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Abstract

Coordinate descent (CD) algorithms have become the method of choice for solving a number
of machine learning tasks. They are particularly popular for training linear models, includ-
ing linear support vector machine classification, LASSO regression, and logistic regression.
We propose an extension of the CD algorithm, called the adaptive coordinate frequencies
(ACF) method. This modified CD scheme does not treat all coordinates equally, in that it
does not pick all coordinates equally often for optimization. Instead the relative frequen-
cies of coordinates are subject to online adaptation. The resulting optimization scheme
can result in significant speed-ups. We demonstrate the usefulness of our approach on a
number of large scale machine learning problems.

Keywords: Coordinate Descent, Online Adaptation, Convex Optimization

1. Introduction

Coordinate Descent (CD) algorithms are becoming increasingly important for solving ma-
chine learning tasks. They have superseded other gradient-based approaches such as stochas-
tic gradient descent (SGD) for solving certain types of problems, such as training of linear
support vector machines as well as LASSO regression and other L1 regularized learning
problems (Friedman et al., 2007; Hsieh et al., 2008).

SGD is a natural competitor algorithm for solving the underlying convex optimization
problems. An ubiquitous problem of SGD is the need to set a learning rate parameter,
possibly equipped with a cooling schedule. There have been a number of proposals for
adapting such parameters online for optimal progress (see Schaul et al. 2013 and references
therein), which effectively removes the need to tune parameters to the problem at hand.
Importantly, such techniques make it feasible to maintain a potentially large number of
independent learning rates for different parameters, e.g., one per coordinate.

Inspired by online adaptation schemes for SGD learning rates we propose a related
technique for speeding up CD algorithms. The quantity in CD corresponding to learning
rates in SGD is the frequency for selecting a coordinate for optimization. We argue that
touching all coordinates equally often is a choice that remains arbitrary, and that can be
expected to perform sub-optimally in many cases.

We propose to model and adapt the relative frequencies for coordinate selection explic-
itly in the CD algorithm. Modeling the frequencies allows to pick important coordinates
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more often than others and thus to make faster progress to the optimum. Consequently,
adaptation of coordinate frequencies is driven by the progress made on the single-coordinate
sub-problem. We refer to this technique as Adaptive Coordinate Frequencies (ACF), and to
the resulting coordinate descent scheme as ACF-CD.

Our approach is related to previous work. First of all, the formulation of our method is
most natural in the context of random coordinate descent as proposed by Nesterov (2012).
It is closest in spirit to the Adaptive Coordinate Descent algorithm by Loshchilov et al.
(2011) that adapts a coordinate system of descent directions online with the goal to make
steps independent. This algorithm maintains a number of state variables (directions) that
are subject to online adaptation. This is actually a common characteristic of many direct
search heuristics (see e.g. Hansen and Ostermeier 2001) that is also shared by the already
mentioned SGD methods with online adaptation of learning rates (Schaul et al., 2013) and
by the resilient backpropagation (Rprop) algorithm by Riedmiller and Braun (1993).

Our approach is also loosely related to sequential minimal optimization (SMO, Platt
1998; Bottou and Lin 2007), in particular when applied with single-element working sets to
training problems of non-linear support vector machine (SVM) without equality constraint
(Steinwart et al., 2011). However, modern versions of these algorithms rely on elaborate
coordinate selection heuristics (Fan et al., 2005; Bottou and Lin, 2007) that are computa-
tionally prohibitive in the context of this paper.

The remainder of this paper is organized as follows. First we review the basic coordinate
descent algorithm and its use for solving convex optimization problems in machine learning.
Then we generalize this algorithm to variable coordinate frequencies and introduce our novel
adaptive coordinate frequencies CD scheme. The new algorithm is benchmarked against
established CD solvers on a number of large scale machine training tasks. We close with
brief conclusions.

2. Coordinate Descent Machine Training

We consider an n-dimensional convex optimization problem. The basic coordinate descent
scheme for solving this problem iteratively is presented in algorithm 1. In general, CD
methods can be efficient if single steps are cheap to compute, which alleviates for the fact
that CD steps do not account for interrelations between variables. Convergence properties
of CD iterates and their values have been established, e.g, by Luo and Tseng (1992); Tseng
(2001); Shalev-Shwartz and Zhang (2013).

Algorithm 1 Coordinate Descent (CD) algorithm.

INPUT: x(0) ∈ Rn
t = 0
repeat

select active coordinate i(t) ∈ {1, . . . , n}
solve the optimization problem with additional constraints x

(t)
j = x

(t−1)
j for all j 6= i(t)

t← t+ 1
until stopping criterion is met
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CD can come in a number of variations. Here we want to highlight the difference
between deterministic and randomized CD, referring to the selection of coordinates. The
standard CD algorithm is deterministic. The coordinates i(t) are chosen cyclically in order.
Alternatively it may be randomized (Nesterov, 2012), with i(t) drawn independently in each
iteration from the uniform distribution.

CD methods have been popularized in statistics and machine learning especially for
regularized empirical risk minimization problem with sparse solutions. Sparsity is often a
result of regularization, most prominently with an L1 penalty on a linear model’s weight
vector, which is the case in least absolute shrinkage and selection operator (LASSO) models
(Friedman et al., 2007). Logistic regression with L1 regularization is another prominent
example (Yuan et al., 2012). Alternatively, sparsity (of the dual solution) can result from
the empirical risk term, e.g., in a support vector machine with hinge loss. CD training of
linear SVMs has been demonstrated to outperform competing methods (Hsieh et al., 2008).

Given data {(x1, y1), . . . , (x`, y`)} composed of inputs xi ∈ Rd, labels yi ∈ Y , and a
loss function L : R × Y → R, the (primal, unconstrained) training problem of the linear
predictor x 7→ 〈w, x〉 amounts to

min
w∈Rd

λ

p

∥∥w∥∥p
p

+
1

`

∑̀
i=1

L
(
〈w, xi〉, yi

)
(1)

where p is typically either 1 or 2 and λ > 0 is a complexity control parameter. With binary
classification labels Y = {−1,+1}, hinge loss L(z, y) = max{0, 1− yz} and p = 2 we obtain
the linear SVM. Hsieh et al. (2008) solve the corresponding dual problem

min
α∈R`

1

2

∑̀
i,j=1

αiαjyiyj〈xi, xj〉 −
∑̀
i=1

αi (2)

s.t. 0 ≤ αi ≤ C =
1

λ

with CD. The key technique for making CD iterations fast is to keep track of the vector
w =

∑`
i=1 αiyixi during optimization. A CD step in this box-constrained quadratic program

amounts to a one-dimensional, interval-constrained Newton step. The first derivative of the
objective function w.r.t. αi is yi〈w, xi〉 − 1, the second derivative is 〈xi, xi〉, which can be
precomputed. The resulting CD step reads

α
(t)
i =

[
α
(t−1)
i − 1− yi〈w, xi〉

〈xi, xi〉

]C
0

,

where [x]ba = max
{
a,min{b, x}

}
denotes truncation of the argument x to the interval [a, b].

With densely represented w ∈ Rd and sparse data xi the complexity of a step is not only
independent of the data set size `, but even as low as the number of non-zero entries in xi
(and therefore often much lower than the data dimension d).

With regression labels Y = R, squared loss L(z, y) = 1
2(y−z)2 and one-norm penalty p =

1 we obtain the LASSO problem. Friedman et al. (2007) propose to solve the primal problem
directly with CD. The objective function (1) is piecewise quadratic and unconstrained, the
one-dimensional CD sub-problem consists of only two quadratic parts. It can thus be solved
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analytically with few case distinctions (refer to Friedman et al. 2007 for details). Again, the
cost for the computation of the gradient and the update of the weight vector is dominated
by the number of non-zero elements of xi (for coordinate j ∈ {1, . . . , d} the complexity is
determined by the number of training points xi with non-zero component (xi)j).

Many other machine learning methods can be obtained as modifications of these two
base cases. For example, replacing the squared loss with cross-entropy gives L1-regularized
logistic regression. The resulting one-dimensional sub-problem has no closed form solution
and can be approximated with a number of Newton steps (refer to Yuan et al. 2012 for
additional speed-up techniques).

3. Non-uniform Coordinate Descent

In this section we extend the CD algorithm to non-uniform selection of coordinates. The
standard cyclic coordinate selection rule as well as the random CD variant select all coor-
dinates equally often (averaged over a large number of iterations). Instead we propose to
model the relative frequencies for selecting the different coordinates explicitly.

This is easiest in the random CD algorithm. Let pi denote the probability for selecting
coordinate i. Random CD defaults to pi = 1/n for all i ∈ {1, . . . , n}. We relax this setting
by allowing for arbitrary p = (p1, . . . , pn) in the probability simplex S = {p ∈ Rn | pi ≥
0,
∑n

i=1 pi = 1}. One possibility to translate the parameter p ∈ S into a deterministic CD
algorithm is as follows: maintain an accumulator variable ai for each coordinate, initialize

it to a
(0)
i = 0 and progress as a

(t)
i = a

(t−1)
i + pi. Pick i(t) = arg maxi

{
a
(t)
i

}
and lower the

accumulator of the chosen coordinate by one: a
(t)

i(t)
← a

(t)

i(t)
− 1.1

The reasoning behind this extension is that uniform p is a symmetric but otherwise
arbitrary choice. With knowledge available on how much progress can be made with which
coordinate a uniform choice is most probably sub-optimal. In the following we investigate
a few standard applications to showcase this argument.

Consider the dual SVM training problem (2). The optimal solution α∗ is sparse, since at
the optimum many variables αi are at the bounds. Once a variable is at the bound it may
stay there for the rest of the optimization run. Therefore its selection probability pi should
be reduced to zero. This is achieved in standard solver software (Fan et al., 2008) with a so-
called shrinking heuristic (Joachims, 1998) that removes coordinate i from the problem, or
equivalently sets pi to zero. However, some constraints may become inactive later during the
optimization run. Although undoing the shrinking operation is relatively cheap it remains
unclear when and how frequently the shrinking decision should be reconsidered. This calls
for a small but non-zero setting for pi, which becomes possible by allowing for general p ∈ S.

As a second example consider an unconstrained, quadratic optimization problem

min
w∈Rd

f(w) =
1

2
(w − w∗)TQ(w − w∗) (3)

with positive definite, symmetric matrix Q ∈ Rd×d. This models the late optimization phase
for LASSO as well as for the SVM problem (2), restricted to the non-zero (in the SVM case:
unbounded) variables. In this sense the model is suitable for the analysis of convergence

1. A computationally cheaper approximate scheme will be introduced later on.
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rates with any twice continuously differentiable loss function (e.g., logistic regression), with
L1 and L2 regularization, under mild technical assumptions.

On problem (3) the random CD algorithm is described by a Markov chain on w, and
(under weak technical assumptions, say, for data and p ∈ S in general position) the cor-
responding Markov chain w/‖w‖ converges to a stationary distribution. The speed of
convergence to the optimum is determined by the expected progress in the stationary dis-
tribution. Both the stationary distribution as well as the average progress depend upon
the choice of p, which should therefore be considered an important parameter that needs
tuning, or better, online adaptation.

4. Online Adaptation of Coordinate Frequencies

Tuning of p to the problem at hand requires prior knowledge of which variables are impor-
tant. However, the acquisition of this knowledge may be the reason for training the model
in the first place, e.g., in case of LASSO. Thus, this knowledge is generally not available.
Furthermore the optimal setting for p will typically change during the course of the opti-
mization run, e.g., when constraints become active or inactive. For these reasons p should
be subject to online adaptation rather than manual tuning by the user. In this section we
develop a mechanism for adapting p online.

We start by investigating the optimal p in simple, tractable cases. The symmetric case
Qii = q1 > q2 = Qij for i 6= j is easiest to handle: for symmetry reasons uniform p is
optimal. Note that this covers weak as well as strong uniform couplings of coordinates.
Nothing can be gained by adapting p in this case. Thus, an online adaptation strategy
must pass the sanity check to drive p towards uniformity for such problems.

A more realistic case is a mixture of strong and weak couplings within a single problem.
To study the resulting effects we investigate the following minimal model problem for w ∈
R3, which is an instance of problem (3):

Q(ε, δ) =

 1 1− ε δ
1− ε 1 δ
δ δ 1

 . (4)

For small ε and δ the variables w1 and w2 are strongly coupled, while w3 is only weakly
related to the others. Intuitively the best sequence of CD steps is to oscillate between the
first two coordinates, interleaved with a step on w3 from time to time.

We analyze the suitability of p for Q(ε, δ) in terms of the (linear convergence) progress
rate

R = E

[
log

(
f(w(t−1))− f∗

f(w(t))− f∗

)]
,

(higher is better) with the expectation taken in the stationary distribution. f∗ = 0 de-
notes the optimal value. The same definition restricted to steps on coordinate i gives the
coordinate-specific progress rate Ri.

Table 1 lists progress rates for various coupling strengths ε and δ and CD strategies p.
The first row of each block corresponds to the uniform strategy with p1 = p2 = p3 = 1/3.
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ε δ p3 R (R1, R2, R3)

1/3 0.105 (0.139, 0.139, 0.038)
0.1 0.1 0.0293 0.191 (0.165, 0.165, 0.656)

0.0538 0.181 (0.181, 0.181, 0.181)

1/3 0.020 (0.013, 0.013, 0.035)
0.02 0.1 0.0065 0.040 (0.033, 0.033, 0.521)

0.03 0.037 (0.037, 0.037, 0.038)

1/3 0.105 (0.157, 0.157, 0.002)
0.1 0.02 0.021 0.196 (0.175, 0.175, 0.709)

0.0336 0.191 (0.191, 0.191, 0.191)

1/3 0.511 (0.760, 0.760, 0.012)
0.4 0.02 0.078 0.775 (0.710, 0.710, 1.228)

0.0999 0.764 (0.764, 0.764, 0.764)

Table 1: Overall and coordinate-wise progress rates for uniform, near-optimal, and rate-
balancing strategies, estimated over 10, 000, 000 CD steps. The full distribution p
is obtained from p3 as p1 = p2 = (1− p3)/2.

This too frequent choice of i = 3 results in a low progress rate R3. The parameter p3 in
the second row of table 1 has been hand-tuned for near-optimal progress. The discrepancy
in performance to the uniform case is clearly visible despite the low dimensionality of the
model problem. Interestingly, the resulting progress rate R3 exceeds R1 and R2 on all
problems.

Until now we lack a performance indicator that

• can be monitored online,

• gives feedback on how to adapt p.

Assume for a moment that the coordinate-wise progress rate Ri was such an indicator.2

The third row in each block in table 1 illustrates the progress made with p adjusted so that
all coordinate-wise progress rates Ri coincide (and therefore also equal the overall progress
rate R). We refer to this setting of p as the rate-balancing strategy. As expected from
the above analysis of coordinate-wise progress rates, the rate-balancing strategy is in all
cases in between uniform and optimal. Notably, in all cases the overall progress R remains
reasonably close to the optimal progress rate, and far higher than for uniform p.

It turns out experimentally that the rate-balancing strategy is more stable than the op-
timal one w.r.t. slight variations of p. However, its most relevant advantage in the present
context is that it can be identified by a simple online adaptation mechanism. This mech-
anism is based on the observation that Ri/R is a monotonically decreasing function of pi
(with sufficiently high probability). This is simply because more frequent steps mean less
progress per step. Importantly, there is no need for modeling this relation in detail.

2. This is not the case since in practice the optimal value f∗ is unknown. We will show below how to
circumvent this problem.
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Aiming for balanced coordinate-wise progress, a straightforward online adaptation strat-
egy is to increase pi if Ri > R and to decrease pi if Ri < R. As a side effect this rule also
handles an immobile coordinate i correctly that is tied to a bound by an active constraint:
the progress rate Ri = 0 vanishes, which has the desirable effect that the corresponding pi
is reduced. Finally, the adaptive rule passes our sanity check since for symmetric couplings
adjusting all progress rates to the same value is achieved by setting all pi to the same value,
and thus p to the uniform distribution.

The above adaptation rule requires the online estimation of R and Ri, as well as a
(rather arbitrary) quantitative rule for changing pi in the right direction. As an additional
precaution measure we avoid decreasing pi too close to zero. Our implementation of these
rules does not keep p normalized (to sum to one) and instead keeps track of psum =

∑n
i=1 pi

so that the probability pi/psum can be recovered at constant cost. Furthermore, equality of
the progress rates Ri is equivalent to equality of f -progress ∆ = f(x(t)) − f(x(t−1)) for all
coordinates. In contrast to the progress rate this quantity is directly observable since f∗

does not enter. It is often a cheap by-product of the CD step.
The resulting adaptive coordinate frequencies (ACF) method is defined in algorithm 2.

For a step on coordinate i let ∆ denote the progress made by this step, while ∆ denotes a
reference progress rate (a running average over many steps). Then the algorithm updates
pi (and consequently psum) with a learning rate c and the reference progress rate ∆ with an
independent learning rate η. The learning rates as well as the lower and upper bounds pmin

and pmax are parameters of the algorithm, all of which are set to default values according
to appendix-A. The exponential update of pi in algorithm 2 has the merit of keeping pi
positive. However, the same effect can be achieved by truncation, so that many other
quantitative update rules would do. At the start of the optimization run the frequencies
are initialized to pi = 1/n (and psum = 1). ∆ is initialized to the mean over a few (e.g.,
O(n)) iterations.

Algorithm 2 Adaptive Coordinate Frequencies Update

pnew ←
[
exp

(
c · (∆/∆− 1)

)
· pi
]pmax

pmin

psum ← psum + pnew − pi
pi ← pnew
∆← (1− η) ·∆ + η ·∆

Algorithm 3 Creation of a sequence of coordinates according to p

I ← {}
for i ∈ {1, . . . , n} do
ai ← ai + n · pi/psum
baic times: append index i to list I
ai ← ai − baic

end for
shuffle list I

Finally, algorithm 3 realizes coordinate selection according to p in amortized constant
time. This scheme is in between deterministic and random CD in that coordinate frequencies
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are chosen according to their expected value w.r.t. p (and rounded) while the order is
random. The algorithm pre-specifies a number of coordinate indices like in a cyclic sweep,
but in random order. The algorithm outputs a sequence of on average n and at most 2 · n
coordinates at a time at a cost of Θ(n) operations while guaranteeing that each coordinate
has a waiting time of at most

d1/(n · pi)e ≤ d1/(n · pmin)e = N <∞

sweeps for its next inclusion. This property guarantees convergence of the resulting CD
algorithm with the same arguments as in the proof of theorem 1 by Hsieh et al. (2008),
which is based on theorem 2.1 by Luo and Tseng (1992). Alternatively, in the terminology
of Tseng (2001) algorithm 3 realizes an essentially cyclic rule for coordinate selection. Thus,
our ACF-CD algorithm enjoys the same convergence guarantees as other CD schemes, e.g.,
with uniform selection of coordinates.

5. Empirical Evaluation

In this section we investigate the performance of the adaptive coordinate frequencies method.
We have run algorithm 1 in a number of variants reflecting the state-of-the-art in the respec-
tive fields against the ACF-CD algorithm for solving a number of instances of problem (1).
We adopt the stopping criterion applied by liblinear (Fan et al., 2008). The algorithm stops
as soon as all components of the gradient of the objective function that do not correspond
to active constraints fall below a threshold ε > 0.3

The number of CD iterations is a straightforward performance indicator. For sparse
data this indicator is not always reliable, since not all coordinates correspond to non-
zero components of data points equally often. In fact, for some problems the cost of the
inner products 〈w, xi〉 that dominates the cost of a CD iteration varies widely and cannot
be assumed to be roughly constant. Wall clock optimization time is the more relevant
measure. However, experimental timings may be biased due to implementation details.
We use optimization time for exactly comparable implementations and otherwise resort to
the number of multiplication and addition required to compute the inner products 〈w, xi〉,
hereafter referred to as the number of operations. This quantity is a very good predictor of
the actual optimization time, with the advantage of being independent of implementation,
CPU, memory bandwidth, etc.

The data sets used in this study range from medium sized to extremely large. They
have been obtained from the libsvm data website

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/ .

Table 2 lists number of data points (instances) and number of features. The dimensionality
of the optimization problem is the first one for SVM training (n = `) and the latter one for
LASSO training (n = d).

3. The source code of all experiments is publicly available at
http://www.ini.rub.de/PEOPLE/glasmtbl/code/acf-cd/
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Problem Instances (`) Features (d)

cover type 581, 012 54
kkd-a 8, 407, 752 20, 216, 830
kkd-b 19, 264, 097 29, 890, 095
news 20 19, 996 1, 355, 191
rcv1 20, 242 47, 236
url 2, 396, 130 3, 231, 961
E2006-tfidf 16, 087 150, 360

Table 2: Benchmark problems used in this study.

5.1. Linear SVM Training

We compared ACF-CD in an extensive experimental study to the liblinear SVM solver (Fan
et al., 2008; Hsieh et al., 2008). This is an extremely strong and widely used baseline. The
liblinear CD solver sweeps over random permutations of coordinates in epochs. In addition
it applies a shrinking heuristic that removes bounded variables from the problem.

Both algorithms return accurate solutions to the SVM training problem. The test errors
coincide exactly. The algorithms don’t differ in the quality of the solution (dual objective
values are extremely close; often they coincide to 10 significant digits), but only in the time
it takes to compute this solution.

Comparing training times in a fair way is non-trivial. This is because the selection of a
good value of the regularization parameter C requires several runs with different settings,
often performed in a cross validation manner. The computational cost of finding a good
value of C can easily exceed that of training the final model, and even a good range for C is
hard to guess without prior knowledge. The focus of the present study is on optimization.
Therefore we don’t fix a specific model selection procedure and instead report training
times over a range of values, namely C ∈ {0.01, 0.1, 1, 10, 100, 1000}. Training times of both
algorithms are comparable since we have implemented ACF-CD directly into the liblinear
code.

The results are reported in figures 1 and 2. The figure also includes three-fold cross
validation performance which gives an indication of which C values are most relevant. The
best value is contained in the interior of the tested range in all cases. For completeness,
timings and iteration numbers are listed in Appendix B.

In most cases the ACF-CD algorithm is faster than liblinear. For large values of C it
can outperform the baseline by more than an order of magnitude (note the logarithmic scale
in the figures). The cover type problem is an exception. This problem is special for its low
feature dimensionality of only 54, which means that the 581, 012 dual variables are highly
redundant. In this case the optimal solution can be represented with many possible subsets
of variables αi which makes adaptation of coordinate frequencies superfluous.
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cover type
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Figure 1: Training times with the original liblinear algorithm (red circles) and with ACF-
CD (blue squares) as a function of the regularization parameter C. The target
accuracy is ε = 0.01 for the solid curve and ε = 0.001 for the dashed curves.
For reference, three-fold cross validation performance (percent correct) is plotted
below the curves in green, with best configurations circled. In all cases the best
value(s) are contained in the interior of the chosen parameter range.

5.2. LASSO Regression

To demonstrate the versatility of our approach we furthermore compared ACF-CD to the
LASSO solver proposed by Friedman et al. (2007). This is a straightforward deterministic
CD algorithm, iterating over all coordinates in order. We have varied the parameter λ in a
range so that the resulting number of non-zero features varies between very few (less than
10) and many (more than 10, 000). This gives a rather complete picture of the relative
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Figure 2: Further results. See figure 1 for details.

problem λ uniform ACF
iterations operations iterations operations

rcv1 0.001 7.06 · 108 2.24 · 1010 7.50 · 107 4.63 · 109

0.01 9.21 · 107 2.92 · 109 1.86 · 107 1.36 · 109

0.1 4.95 · 107 1.57 · 109 4.14 · 106 4.43 · 108

1 2.36 · 107 7.48 · 108 1.53 · 106 2.24 · 108

10 5.38 · 106 1.71 · 108 1.21 · 106 1.79 · 108

100 4.25 · 105 1.35 · 107 2.36 · 105 8.20 · 106

news 20 0.1 2.64 · 109 1.78 · 1010 3.88 · 107 1.49 · 109

1 1.47 · 109 9.89 · 109 3.19 · 107 7.50 · 108

10 3.78 · 108 2.54 · 109 2.30 · 107 1.98 · 108

100 6.78 · 106 4.55 · 107 9.49 · 106 6.42 · 107

E2006-tfidf 0.001 2.38 · 109 3.16 · 1011 4.08 · 107 2.57 · 1010

0.01 3.40 · 108 4.51 · 1010 8.37 · 106 4.02 · 108

0.1 2.59 · 107 3.44 · 109 5.70 · 106 1.38 · 109

1 2.56 · 106 3.40 · 108 2.71 · 106 3.75 · 108

Table 3: Performance of uniform CD (baseline) and the ACF-CD algorithm for LASSO
training (with stopping accuracy ε = 0.001).

performance of both algorithms over a wide range of relevant optimization problems. The
results are summarized in table 3. Since LASSO is a regression method we have included
the E2006-tfidf problem in the comparison.

82



Accelerated Coordinate Descent with Adaptive Coordinate Frequencies

The ACF-CD algorithm is never significantly slower than uniform CD and in some
cases faster by one to two orders of magnitude, while obtaining solutions of equal quality
(as indicated by the objective function value). This marks a significant speed-up of ACF-CD
over uniform CD.

6. Conclusion

We have explored a new degree of freedom of coordinate descent optimization, namely
(relative) coordinate frequencies. Non-uniform coordinate frequencies are advantageous on
problems with constraints and with a mixture of weak and strong couplings of variables,
which is arguably a property expected in many of real-world optimization problems.

We propose the Adaptive Coordinate Frequencies algorithm, an online adaptation scheme
for the frequencies of coordinate selection. It adapts frequencies online so as to balance
coordinate-wise progress rates. To the best of our knowledge this is the first coordinate de-
scent algorithm with non-uniform coordinate frequencies (with the rather trivial exception
of shrinking techniques). Standard CD convergence results carry over to the new technique.

The algorithm was benchmarked against strong baselines on various large scale machine
learning problems. It demonstrated excellent performance with speed-ups up to a factor of
10 and more. We therefore consider adaptive coordinate frequency techniques a valuable
tool for coordinate descent optimization.
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Appendix A. Appendix A

parameter value

c 1/5
pmin 1/20
pmax 20
η 1/n

Default settings for the ACF algorithm parameters.
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Appendix B. Appendix B

Linear SVM training results: runtime in seconds and number of iterations (small numbers
below) liblinear and ACF-CF, trained for a range of values of C, with target accuracies
ε = 0.01 (first table) and ε = 0.001 (second table). Runs marked with “—” did not finish
after several weeks of training.4

Data Set Solver C = 0.01 C = 0.1 C = 1 C = 10 C = 100 C = 1000

cover type liblinear 1.29 2.73 12.5 69.5 533 4, 450
3.31 · 106 7.41 · 106 3.38 · 107 1.80 · 108 1.37 · 109 1.14 · 1010

ACF 4.50 6.43 16.3 121 676 8280
8.92 · 106 1.29 · 107 3.31 · 107 1.92 · 108 1.49 · 109 1.41 · 1010

kkd-a liblinear 429 2, 340 31, 200 138, 000 345, 000 —
3.07 · 108 1.57 · 109 1.88 · 1010 8.77 · 1010 2.35 · 1011

ACF 357 705 1, 980 7, 990 62, 700 —
2.93 · 108 5.56 · 108 1.49 · 109 6.55 · 109 5.21 · 1010

kkd-b liblinear 1, 150 5, 140 53, 300 612, 000 — —
6.92 · 108 2.86 · 109 3.11 · 1010 3.42 · 1011

ACF 828 2, 050 4, 280 9, 350 107, 000 —
6.50 · 108 1.11 · 109 2.91 · 109 7.13 · 109 8.04 · 1010

news 20 liblinear 0.56 0.60 2.30 3.56 7.39 100
8.03 · 104 1.22 · 105 4.04 · 105 6.38 · 105 1.38 · 106 2.47 · 107

ACF 0.63 1.05 1.71 2.33 2.62 3.78
1.20 · 105 2.03 · 105 3.37 · 105 3.82 · 105 4.82 · 105 7.37 · 105

rcv1 liblinear 0.09 0.13 0.46 1.76 4.27 14.1
9.36 · 104 1.46 · 105 4.77 · 105 1.70 · 106 4.19 · 106 1.43 · 107

ACF 0.15 0.24 0.38 0.70 0.94 1.32
1.62 · 105 2.78 · 105 4.62 · 105 7.98 · 105 1.05 · 106 1.51 · 106

url liblinear 67.9 353 4, 140 22, 100 121, 000 469, 000
4.05 · 107 1.93 · 108 2.22 · 109 1.45 · 1010 8.04 · 1010 2.74 · 1011

ACF 86.7 192 614 1, 810 5, 910 22, 800
6.24 · 107 1.30 · 108 4.24 · 108 1.16 · 109 4.34 · 109 1.73 · 1010

4. An outer loop iteration limit of 1000 is hard-coded into the liblinear code, version 1.9.2. We have removed
this limit for the sake of a fair comparison.
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Problem Solver C = 0.01 C = 0.1 C = 1 C = 10 C = 100 C = 1000

cover type liblinear 1.28 2.75 12.5 69.5 597 4, 750
3.31 · 106 7.41 · 106 3.38 · 107 1.80 · 108 1.78 · 109 1.44 · 1010

ACF 4.50 8.74 32.4 220 2.140 17, 300
8.92 · 106 1.80 · 107 6.45 · 107 4.62 · 108 4.32 · 109 3.71 · 1010

kkd-a liblinear 817 9, 660 239, 000 4, 410, 000 — —
1.11 · 109 9.16 · 109 1.59 · 1011 1.66 · 1012

ACF 725 1, 580 5, 080 48, 800 430, 000 —
4.99 · 108 8.90 · 108 4.00 · 109 3.32 · 1010 2.67 · 1011

kdd-b liblinear 2, 610 20, 500 459, 000 — — —
1.94 · 109 1.17 · 1010 2.73 · 1011

ACF 2, 090 3, 330 10, 600 69, 500 — —
1.05 · 109 1.77 · 109 6.99 · 109 4.28 · 1010

news 20 liblinear 0.56 0.78 8.54 9.84 11.9 103
8.03 · 104 1.54 · 105 1.55 · 106 1.87 · 106 2.90 · 106 2.50 · 107

ACF 0.68 0.97 1.65 2.03 2.59 4.49
1.20 · 105 2.03 · 105 3.37 · 105 3.82 · 105 4.82 · 105 8.80 · 105

rcv1 liblinear 0.09 0.17 2.74 2.85 4.73 18.4
9.40 · 104 1.93 · 105 3.36 · 106 3.36 · 106 5.63 · 106 2.14 · 107

ACF 0.22 0.53 0.60 0.74 1.05 1.32
2.64 · 105 6.09 · 105 7.33 · 105 9.14 · 105 1.30 · 106 1.70 · 106

url liblinear 139 2, 100 22, 100 135, 000 402, 000 703, 000
8.27 · 107 1.18 · 109 1.46 · 1010 7.61 · 1010 2.35 · 1011 3.78 · 1011

ACF 152 978 3, 390 17, 700 32, 100 36, 600
9.66 · 107 5.92 · 108 2.24 · 109 9.76 · 109 2.34 · 1010 2.25 · 1010
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