Of course, any one of these

summands RTi

(
RiΣ̂R

T
i

)−1
Ri is singular by construction. On the other hand if we look at

the decision rule of a single randomly projected classifier in the k-dimensional space,

ĥR(xq) := 1

{
(µ̂1 − µ̂0)RT (RΣ̂RT )−1R

(
xq −

µ̂0 + µ̂1

2

)
>0

}
(3)

we have for all z 6= 0, Rz 6= 0 almost surely, and RΣ̂RT is full rank almost surely – therefore
with probability 1 the k-dimensional system in (3) is well-posed.

The significance of this theorem from a generalization error analysis point of view
stems from the fact that the rank deficient maximum-likelihood covariance estimate has
unbounded condition number and, as we see below in Theorem 2, (an upper bound on)
the generalization error of FLD increases as a function of this condition number. In turn,
the bound given in our Theorem 1 depends on the extreme non-zero eigenvalues of Σ̂, its
rank2 ρ, and the subspace dimension k, which are all finite for any particular training set
instance. We should also note that the subspace dimension k is a parameter that we can
choose, and in what follows k therefore acts as the integer regularization parameter in our
setting.

Theorem 2 (Generalization error of the converged ensemble) Let TN = {(xi, yi)}Ni=1

be a set of training data of size N = N0 +N1, subject to N < d and Ny > 1 ∀y. Let xq be
a query point with Gaussian class-conditionals xq|yq ∼ N (µy,Σ), and let Pr{yq = y} = πy.
Let ρ be the rank of the maximum likelihood estimate of the covariance matrix and let
k < ρ − 1 be a positive integer. Then for any δ ∈ (0, 1) and any training set of size N ,

2. In the setting considered here we typically have ρ = N − 2
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the generalization error of the converged ensemble of randomly projected FLD classifiers is
upper-bounded with probability at least 1− δ by the following:

Pr
xq ,yq

(ĥens(xq) 6= yq) 6
1∑
y=0

πyΦ

(
−

[
g

(
κ̄

(√
2 log

5

δ

))
× . . . (4)

. . .

[√
‖Σ−

1
2 (µ1 − µ0)‖2 +

dN

N0N1
−
√

2N

N0N1
log

5

δ

]
+

−

√
d

Ny

(
1 +

√
2

d
log

5

δ

)])

where κ̄(ε) is a high probability (w.r.t draws of TN ) upper bound on the condition number

of ΣŜ−1 given by eq. (12) and g(·) is the function g(a) :=
√
a

1+a .

The principal terms in this bound are: (i) The function g : [1,∞) → (0, 1
2 ] which is a

decreasing function of its argument and here captures the effect of the mismatch between
the estimated model covariance matrix Ŝ−1 and the true class-conditional covariance Σ, via
a high-probability upper bound on the condition number of Ŝ−1Σ; (ii) The Mahalanobis
distance between the two class centres which captures the fact that the better separated
the classes are the smaller the generalization error should be; and (iii) antagonistic terms
involving the sample size (N) and the number of training examples in each class (N0, N1),
which capture the effect of class (im)balance – the more evenly the training data are split,
the tighter the bound.

4. Proofs

4.1. Proof of Theorem 1

Estimating the condition number of E

[
RT
(
RΛ̂RT

)−1
R

]
is the key result underpinning our

generalization error results. We give a full proof for the case k = 1 for the sake of argument
and insight – details for all other cases of k < d can be found in the supplementary material.
To smooth our way we will make use of the following two easy, but useful, lemmas:

Lemma 3 (Unitary invariance) Let R ∈ Mk×d with rij
i.i.d∼ N (0, σ2). Let Σ̂ be any

symmetric positive semi-definite matrix, and let Û be a unitary matrix such that Σ̂ =
Û Λ̂ÛT , where Λ̂ is a diagonal matrix with the eigenvalues of Σ̂ in descending order along
the diagonal. Then:

E

[
RT
(
RΣ̂RT

)−1
R

]
= ÛE

[
RT
(
RΛ̂RT

)−1
R

]
ÛT

Lemma 4 (Expected preservation of eigenvectors) Let Λ̂ be a diagonal matrix, then

E

[
RT
(
RΛ̂RT

)−1
R

]
is a diagonal matrix.

Furthermore, if Û diagonalizes Σ̂ as Û Λ̂ÛT , then Û also diagonalizes E

[
RT
(
RΣ̂RT

)−1
R

]
.
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We omit the proofs which are straightforward and can be found in Marzetta et al. (2011).
It follows from lemmas 3 and 4 that at convergence our ensemble preserves the eigen-

vectors of Σ̂, and so we only need to consider the diagonal entries (i.e. the eigenvalues) of

E

[
RT
(
RΛ̂RT

)−1
R

]
, which we now do. For reasons of space here we only give a full proof

for the case k = 1, when we are projecting the high dimensional data on to a single line for
each classifier in the ensemble. The other cases are dealt with in the supplementary material,

as previously noted. In the case k = 1 the i-th diagonal element of E

[
RT
(
RΛ̂RT

)−1
R

]
is E

[
r2i∑ρ

j=1 λjr
2
j

]
, where ri is the i-th entry of the single row matrix R. This can be upper

and lower bounded as:

1

λmax
E

[
r2
i∑ρ

j=1 r
2
j

]
6 E

[
r2
i∑ρ

j=1 λjr
2
j

]
6

1

λmin 6=0
E

[
r2
i∑ρ

j=1 r
2
j

]

where λmin 6=0 denotes the smallest nonzero eigenvalue of Λ̂ (and of Σ̂), and λmax its largest
eigenvalue.
Recall that as a result of lemmas 3 and 4 we only need consider the diagonal entries of this
expectation as the off-diagonal terms are known to be zero.
Now, we evaluate the remaining expectation. There are two cases: If i > ρ then ri is

independent from the denominator and we have E

[
r2i∑ρ
j=1 r

2
j

]
= E

[
r2
i

]
E
[
1/
∑ρ

j=1 r
2
j

]
= 1

ρ−2 ,

where we used the expectation of the inverse-χ2 with ρ degrees of freedom, and the fact

that E
[
r2
i

]
= 1. When i 6 ρ, then in turn we have E

[
r2i∑ρ
j=1 r

2
j

]
= E

[
r2i
‖r‖2

]
= 1

ρ . That is,

E

[
diag

(
r2
i∑ρ

j=1 r
2
j

)]
=

[
1
ρIρ 0

0 1
ρ−2Id−ρ

]

and so E

[
RT
(
RΛ̂RT

)−1
R

]
is full rank, hence invertible. Its inverse may be seen as a

regularized covariance estimate in the data space, and its condition number, κ, is upper
bounded by:

κ

(
E

[
RT
(
RΛ̂RT

)−1
R

])
6

ρ

ρ− 2
· λmax

λmin 6=0
(5)

whereas in the setting N < d the ML covariance estimate has unbounded condition number.
To briefly sketch out our approach for the general k < ρ − 1 case, we write R as a con-
catenation of two matrices R = [P, S] where P is k × ρ and S is k × (d − ρ), so that

E

[
RT
(
RΛ̂RT

)−1
R

]
can be decomposed as two diagonal blocks:

 E[PT
(
P Λ̂PT

)−1
P ] 0

0 E[ST
(
P Λ̂PT

)−1
S]

 (6)
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Here in P Λ̂P T we use Λ̂ to denote the ρ × ρ positive definite upper block of the positive
semi-definite matrix Λ̂. We then show that the diagonal elements in the upper block are all
in the interval: [

k

ρ
· 1

λmax
,
k

ρ
· 1

λmin 6=0

]
Hence, in the upper block the condition number is reduced compared to that of Λ̂ restricted
to its range.

λmax(E[P T (P Λ̂P T )−1P ])

λmin(E[P T (P Λ̂P T )−1P ])
6

λmax(Λ̂)

λmin 6=0(Λ̂)

In other words, in the range of Σ̂, the ensemble has the effect of a shrinkage regularizer
(Ledoit and Wolf, 2004). Similarly we show that the lower block is a multiple of Id−ρ with
the coefficient in the interval:[

k

ρ− k − 1
· 1

λmax
,

k

ρ− k − 1
· 1

λmin 6=0

]
That is, in the null space of Σ̂ the ensemble acts as a ridge regularizer (Hastie et al., 2001).

Putting everything together, the condition number of the covariance (or inverse covari-
ance) estimate is upper bounded by:

κ

(
E

[
RT
(
RΛ̂RT

)−1
R

])
6

ρ

ρ− k − 1
· λmax

λmin 6=0
(7)

which we see reduces to eq.(5) when k = 1.

4.2. Sketch Proof of Theorem 2

We proceed in two steps: (1) Obtain the generalization error of the ensemble conditional
on a fixed training set; (2) Bound the deviation of this error caused by a random draw of a
training set.

4.2.1. Generalization error of the ensemble with a fixed training set

Traditionally, ensemble methods are regarded as ‘meta-learning’ approaches and although
bounds exist (e.g. Koltchinskii and Panchenko, 2002) there are, to the best of our knowledge,
no results giving the exact analytical form of the generalization error of any particular
ensemble. Indeed, in general it is not analytically tractable to evaluate the generalization
error exactly, so one can only derive bounds. Because we deal with an FLD ensemble we
are able to derive the exact generalization error of the ensemble in the case of Gaussian
classes with shared covariance Σ, the setting in which FLD is Bayes’ optimal. This allows
us to explicitly connect the performance of the ensemble to its data space analogue. We
note that an upper bound on generalization error with similar behaviour can be derived for
the much larger class of sub-Gaussian distributions with different covariance matrices (see
e.g. Durrant and Kabán, 2010), therefore this Gaussianity assumption is not crucial.
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Lemma 5 (Exact generalization error with Gaussian classes) Let xq|yq ∼ N (µy,Σ)
and let Pr{yq = y} = πy, where Σ ∈ Md×d is a full rank covariance matrix. Let R ∈
Mk×d be a random projection matrix with i.i.d. Gaussian entries and denote Ŝ−1 :=

ER

[
RT
(
RΣ̂RT

)−1
R

]
. Then the exact generalization error of the converged randomly

projected ensemble classifier (1) is given by:

Pr
(xq,yq)

{ĥens(xq) 6= yq} =

1∑
y=0

πyΦ

−1

2

(µ̂¬y − µ̂y)T Ŝ−1(µ̂0 + µ̂1 − 2µy)√
(µ̂1 − µ̂0)T Ŝ−1ΣŜ−1(µ̂1 − µ̂0)

 (8)

The proof of this lemma is similar in spirit to the one for a single FLD given in Bickel
and Levina (2004); Pattison and Gossink (1999), and we omit it here. We note however
that equation (8) has the same form as the error of the data space FLD (Ibid.) and the
converged ensemble, inspected in the original data space, produces exactly the same mean
estimates and covariance matrix eigenvector estimates as FLD working on the original data
set. However it has different eigenvalue estimates that result from the sophisticated regu-
larization scheme that we analyzed in section 4.1.

4.2.2. Proof (sketch) of the tail bound on the generalization error

Now we briefly sketch out how we can bound the generalization error of the RP-FLD
ensemble with high probability over the random draw of a training set of size N = N0 +N1.
We begin by decomposing the numerator of the generalization error term (for a single class)
obtained in Lemma 5 as follows:

(µ̂1 + µ̂0 − 2µ0)T Ŝ−1 (µ̂1 − µ̂0)

= (µ̂1 − µ̂0)T Ŝ−1 (µ̂1 − µ̂0) + 2 (µ̂0 − µ0)T Ŝ−1 (µ̂1 − µ̂0) (9)

Using this decomposition we can rewrite the argument of the first term in Lemma 5 in the
following form:

Φ

(
−1

2
[A−B]

)
Where:

A =
(µ̂1 − µ̂0)

T
Ŝ−1 (µ̂1 − µ̂0)√

(µ̂1 − µ̂0)T Ŝ−1ΣŜ−1(µ̂1 − µ̂0)
(10)

and:

B =
2 (µ0 − µ̂0)

T
Ŝ−1 (µ̂1 − µ̂0)√

(µ̂1 − µ̂0)T Ŝ−1ΣŜ−1(µ̂1 − µ̂0)
(11)

We lower bound A and upper bound B to bound the whole term from above with high
probability and, since Φ is monotonic increasing in its argument, this yields an upper bound
on generalization error. Omitting the details here, we show in the supplementary material
that the following are true:
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1. Define:

κ̄(ε) :=
(
√
N − 2 +

√
d+ ε)2(1 + ρ/k · κ(Σ))

(
√
N − 2−

√
k − ε)2

(12)

then A is bounded below by:

A > 2g(κ̄(ε))

√
(1− ε)

(
‖Σ− 1

2 (µ1 − µ0)‖2 +
d ·N
N0N1

)
(13)

with probability at least:

1− exp

(
−

(
d

2
+
‖Σ− 1

2 (µ1 − µ0)‖2N0N1

2N

)(√
1− ε− 1

)2)− 2 exp(−ε2/2) (14)

2. B is bounded above by:
B 6 2

√
(1 + ε)d/N0 (15)

with probability at least 1− exp(−d
2(
√

1 + ε− 1)2).

Substituting in Theorem 2 these bounds for A and B, rearranging, then setting each of the
failure probabilities no greater than δ/5 so that the overall probability of failure remains
below δ, and solving for ε we obtain the theorem after some algebra.

4.3. Comments

1. Observe that the strength of the regularization depends on k and ρ, and the non-zero
eigenvalues of Σ̂. More precisely, k

ρ−k−1 and k
ρ increase monotonically with k (and

decrease with ρ). Since we are talking about an inverse covariance estimate, this
implies that the extent of regularization decreases with increasing k (and increases
when ρ gets larger). Hence, k takes the role of the regularization parameter and the
analysis in this and the following subsections provides us with insight for setting this
parameter. For the data sets we used in our experiments k ' ρ/2 appears to be a
reasonable rule of thumb choice.

2. The regularization scheme implemented by our ensemble has a particularly pleas-
ing form. Shrinkage regularization is the optimal regularizer (with respect to the
Frobenius norm) in the setting when there are sufficient samples to make a full rank
estimation of the covariance matrix (Ledoit and Wolf, 2004), and therefore one would
also expect it to be a good choice for regularization in the range of Σ̂. Furthermore
ridge regularization in the null space of Σ̂ can also be considered optimal in the fol-
lowing sense – its effect is to ensure that any query point lying entirely in the null
space of Σ̂ is assigned the maximum likelihood estimate of its class label (i.e. the label
of the class with the nearest mean).

3. We can show that letting N →∞ (and so ρ→ d) while enforcing k < d = ρ that our
ensemble implements a biased estimate of the true covariance matrix Σ. In particular,
plugging in the true parameters µy and Σ in the exact error (8) we find that the Bayes’
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risk for FLD in the data space is
∑1

y=0 πyΦ
(
−1

2‖Σ
− 1

2 (µ1 − µ0)‖
)

but the expression

in Theorem 2 converges to:

1∑
y=0

πyΦ

(
−g
(

1 +
d

k
κ(Σ)

)
‖Σ− 1

2 (µ1 − µ0)‖
)

where we recall that g(1) = 1
2 . When N < d however, we see that the generalization

error of our RP-FLD ensemble is upper bounded for any training sample containing
at least one point for each class whereas it is known (Bickel and Levina, 2004) that
this is not the case in the data space setting if we regularize by pseudo-inverting.

4. As k ↗ ρ− 1 we can show that the values in the upper block approach the non-zero
eigenvalues of Σ̂+ while in the lower block the diagonal entries become extremely large,
and when k = ρ− 1 we recover precisely the data space pseudo-inverse performance.
Hence when k ' ρ we overfit about as badly as pseudo-inverting in the data space.
Note that when we plug the expectation examined above into the classifier ensemble,
this is equivalent to an ensemble with infinitely many members and therefore, for any
choice of k < ρ − 1, although we can underfit (with a poor choice of k) we cannot
overfit any worse than the unregularized (pseudo-inverse) FLD data space classifier
regardless of the ensemble size, since we do not learn any combination weights from
the data. This is quite unlike adaptive ensemble approaches such as AdaBoost, where
it is well-known that increasing the ensemble size can indeed lead to overfitting. Fur-
thermore, we shall see from the experiments in the next Section 5 that this guarantee
vs. the performance of pseudo-inversion appears to be a conservative prediction of
the performance achievable by our randomly-projected ensemble.

5. Experiments

We now present experimental results which show that our ensemble approach is competitive
with the state of the art in terms of prediction performance. We do not claim of course that
the choice of FLD as a classifier is optimal for these data sets, rather we demonstrate that
the various practical advantages of the RP-FLD approach we listed in the Introduction do
not come at a cost in terms of prediction performance.

5.1. Datasets

We used five publicly available high dimensional datasets from the bioinformatics domain
(colon, two versions of leukemia, prostate, and duke breast cancer), whose characteristics are
as described in Table 1. The first two (colon and leukemia) have the smallest dimensionality
amongst these and were the highest dimensional data sets used in the empirical RP-classifier
study of Fradkin and Madigan (2003) (Note, that paper focuses on a single randomly
projected classifier vs. the data space equivalent, and does not consider RP-FLD).

5.2. Protocol

We standardized each data set to have features with mean 0 and variance 1, and ran
experiments on 100 independent splits. In each split we took 12 points for testing and
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Table 1: Datasets

Name Source #samples #features

colon Alon et al. (1999) 62 2000
leukemia Golub et al. (1999) 72 3571
leukemia large Golub et al. (1999) 72 7129
prostate Singh et al. (2002) 102 6033
duke West et al. (2001) 44 7129

Table 2: Mean error rates ± 1 standard error, estimated from 100 independent splits when
k = ρ/2.

Dataset ρ/2 100 RP-FLD 1000 RP-FLD SVM

colon 24 13.58± 0.89 13.08± 0.86 16.58± 0.95
leuk. 29 1.83± 0.36 1.83± 0.37 1.67± 0.36
leuk.lge 29 4.91± 0.70 3.25± 0.60 3.50± 0.46
prost. 44 8.00± 0.76 8.00± 0.72 8.00± 0.72
duke 15 17.41± 1.27 16.58± 1.27 13.50± 1.10

used the remainder for training. For our data space experiments on colon and leukemia
we used FLD with ridge regularization and fitted the regularization parameter using 5-
fold cross-validation on the first five data splits following Mika et al. (2002). However on
these data this provided no statistically significant improvement over employing a diagonal
covariance in the data space, most likely because of the data scarcity. Therefore for the
remaining three datasets (which are even higher dimensional) we used diagonal FLD in the
data space. Indeed since diagonal FLD is in use for gene array data sets (Dudoit et al.,
2002) despite the features being known to be correlated (this constraint acting as a form of
regularization) one of the useful benefits of our ensemble is that such a diagonality constraint
is no longer necessary.
The randomly projected base learners are instances of FLD with full covariance learned in
the projected space. To satisfy ourselves that building on FLD was a reasonable choice of
classifier we also ran experiments in the data space using SVM with typical default settings3,
as was done in Fradkin and Madigan (2003).

5.3. Results

In each case we compare the performance of our RP averaging ensemble with (regularized)
FLD in the data space and also with SVM in the data space. Summary results for the rule
of thumb choice k = ρ/2 are listed in Table 2.

3. MATLAB support vector machine toolbox (Cawley, 2000) with linear kernel and the parameter C set
to C = 1.
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Figure 1: Effect of k. Plots show test error rate versus k and error bars mark 1 standard
error estimated from 100 runs. In these experiments we used Gaussian random
matrices with i.i.d N (0, 1) entries.
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Figure 2: Effect of different random projection matrices and comparison with majority vote.
Column 1: RP Majority Vote using Gaussian random matrices with i.i.d N (0, 1)
entries; Column 2: RP Averaging ensemble using Gaussian random matrices
with i.i.d N (0, 1) entries; Column 3: RP Averaging ensemble using ±1 random
matrices with i.i.d entries; Column 4: RP Averaging ensemble using the sparse
{−1, 0,+1} random matrices from Achlioptas (2003).
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In figure 1 we plot the results for the regularized data space FLD, for a single RP-FLD,
and for ensembles of 10, 100, and 3000 RP-FLD classifiers. We see in all cases that our
theoretical analysis is well supported, the RP-FLD ensemble outperforms traditional FLD
on a range of choices of k, and the rule of thumb choice k = ρ/2 is not far from the optimal
performance. It is interesting to see that, despite the statistically insignificant difference in
performance of full vs. diagonal covariance models we found for the two lower-dimensional
data sets in the data space, for the three higher dimensional data sets (where we used a
diagonality constraint for computational tractability) the gap in generalization performance
of the data space FLD vs SVM is very large, whereas the gap in performance between the
RP-FLD ensembles and SVM is small. Empirically we see, as we might reasonably expect,
that capturing the feature covariances via our ensemble approach produces better classifi-
cation results than working in the data space with a diagonal covariance model.
We ran further experiments on the colon and leukemia data sets to compare the performance
of the fast random projections from Achlioptas (2003) to Gaussian random projection ma-
trices, and to compare our decision rule to majority vote. Quite interestingly, the picture is
very similar and we find no statistically significant difference in the empirical results in com-
parison with the ensemble that we have presented and analyzed in detail here. The results
of these experiments are plotted in figure 2. The performance match between the different
choices of random matrix is unsurprising, but the agreement with majority vote is both
striking and rather unexpected - we do not yet have an explanation for this behaviour, al-
though it does not appear to arise from the unsigned confidences of the individual ensemble
members being concentrated around a particular value.

6. Discussion and Future Work

We considered a randomly projected (RP) ensemble of FLD classifiers and gave theory
which, for a fixed training set, explicitly links this ensemble classifier to its data space ana-
logue. We have shown that the RP ensemble implements an implicit regularization of the
corresponding FLD classifier in the data space. We demonstrated experimentally that the
ensemble can recover or exceed the performance of a carefully-fitted ridge-regularized data
space equivalent but with generally lower computational cost. Our theory guarantees that,
for most choices of projection dimension k, the error of a large ensemble remains bounded
even when the number of training examples is far lower than the number of data dimensions
and we gained a good understanding of the effect of our discrete regularization parameter
k. We also demonstrated empirically that we can obtain good generalization performance
even with few training examples, and a rule of thumb choice k = ρ/2 appears to work well.
It would be interesting to extend this work to obtain similar guarantees for ensembles of
generic randomly-projected linear classifiers in convex combination, and we are working on
ways to do this. Furthermore, it would be interesting to obtain high probability guaran-
tees on the performance of a finite ensemble, e.g. by deriving a concentration inequality
for matrices in the positive semi-definite ordering: However this appears to be far from
straightforward – the rank deficiency of Σ̂ is the main technical issue to tackle.
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some alternatives when there are many more variables than observations. Bernoulli, 10(6):989–
1010, 2004.

E. Bingham and H. Mannila. Random projection in dimensionality reduction: applications to
image and text data. In F. Provost and R. Srikant, editor, Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 2001), pages 245–250, 2001.

L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

G. Brown. Encyclopedia of Machine Learning, chapter Ensemble Learning. Springer, 2009.

G.C. Cawley. MATLAB support vector machine toolbox (v0.55β) University of East Anglia, School
of Information Systems, Norwich, Norfolk, U.K. NR4 7TJ, 2000. URL http://theoval.cmp.

uea.ac.uk/svm/toolbox/.

S. Dasgupta and A. Gupta. An Elementary Proof of the Johnson-Lindenstrauss Lemma. Random
Struct. Alg., 22:60–65, 2002.

S. Dudoit, J. Fridlyand, and T.P. Speed. Comparison of discrimination methods for the classification
of tumors using gene expression data. Journal of the American statistical association, 97(457):
77–87, 2002.

R.J. Durrant and A. Kabán. Compressed Fisher Linear Discriminant Analysis: Classification of Ran-
domly Projected Data. In Proceedings16th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD 2010), 2010.

R. Folgieri. Ensembles based on Random Projection for gene expression data analysis. PhD thesis,
2008. URL http://hdl.handle.net/2434/45878.

D. Fradkin and D. Madigan. Experiments with random projections for machine learning. In Pro-
ceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 522–529. ACM, 2003.

G. Fumera, F. Roli, and A. Serrau. A theoretical analysis of bagging as a linear combination of
classifiers. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(7):1293–1299,
2008.

N. Goel, G. Bebis, and A. Nefian. Face recognition experiments with random projection. In Pro-
ceedings of SPIE, volume 5779, page 426, 2005.

T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller, M.L.
Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, and E.S. Lander. Molecular classification of
cancer: class discovery and class prediction by gene expression monitoring. Science, 286(5439):
531, 1999.

31

http://theoval.cmp.uea.ac.uk/svm/toolbox/
http://theoval.cmp.uea.ac.uk/svm/toolbox/
http://hdl.handle.net/2434/45878


Durrant Kabán

Y. Guo, T. Hastie, and R. Tibshirani. Regularized linear discriminant analysis and its application
in microarrays. Biostatistics, 8(1):86–100, 2007.

T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning; data mining, infer-
ence, and prediction. Springer, 2001.

T.K. Ho. The random subspace method for constructing decision forests. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 20(8):832–844, 1998.

V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization
error of combined classifiers. The Annals of Statistics, 30(1):1–50, 2002.

O. Ledoit and M. Wolf. A well-conditioned estimator for large-dimensional covariance matrices.
Journal of multivariate analysis, 88(2):365–411, 2004.

T.L. Marzetta, G.H. Tucci, and S.H. Simon. A Random Matrix–Theoretic Approach to Handling
Singular Covariance Estimates. IEEE Trans. Information Theory, 57(9):6256–71, September 2011.

S. Mika, G. Ratsch, J. Weston, B. Schölkopf, and KR Mullers. Fisher discriminant analysis with
kernels. In Neural Networks for Signal Processing IX, 1999. Proceedings of the 1999 IEEE Signal
Processing Society Workshop, pages 41–48. IEEE, 2002. ISBN 078035673X.

T. Pattison and D. Gossink. Misclassification Probability Bounds for Multivariate Gaussian Classes.
Digital Signal Processing, 9:280–296, 1999.

S. Raudys and R.P.W. Duin. Expected classification error of the fisher linear classifier with pseudo-
inverse covariance matrix. Pattern Recognition Letters, 19(5):385–392, 1998.

R.E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee. Boosting the margin: A new explanation for
the effectiveness of voting methods. The Annals of Statistics, 26(5):1651–1686, 1998.

A. Schclar and L. Rokach. Random projection ensemble classifiers. In Joaquim Filipe, Jos Cordeiro,
Wil Aalst, John Mylopoulos, Michael Rosemann, Michael J. Shaw, and Clemens Szyperski, edi-
tors, Enterprise Information Systems, volume 24 of Lecture Notes in Business Information Pro-
cessing, pages 309–316. Springer, 2009.

D. Singh, P.G. Febbo, K. Ross, D.G. Jackson, J. Manola, C. Ladd, P. Tamayo, A.A. Renshaw, A.V.
D’Amico, J.P. Richie, E.S. Lander, M. Loda, P.W. Kantoff, T.R. Golub, and W.S. Sellers. Gene
expression correlates of clinical prostate cancer behavior. Cancer cell, 1(2):203–209, 2002.

M. West, C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, H. Zuzan, J.A. Olson, J.R.
Marks, and J.R. Nevins. Predicting the clinical status of human breast cancer by using gene
expression profiles. Proceedings of the National Academy of Sciences, 98(20):11462, 2001.

32


	Introduction
	Preliminaries
	Results
	Proofs
	Proof of Theorem 1
	Sketch Proof of Theorem 2
	Generalization error of the ensemble with a fixed training set
	Proof (sketch) of the tail bound on the generalization error

	Comments

	Experiments
	Datasets
	Protocol
	Results

	Discussion and Future Work

