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Abstract

Maximum margin clustering can be regarded as the direct extension of support vector machines to
unsupervised learning scenarios. The goal is to partition unlabeled data into two classes such that a
subsequent application of a support vector machine would yield the overall best result (with respect
to the optimization problem associated with support vector machines). While being very appealing
from a conceptual point of view, the combinatorial nature of the induced optimization problem ren-
ders a direct application of this concept difficult. In order to obtain efficient optimization schemes,
various surrogates of the original problem definition have been proposed in the literature. In this
work, we consider one of these variants, called unsupervised regularized least-squares classifica-
tion, which is based on the square loss, and develop polynomial upper runtime bounds for the
induced combinatorial optimization task. In particular, we show that for n patterns and kernel ma-
trix of fixed rank r (with given eigendecomposition), one can obtain an optimal solution in O(n")
time for r < 2 and in O(n" 1) time for » > 3. The algorithmic framework is based on an inter-
esting connection to the field of quadratic zero-one programming and permits the computation of
exact solutions for the more general case of non-linear kernel functions in polynomial time.
Keywords: Maximum Margin Clustering, Combinatorial Optimization, Unsupervised Learning

1. Introduction

Maximum margin clustering (Xu et al., 2005) extends support vector machines (SVMs) (Boser
et al., 1992; Cortes and Vapnik, 1995) to unsupervised learning: Instead of assuming the labels of
the training patterns to be given, one aims at finding a partition of the data into two classes such
that a standard supervised SVM yields an optimal value of the SVM optimization problem given the
same hyperparameters. While SVMs induce convex optimization tasks that can be solved efficiently
in polynomial time, the unsupervised extension yields a mixed-integer programming task, and these
problems are known to be NP-hard in general (Vavasis, 1991).

While being very interesting from an application point of view, the combinatorial nature of
the maximum margin clustering problem renders the search for an optimal (or, at least, a good)
solution extremely difficult. A direct approach to solving the induced task is based on applying
standard solvers for mixed-integer programming problems. For example, Bennett and Demiriz
(1999) follow this approach for the related task of training semi-supervised SVMs (Vapnik and
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Sterin, 1977). However, the running time of such schemes is exponential in the worst case, similar
to the brute-force approach that checks every possible partition of the patterns into two classes.
A variety of heuristic optimization approaches have been proposed that can generate reasonable
candidate solutions efficiently. Ways to deal with the task include relaxing the original problem
definition to obtain “easier” surrogates that are more amenable to efficient optimization strategies (Li
et al., 2009; Valizadegan and Jin, 2007; Xu et al., 2005) or considering special cases that are, for
instance, induced by linear kernel functions (Wang et al., 2010; Zhao et al., 2008).

Most work conducted so far has focused on the development of practical optimization schemes
that result in valuable (but possibly suboptimal) candidate solutions. Surprisingly, the theoretical
analysis of the underlying optimization task has gained little attention up to now. Among the few
papers devoted to this topic is the one of Karnin et al. (2012), who propose several upper runtime
bounds and hardness results for the maximum margin clustering problem induced by linear hard-
margin SVMs (more precisely, for the so-called furthest hyperplane problem). Another approach is
given by Peng et al. (2012), who combine an enumeration approach with a feature selection scheme.
As mentioned above, applying standard solvers or branch-and-bound strategies yield optimal solu-
tions (Chapelle et al., 2007), but no polynomial upper runtime bounds can be obtained this way.

Contribution: We consider unsupervised regularized least-squares classification, a prominent
maximum margin clustering variant that is induced by the concept of regularized least-squares clas-
sification (Rifkin et al., 2003; Suykens and Vandewalle, 1999). As shown by several authors (Bach
and Harchaoui, 2007; Gieseke et al., 2009; Zhang et al., 2007), this variant can yield a superior clus-
tering performance for real-world data compared to the original problem definition (which is based
on the hinge loss). Still, exactly as for the original task, the combinatorial nature usually requires
heuristic approaches to efficiently generate valuable candidate solutions. We derive a polynomial
time algorithm for solving the induced optimization task exactly in case the underlying kernel matrix
(with given eigendecomposition) is of fixed rank r. Our bound is based on an interesting connection
to the field of quadratic zero-one programming (Allemand et al., 2001; Ferrez et al., 2005), which
yields a polynomial time enumeration framework that can be used to compute optimal solutions for
n patterns in O(n") time for r < 2 and in O(n"~1) time for r > 3. In contrast to previous results,
our approach is not restricted to the linear case only, but also applies to arbitrary kernel functions.

2. Mathematical Background

We start by briefly reviewing the concept of unsupervised regularized least-squares classification
and sketch results from the field of zero-one programming that will be of relevance for this work.

2.1. Unsupervised Regularized Least-Squares Classification

Let T = {x1,...,X,} C R? be a set of unlabeled patterns. The maximum margin clustering
problem aims at partitioning these patterns into two classes such that a standard application of a
SVM yields the best overall result. From a mathematical point of view, this yields (Xu et al., 2005):

ye{-1,+1}",
weR?, beR, £€R™

S.t. y1(<W7Xz> + b) 2 1- §i7 gz Z 07

1 n
minimize §||w||2+025i (1)
=1
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where C' > 0. In addition, some kind of balancing constraint is needed to prevent undesired so-
lutions such as assigning all patterns to one class. Typical candidates are constraints of the form
—1 < 3%, y;i < 1 with user-defined parameter | € Nor 3"  (w,x;) + b ~ 0 (Chapelle and
Zien, 2005; Joachims, 1999; Xu et al., 2005).

Obviously, the difficulty of the optimization task consists in finding the correct assignment for
the partition vector y. Since we have both real-valued and integer optimization variables, we are
dealing with a mixed-integer programming problem, and this class of optimization tasks is generally
NP-hard (Vavasis, 1991). Exactly as for the concept of SVMs (Cortes and Vapnik, 1995), one can
obtain more flexible models via the use of kernel functions k : X x X — R defined on an arbitrary
input space X’ (Aronszajn, 1950). This leads to optimization problems of the more general form

minimize Ly, f(x;)) + A 2 , )
ye{—1,+1}", f€H) ; ) 11 )

where A € R™ is a regularization parameter, Hy, a reproducing kernel Hilbert space induced by
the considered kernel function, and L : R x R — [0, 00) a loss function. Note that a balancing
constraint of the form X Y% | (w, x;) 4+ b = 0 is implicitly enforced in the above formulation by
setting b = 0 and by assuming that the data patterns are centered in the feature space (Chapelle and
Zien, 2005). That is, we in general assume » . ; ®(x;) = 0, where ®(x) = k(-, x) is the mapping
induced by the kernel function k.!

As pointed out above, several variants of the original maximum margin clustering problem have
been proposed in the literature that stem from replacing the hinge loss L(y,t) = max(0,1 — yt)
by other loss functions. Among these modifications is the unsupervised regularized least-squares
classification variant that is induced by the square loss (Bach and Harchaoui, 2007; Gieseke et al.,
2009; Zhang et al., 2007):

n

minimize Z (yi - f(Xi))2 + A”f”?ik 3

y€{71,+1}n7 fEHk i=1

Due to the representer theorem (Scholkopf and Smola, 2001) given a fixed partition vector y €
{—1,4+1}", any optimal f* € Hj, is of the form f*(-) = > | c;ik(-,x;) with ¢1,...,¢, € R.
Hence, using || f* ||3_[k = c'Kc (Scholkopf and Smola, 2001), one can rewrite the above task as

minimize  (y — Kc)'(y — Kc) + Ac"Ke. 4)
ye{—1,41}", ceRn

Note that solving this task is still very challenging due to the vector y. In Figure 1, three optimal
partitions are shown for a two-dimensional point set that stem from different kernel functions.

2.2. Unconstrained Zero-One Programming

As we will show below, one can eliminate the real-valued part of the optimization variables for the
case of the square loss, which yields a pure integer programming problem. Such problems have
gained a considerable attention in the field of mathematical optimization during the last decades,

1. Let K € R™ ™ be the positive semidefinite kernel (Gram) matrix induced by the sequence x1,...,Xn. Then
centering can be easily achieved by considering K = K — %lnnK — %Klnn + n%lnnKlnn =1I- 1’f)K(I —
I"T”) instead of K, where 1,,, € R™*"™ denotes the matrix full of ones (Scholkopf et al., 1998).
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Figure 1: Three optimal partitions with respect to the unsupervised regularized least-squares clas-
sification task (4) given (a) a linear, (b) a polynomial, and (c) an RBF kernel.

both from a practical and a theoretical perspective. A special case of such problem instances are so-
called unconstrained quadratic maximization problems in zero-one variables (01QPs) (Allemand
et al., 2001; Ferrez et al., 2005) that are of the form

imize h(z) = z' 5
maximize (z) =2z Qz 5)

with an appropriate matrix Q € R™*"™. As pointed out by Allemand et al. (2001), problems of this
type are still NP-hard in general (and this even holds in case Q is positive definite). However, there
exists a small number of polynomial cases (e.g., if the matrix has rank one). Recently, Allemand
et al. (2001) discovered one of them that is given when the matrix Q is positive semidefinite and of
fixed rank 7:

Theorem 1 (Allemand et al. (2001)) Let Q be a positive semidefinite matrix with fixed rank r =
rank(Q). In case a decomposition of the form Q = CTC with C € R"™*" is explicitly given (i.e.,
precomputed and available in memory), one can compute an optimal solution for task (5) in O(n")
time for r < 2 and in O(n"~1) time for r > 3.

Proof sketch We briefly sketch the key ideas of the proof since our approach makes use of
this algorithmic building block, see Allemand et al. (2001) for details. The linear map g : R"* —
R" with g(z) := Cz maps the hypercube [0,1]" to a special convex polytope P in R", called
zonotope (Edelsbrunner, 1987). Furthermore, for the optimal h* = maximize,¢(g,1}» z'Qz, we
have

h* = maximize z' CTCz = maximize z' CTCz = maximize ||p|?, (6)
ze{0,1}m z€[0,1]" pEP
where the second equality follows from the convexity of the objective. As pointed out by Allemand
et al. (2001), the last term depicts the maximization of a convex function over the convex set P.
Thus, the maximum is attained at one of the extreme points of P. Furthermore, for each extreme
point p € P, there exists an extreme point z of [0, 1] with p = Cz (Allemand et al., 2001).

The construction of zonotopes is a well-known task in discrete geometry. In the above setting,
P is the Minkowski sum of the n line segments [0, c;], where the so-called generator c; denotes
the ith column of C (Allemand et al., 2001). There exists a classical result in the field of discrete
geometry that provides an upper bound on the number ho(P) of extreme points of P:

Theorem 2 (Edelsbrunner (1987)) The number ho(P) of extreme points of P is in O(n"1).
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As shown by Allemand et al. (2001), there exists an efficient scheme that enumerates all extreme
points p of P (along with an associated vector z € {0, 1}" with p = Cz) in O(n") time for r < 2
and in O(n"~1) time for r > 3. For each extreme point, one can then evaluate the right-hand side
of (6) spending O(r) = O(1) time to obtain the overall best objective. [

Note that the above result assumes that elementary operations for real numbers can be performed
in constant time (as it is assumed in, e.g., the real-random access memory model (Edelsbrunner,
1987; Preparata and Shamos, 1985)).

3. Unsupervised Least-Squares via Convex Zero-One Programming

In this section, we will show that the concept of unsupervised regularized least-squares classification
is, indeed, of the special form depicted above. Note that the induced optimization task (4) is, in its
original form, still very challenging to address due to the partition vectory € {—1, +1}".

3.1. Convex Quadratic Objective

For a fixed partition vector, the task (4) gives rise to a convex optimization problem: The gradi-
ent and the Hessian of the objective are given by V¢ J(y,c) = —2(K)"(y — Kc) 4+ 2AKc and
ViJ(y,c) = 2(K)TK + 2)K, respectively. Due to the kernel matrix being positive semidefi-
nite, the Hessian is positive semidefinite as well. Further, an optimal solution can be obtained via
c* = Gy with G = (K + AI)~!. Plugging in these intermediate solutions into the objective (4)
leads to:

F(y) = (y—Kc")'(y —Kc") +A(c) ' Kc*
= y' (I-KG - GK + GKKG + \GKG)y, (7

where we used K = KT and GT = G. The next lemma shows that one can obtain the following
equivalent zero-one programming task:

Lemma 3 The optimization task (4) is equivalent to

maximize z' VDD, V'z, (8)
ze{0,1}"

where K = VDV is the eigendecomposition of K and Dy := (D + A\I)~L.

Proof Let K = VDVT be the eigendecomposition (Golub and Van Loan, 1996) of the positive
semidefinite kernel matrix K with orthogonal matrix V. € R™*" and diagonal matrix D € R"*".
Since the matrix V € R™*" is orthogonal, we have

1

G=(K+A)'=(VDVT + AvVT) " = (V(D + A)VT) ' = VD,VT, )

which in turn implies the following four equations:
KG = vDV'vD,v!'=vDD,VT
GK = vD,VI'vDV!=vD,DVT
GKKG vD,vivbv'vDVv'vD, V! = VD, DDD, V'
GKG = vD,v'vDbv'vD,V'=vVvD,DD,V'
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Using these equations, we can follow Pahikkala et al. (2012) and rewrite the objective (7) as:

F(y) = y'(I-KG - GK +GKKG + \GKG)y
= y'V(I-2DD, + D’D} + ADD3) V'y
= y'V(I+(-21+D,D+\D,)DD,) V'y
= y'V(I+(-2I+D,(D + AI))DD,)V'y
= y'V(I-DD,)V'y
= n—y'VDD,VTy (10)
To obtain the desired zero-one programming task, we now make use of the bijective mapping ¢ :

{—=1,4+1}" — {0,1}" with ¢(y) = yTH and ¢~1(z) = 2z — 1. This leads to an equivalent task
for (4) having the form

minimize n — 4z' VDD, V'z + 1TVDD, V"1, (11)
ze{0,1}"
which concludes the proof since the constant terms and the scaling factors can be ignored. |

Thus, given an optimal z* € {0,1}" for task (8), one obtains an optimal partition vector y* €
{—1,+1}" for task (4) via y* = ¢~ 1(z*) = 2z* — 1. An important property of the task (8) is the
fact that the associated matrix is positive semidefinite:

Lemma 4 The matrix Q := VDD, VT in optimization task (8) is positive semidefinite.

Proof The diagonal matrix DD, contains the eigenvalues of QQ and has only non-negative entries
since K is positive semidefinite. |

3.2. Upper Runtime Bounds

The above derivations show that one can address the equivalent task (8) that is of the form

maximize z' VDD ,\VT Z (12)
ze{0,1}" —
=QEcRn%n

with positive semidefinite matrix Q. Thus, in contrast to the original task (4), we are now dealing
with a convex zero-one maximization task.

In the following, we will assume that the kernel matrix K has fixed rank » < n and that its
eigendecomposition K = VDVT is given.? Under these conditions, the unsupervised regularized
least-squares classification task can be solved in polynomial time:

Theorem 5 Given a kernel matrix K of fixed rank r < n and associated eigendecomposition K =
VDVT (precomputed and available in memory), one can solve the optimization task (4) in O(n")
time for v < 2 and in O(n" 1) time for r > 3, respectively.

2. One can obtain the eigendecomposition K = VDV of the kernel matrix in O (n>r) time (up to machine precision
and in practice) (Golub and Van Loan, 1996; Halko et al., 2011). Similar to Allemand et al. (2001), we do not dwell on
the complexity for computing such a decomposition precisely from a theoretical perspective and will simply assume
it to be given. As pointed out by Allemand et al. (2001), “eliminating this assumption is a sufficiently interesting
problem on its own”.

67



GIESEKE PAHIKKALA IGEL

Proof Let us assume that the eigenvalues (and the corresponding eigenvectors) are ordered such that
[D]; ; = 0for i > r (this can be achieved spending O(n) time). In this case, we have K = VDVT

w1th appropriate V € R"*" and D € R"*". Thus, one can explicitly compute Q = VDD ,\VT
CTC with C = BTVT € R"™*" and appropriately chosen diagonal matrix B with BBT = DD,.

Thus, we can formalize the equivalent optimization task (8) in linear time. Since C has rank at
most r, Q has rank at most r as well. In addition, since Q is positive semidefinite by Lemma 4,
we can apply Theorem 1 to obtain an optimal solution for task (8) in O(n") time for » < 2 and in
O(n"~1) time for r > 3, respectively.

The optimal solution z € {0,1}" can then be mapped to an optimal partition vector y* €
{—1,+1}" via ¢! spending linear time. Finally, the associated model vector can be obtained in
O(nr) = O(n) time via c* = Gy* = VD\VTy*, [

The above theorem states that the unsupervised regularized least-squares classification task can be
solved in polynomial time given a kernel matrix of rank r. As a direct application of this result, we
may consider the rank r approximations of an arbitrary kernel matrix K (with possibly full rank),
the best one (with respect to, e.g., the Frobenius and the 2-norm) being obtained from its truncated
eigendecomposition K = VDV, that is, the matrix D € R™*" containing the r largest eigen-
values and V € R™ " the corresponding eigenvectors. Such an approximation can be computed
in roughly O(n?r) time, for example, via the recently proposed randomized matrix decomposition
algorithms (Halko et al., 2011).

Corollary 6 Let K = VDVT be a rank-r approximation (precomputed and available in memory)
of an arbitrary kernel matrix K. Then, one can solve the optimization task (4) for the approximated
kernel matrix in O(n") time for r < 2 and in O(n" 1) time for r > 3, respectively.

Another special case is given for linear kernel functions with K = XXT, where X € R™* contains
the patterns as rows. Again, since we have rank(K) < d, it follows:

Corollary 7 Let K = XXT with X € R"*? be the linear kernel matrix and K = VDV its
eigendecomposition (precomputed and available in memory). Then, one can solve the optimization
task (4) in O(n?) time for d < 2 and in O(n4=1) time for d > 3, respectively.

3.3. Algorithmic Framework

The overall framework for solving the original combinatorial task (4) is given in Algorithm 1: As
shown in the proof of Theorem 5, we can rewrite the eigendecomposition of the kernel matrix
K = VDVT as K = VDV, This directly yields the decomposition Q = CTC with C € R"*"
needed for initializing the equivalent task (8) in Step 2. -

One can then resort to the approach of Allemand et al. (2001) s
in Step 3 to enumerate all extreme points p of the zonotope P

that is generated by the n line segments [0, c;] (along with an /
associated vector z € {0,1}" with p = Cz). This is illus- ’

trated in Figure 2, which shows the zonotope P that is induced )
by the point configuration depicted in Figure 1 (c).> Here, the (
red squares depict the extreme points p of P and the black lines .
the generators [0, ¢y}, ..., [0, cy].

Figure 2: Zonotope P
3. Using an RBF kernel and a rank-2 approximation of K.
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Algorithm 1 Fixed-Rank Unsupervised Regularized Least-Squares Classification

Input: A kernel matrix K of fixed rank r with associated eigendecomposition K = VDVT,
Output: An optimal solution (y*,c*) € {—~1,41}" x R" for optimization task (4).

: Compute K = VDVT with V € R"*" and D € R"*",

Set up the equivalent task (8) with Q = CTC, where C = BTVT € R™" and BBT = DD,.
Compute the extreme points of the zonotope P that is generated by the n line segments [0, ¢;].
For each extreme point p, evaluate the right-hand side of (6) (and store the overall best result).
Let p* be the optimal extreme point and z* € {0, 1}™ its associated vector with p* = Cz*.
Compute y* = ¢~ 1(2*) and ¢* = Gy* = VD, VTy*.

return (y*,c*)

AN A S S s

The overall best objective of the equivalent task (8) can then be obtained in Step 4 by evaluating
the right-hand side of (6) for each extreme point. Both steps take O(n") for r < 2 and O(n"~!) for
r > 3 and yield the optimal z* for task (8). Using ¢!, one can finally obtain the optimal partition
vector y* for the original task (4) along with the model parameter ¢* in O(rn) = O(n) time.

4. Conclusions

We have shown that the optimization task induced by the concept of unsupervised regularized least-
squares classification can be solved in O(n") time for 7 < 2 and in O(n" ') time for r > 3,
respectively, given an arbitrary kernel matrix K of fixed rank  and available eigendecomposition.
While several theoretical results have been proposed for the linear case (for linear maximum margin
clustering), our derivations also hold for the more general case covering non-linear kernel functions.
Our framework makes use of a recently discovered polynomial case in the field of unconstrained
zero-one programming, which in turn is based on non-trivial results and algorithms from discrete
geometry.

While the results presented in this work are mostly of theoretical interest, they might also pave
the way for efficient implementations from a practical point of view. For instance, the algorithmic
framework outlined above yields an efficient optimization approach for low-dimensional feature
spaces (e.g., fore- and background separation in image analysis).* Further, the special form of the
equivalent optimization task (8) might be useful for developing efficient (parallel) branch-and-bound
implementations. We plan to investigate these perspectives in near future.
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4. For instance, intuitive clustering solutions for the well-known Old Faithful Geyser data set (see, e.g., Bishop (2007))
with n = 272 and d = 2 can be efficiently obtained spending less than half a second on a standard desktop ma-
chine, on which the brute-force approach cannot handle more than 20 points in a reasonable amount of time. The
corresponding prototype implementation (written in Python and publicly available at the authors’ websites) makes
use of a one-to-one correspondence between the extreme points of the zonotope P and the r-dimensional cells of
an associated arrangement A(P) C R" (Ferrez et al., 2005). The extreme points of P can therefore be obtained
by computing appropriate position vectors in A(P), and for this task, parallel enumerations schemes (Ferrez et al.,
2005) have been recently proposed that might be of practical relevance for upcoming implementations.
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