
JMLR: Workshop and Conference Proceedings 29:87–99, 2013 ACML 2013

Novel Boosting Frameworks to Improve the Performance of
Collaborative Filtering

Xiaotian Jiang 0532yangya@163.com

Zhendong Niu zniu@bit.edu.cn

Jiamin Guo minminte@hotmail.com

Ghulam Mustafa gmustafa@bit.edu.cn

Zihan Lin linzihan@bit.edu.cn

Baomi Chen 2120111120@bit.edu.cn

Qian Zhou 2120111231@bit.edu.cn

School of Computer Science, Beijing Institute of Technology

Zhongguancun South Street.5, 100081 Beijing, China

Editor: Cheng Soon Ong and Tu Bao Ho

Abstract

Recommender systems are often based on collaborative filtering. Previous researches on
collaborative filtering mainly focus on one single recommender or formulating hybrid with
different approaches. In consideration of the problems of sparsity, recommender error
rate, sample weight update, and potential, we adapt AdaBoost and propose two novel
boosting frameworks for collaborative filtering. Each of the frameworks combines multiple
homogeneous recommenders, which are based on the same collaborative filtering algorithm
with different sample weights. We use seven popular collaborative filtering algorithms to
evaluate the two frameworks with two MovieLens datasets of different scale. Experimental
result shows the proposed frameworks improve the performance of collaborative filtering.

Keywords: Boosting, Collaborative Filtering, Recommender Systems, AdaBoost.

1. Introduction

Recommender Systems (RS) predict a user’s preference on his unrated items based on
the existing rating data and knowledge. Recommendation algorithms can be divided into
multiple categories like content-based approaches, collaborative filtering, knowledge-based
approaches, etc. As one of the most representative categories, collaborative filtering is
prevalent for its high performance and simple requirements (Koren and Bell (2011)).

There are two main categories of collaborative filtering: memory-based and model-
based. In memory-based approaches, a user’ existing rating data is directly exploited for
predicting their preference on other items. While in model-based approaches, the prediction
is achieved by building a model that describes the interaction between users and items. Of
all the model-based approaches, latent factor model (such as SVD-based models) earns
popularity for its high accuracy as well as reduced online response delay.

Most previous recommendation algorithms dedicate to improve the performance of col-
laborative filtering on a single recommender (like Zhao et al. (2013)), or they combine

c© 2013 X. Jiang, Z. Niu, J. Guo, G. Mustafa, Z. Lin, B. Chen & Q. Zhou.

Jiang Niu Guo Mustafa Lin Chen Zhou

different types of recommendation strategies with simple ensemble approaches like weight-
ing or cascade (Burke (2007), Chen et al. (2012)). Yet, to our best knowledge, only a
few researchers showed their interest in combining multiple similar recommenders that are
based on the same single common-used collaborative filtering algorithm with different sam-
ple weights. A known work is Bar et al. (2013), in which paper a boosting framework is
proposed to improve the performance of common-used collaborative filtering. However, this
framework suffers from the complexity brought by iteratively calculating and storing the
similarity matrix.

Boosting is first employed to enhance the performance of classification by integrating
multiple weak classifiers into a better classifier with higher accuracy. It is generally acknowl-
edged that classification and (numeric) prediction are two major components of prediction
problems (Han et al. (2006)). In recommender systems, rating prediction is a common
practice to get a user’s preference on his unrated items. Based on these observations, there
is an instinctive idea that when boosting is applied as a general framework to improve the
performance of recommendation algorithms, satisfying results can be achieved.

Since AdaBoost is both popular and typical among all the boosting approaches, in
this paper we adapt it for collaborative filtering and propose two boosting frameworks:
one for memory-based collaborative filtering, and the other for SVD-based collaborative
filtering. Each of these frameworks combines multiple similar recommenders, which are
based on the same collaborative filtering algorithm with different sample weights controlling
the recommenders in their modeling or prediction phase.

The major considerations for the adaptation process include sparsity, recommender er-
ror rate, sample weight update, and potential. Specifically, we consider how to generate
recommenders without aggravating the sparsity of recommendation data, how to use sample
weights to accurately evaluate the error rate of the generated recommender, how to appro-
priately update sample weights, and how to transfer the system’s attention to the samples
with potential to further reduce its error.

Details of the adaptation process is elaborated in section 3. In our experiment, we
carefully selected seven common-used collaborative filtering approaches. We put four of
them under the memory-based framework and the other three under the SVD-based frame-
work. Experimental result showed that almost for each of these approaches, the proposed
frameworks generated a strong recommender that offers better performance than Bar et al.
(2013). Not only this, the proposed frameworks are also more advantageous in time and
space complexity with the avoidance of calculating similarity matrix iteratively during each
boosting loop.

The rest of this paper is organized as follows. The preliminaries are introduced in section
2. In the next section, we elaborate the proposed two frameworks for collaborative filtering.
In section 4, we conduct experiments on seven widely used collaborative approaches and
carry on analysis on the results. In the last section, we draw conclusions and list future
works.

2. Preliminaries

For the convenience of making clear expressions, we reserve special indexing letters to
distinguish the following concepts. We denote the user set by U and the item set by I. A

88

Boosting For Collaborative Filtering

Rating dataset includes two subsets : Ttrain for the training set and Ttest for the test set.
u,v indicate the users in U ; i,j indicate the items in I. We denote the rating of user u to
item i by rui. Each record (u, i, rui) in T is called a sample, and sometimes we also use
(u, i) for short. A larger rui indicates user u’s higher interest in item i. N(i) represents the
users who rated item i and N(u) the items rated by user u. Given a similarity function,
we denote by S(u, k) the k-nearest users around u and S(i, k) the k-nearest items around
i. B(i;u, k) denotes item i’s k-nearest items among those rated by user u, and B(u; i, k)
denotes user u’s k-nearest users among those who rated item i.

2.1. Baseline Predictor

Collaborative filtering focuses on modeling the interaction between users and items. How-
ever, many effects that contribute to the ratings, such as user bias and item bias, are not
associated with this interaction (Koren and Bell (2011)). User bias indicates the observed
individual difference among users, while item bias indicates the observed bias for each item
compared to the overall average. For example, a lower user bias corresponds to a criti-
cal user who is prone to rate low, and a high item bias corresponds to a good item that
earns higher ratings. A baseline predictor (Koren (2010)) tries to capture these biases and
separate them from the whole effects so as to enable other models better concentrating on
user-item interaction. It is composed of three components: the overall average µ, user bias
bu, and item bias bi. That is,

bui = µ+ bu + bi (1)

We obtain the unknown parameters bu and bi by minimizing the following loss function:

min
b∗

∑
(u,i)∈Ttrain

(rui − µ− bu − bi)2 + λ(b2u + b2i) (2)

where λ(b2u + b2i) is a regularizing term that prevents this model from over-fitting and λ is
set to adjust the extent of regularization. A variant of Stochastic Gradient Descent (SGD)
(Funk) is often employed to rapidly optimize functions like (2). For each sample (u, i, rui)

in Ttrain, SGD denotes eui
def
= rui − b̂ui and executes the following steps to move these

parameters towards the opposite direction of the gradient:

• bu ← bu + γ · (eui − λ · bu)

• bi ← bi + γ · (eui − λ · bi)

where γ controls the learning rate of this process. After several iterations on the training
dataset, bu and bi will gradually converge to stable values.

2.2. Memory-based Collaborative Filtering

User-based collaborative filtering (UserCF, Resnick et al. (1994)) and Item-based collabo-
rative filtering (ItemCF, Sarwar et al. (2001)) are two most famous algorithms in memory-
based collaborative filtering.

89

Jiang Niu Guo Mustafa Lin Chen Zhou

UserCF assumes that a user will like the items enjoyed by the users whose rating per-
ference are like him (also called his neighbors). The prediction formula is

r̂ui =

∑
v∈B(u;i,k) suv · rvi∑

v∈B(u;i,k) suv
(3)

where suv is the similarity value between u and v. In this paper, we employ the cosine
similarity. Likewise, ItemCF assumes that a user will like the items similar to those he has
rated high. Its formula is achieved by switching the role of item and user in formula (3).

Integrating memory-based approaches with baseline predictor can obtain better perfor-
mance. For itemCF, we can get the following formula (Koren (2010)):

r̂ui = µ+ bu + bi +

∑
j∈B(i;u,k) sij · (ruj − buj)∑

j∈B(i;u,k) sij
(4)

Likewise, formula for UserCF can be easily deduced too. Experiments in section 4 confirm
the performance improvements of these two integrated algorithms, called BUserCF and
BItemCF respectively.

2.3. SVD-based Collaborative Filtering

In SVD-based models, both users and items are projected into the same f-dimensional latent
feature space. The interaction between users and items is modeled as inner products in this
space.

Formally, each user u corresponds to vector pu ∈ Rf , and each item i corresponds to
vector qi ∈ Rf . For a given item i, each component of qi indicates the extent that item
i contains this feature. Likewise, each component of pu denotes to what extent user u
feels this feature interesting. So, the interaction between u and i can be modeled as qTi pu.
Integrating it with the baseline predictor, we retrieve the final rating prediction formula,
that is:

rui = µ+ bu + bi + qTi pu (5)

We denote the model above as BiasSVD. The form of its lost function are alike to that of
the baseline predictor. Optimal values of these parameters can also be approximated by
SGD, which has been depicted in section 2.1.

BiasSVD can not react for the newly created ratings. Koren (2010) proposed a factorized
neighborhood model (FNM) to deal with this problem. Not only this, this model lowers the
complexity and offers better performance. Like BiasSVD and baseline predictor, FNM also
employs SGD to minimize a loss function to get its unknown parameters. Details of the
optimization progress are demonstrated in Koren and Bell (2011), which is quite different
from that of BiasSVD.

2.4. AdaBoost

AdaBoost (Han et al. (2006)) combines multiple weak classifiers (better than random guess)
to obtain a stronger classifier with better performance. In this algorithm, first the same
sample weight is assigned to each sample in Ttrain, which is used to generate a sample

90

Boosting For Collaborative Filtering

collection of |Ttrain| by sampling with replacement. This collection is used to train the first
weak classifier M1 and evaluate its error rate err(M1). Then the weights of the misclassified
samples are increased and the weights of the correct classified ones are decreased. This
adjustment changes the probability distribution of sample weights. So when current sample
weights are used to generate M2, the new classifier will pay more attention on samples that
are misclassified by M1. Then the error rate of M2 can be used to obtain M3. This iteration
is repeated until K classifiers and their error rates are obtained. In classification process,
the K classifiers are combined and an integral result is obtained based on majority voting.

3. Two Boosting Frameworks for Collaborative Filtering

3.1. The Boosting Framework for Memory-based Collaborative Filtering

Since item-based approaches and user-based approaches have similar formulae, in this sub-
section, if not explicitly declared, the demonstrations will be based on the item-based con-
text. The same method is also applicable to user-based approaches, by switching the roles
of users and items.

In the boosting scheme in classification, there are some requirements for the weak clas-
sifier (e.g., for binary classification the accuracy rate should larger than 50%). However,
since the employed base recommenders are all significantly better than random guess, in
this paper we do not specify this requirement.

To adapt AdaBoost and propose the boosting framework for memory-based collaborative
filtering, it is necessary to consider the following four major factors: sparsity, recommender
error rate, sample weights update, and potential.

3.1.1. Sparsity

As mentioned above, AdaBoost employs sampling with replacement to generate its actual
training dataset (Di) for each classifier. In recommender systems, whose dataset is often
very sparse, that does not work. Sampling with replacement brings about massive repetitive
samples, making Di even much sparser than Ttrain. Recommender systems cannot guarantee
acceptable results or even any legitimate results with such a training set. The information
loss that sampling brings about is intolerable. For example, in memory-based collaborative
filtering a sparser dataset may mean that items cannot even find there neighbors, not to
mention the recommendation.

To deal with this problem, we employ a more direct approach called reweighting (Seiffert
et al. (2008)). Instead of AdaBoost’s generating Di by sampling, the reweighting strategy
directly uses sample weights to control the new classifier in its shaping or prediction phase.
For ItemCF, we turn its prediction formula into the form below:

r̂mui =

∑
j∈B(i;u,k) sij · wm

uj · ruj∑
j∈B(i;u,k) sij · wm

uj

(6)

where wm
uj denotes the weight of sample (u, j) in the m-th recommender. In this formula,

the larger sample (u, j) is weighted, the closer r̂mui is to ruj . On the other hand, the smaller
sample (u, j) is weighted, the less relevant r̂mui is to ruj .

91

Jiang Niu Guo Mustafa Lin Chen Zhou

3.1.2. Recommender Error Rate

When AdaBoost is employed in classification, the weight of a sample directly indicates that
to what extent the sample is expected to be correctly classified. However, in collaborative
filtering especially the memory-based approaches, the effect of sample weights may not be
that explicit.

For memory-based collaborative filtering, like ItemCF and UserCF, a sample’s weight
does not function directly on its own prediction. Instead, it affects the rating predictions of
all the samples nearby. Correspondingly, the prediction value of this sample is also affected
by the weights of all the samples nearby. That is to say, a larger sample weight does not
indicate the greater eagerness for the system to decrease its error any more. So we come up
with another approach to indicate this eagerness and the following formula for err(Rm) :

err(Rm) =
∑

(u,i)∈Ttrain

(
|rui − r̂mui| ×

∑
j∈B(i;u,k)w

m
uj∑

(u,i)∈Ttrain

∑
j∈B(i;u,k)(w

m
uj × |rui − r̂mui|)

× |rui − r̂
m
ui|

D

)
(7)

where D is a constant used to denote the drop between the upper bond and the lower bond
of the rating interval. wm

uj indicates the weight of sample (u, j) for the m-th recommender.
Comparing with the classifier error rate formula in AdaBoost, we can clearly observe that
here we use |rui − r̂mui|/D to represent sample error err(Xj). Moreover, for each sample we
use the sample weights of all its k-nearest neighbor samples rated by u to represent the
eagerness for the recommender system to decrease its error. Also, we weight the sum value
by |rui − r̂mui| to further emphasize samples that have got extra concern but still have large
sample error.

3.1.3. Sample Weight Update

In AdaBoost, the objective of updating sample weights is to pay more attention on the
misclassified samples. To make this applicable to memory-based collaborative filtering,
here we employ an alternative method: we minimize sample errors by updating all the
sample weights of its k-nearest neighbors.

Specifically, suppose that we observed rui > r̂ui in one loop. Naturally we expect r̂ui
to be higher and closer to rui. To achieve this, for each of its k-nearest neighbors (u, j),
we adjust its sample weight by the following process: if ruj > r̂ui, we increase its sample
weight; if ruj < r̂ui , we decrease the sample weight. The circumstance that rui < r̂ui can
be solved by a reverse process. Formally speaking, for sample (u, i) we define the signal of
its neighbor (u, j) as

SGNm
ui (j) = sgn(rui − r̂mui)× sgn(ruj − r̂mui) (8)

where sgn(x) is a signal function.
Not only that, we also take the individual difference of each sample into consideration.

For samples with higher average error, which indicates the system’s long-term insufficiency
of attention for their correctness, a larger update extent may be more reasonable. The
following formula describes such consideration.

UEm
ui = 1 + η × 1

m

m∑
i=1

rui − r̂iui
D

(9)

92

Boosting For Collaborative Filtering

where η denotes how much the average sample error influences the update process. In this
paper, we set η = 0.5 by experience. It is obvious that UEm

ui is in proportion to the average
error of sample (u, i).

The sample weight update fashion in Adaboost (Han et al. (2006)) is acute. We tried
to apply it directly, but the results are unsatisfactory. So we keep the update process more
steady by using the update fashion depicted below. For each sample (u, i) among the largest
T (≤ 1) of sample errors |rui − r̂mui| in Ttrain, we update the sample weights of its k-nearest
neighbors (u, j) as

wm+1
uj = w1

uj ×
(

1 + SGNm
ui (j)×

err(Rm)

1− err(Rm)
× UEm

uj × ρ
)

(10)

where we denote by ρ the update rate that controls the impact of err(Rm) and UEm
ui in

the update process. In this formula we choose err(Rm)
1−err(Rm) to indicate the effect of Rm as

AdaBoost does.

3.1.4. Potential

In memory-based collaborative filtering, |rui − r̂mui| may not reduce to an arbitrarily small
value. This is because r̂ui —the predicted rating of sample(u, i) —always lays in the rating
interval of this sample’s neighbors. Unfortunately, if the real rating of (u, i) is out of this
interval, then what we can do to minimize the sample error only gets it closer to one bound
of this interval. For instance, supposing that r̂ui is 2.5, the rating interval of its neighbors
is [1,3], and the real rating rui is 5. Then no matter how we adjust the sample weights of
(u, i)’s neighbors to get r̂ui closer to rui, r̂ui can not exceed 3 — upper bound of the interval
[1,3]. When samples like (u, i) get close enough to their bounds, compared with keeping
on adjusting the weights to minimize the errors of these samples, which often receive little
effect as the cost of increasing errors of the other samples, it may be wiser to pay more
attention on samples that may have lower error but larger room to minimize their errors.

So we use errthreshold as an indicator. Suppose that [r̂min, r̂max] is the rating interval
of the neighbors of sample (u, i). For the m-th recommender, if r̂mui > rui and r̂mui − r̂min <
errthreshold, or if r̂mui < rui and r̂max − r̂mui < errthreshold, then we believe sample (u, i) has
reached its intrinsic error r̂min − rui or rui − r̂max. At this time, proceeding with weight
update cannot bring about apparent error reduction, conversely it leads to precision loss on
other samples due to the neighbor relationship.

Based on all the analysis above, we propose the boosting framework for memory-based
collaborative filtering and describe it with item-based collaborative filtering in Algorithm
1. We name this framework MemCFBoost.

3.2. The Boosting Framework for SVD-based Collaborative Filtering

With the similar idea described in subsection 3.1, we propose a boosting framework for
SVD-based collaborative filtering denoted by SVDCFBoost (Algorithm 2). Most of this
framework is the same as Algorithm 1, so in this subsection we just depict the differences.

For SVD-based collaborative filtering approaches, the adaptations are more intuitive.
Instead of using neighbors to predict unknown ratings, SVD-based approaches obtain pre-
diction model by employing SGD to gradually optimize a loss function. If sample weights

93

Jiang Niu Guo Mustafa Lin Chen Zhou

Algorithm 1 MemCFBoost: The Boosting Framework for Memory-based Collaborative
Filtering

Train Model
Initialize the weight of each sample in Ttrain with 1;
for each m ∈ [1,M] do

(1) Use formula (6) to train the m-th recommender Rm.
(2) Predict ratings with the training set, calculate the error rate of recommender Rm

with formula (7).
(3) For each sample (u, i) among the largest T of sample errors |rui − r̂mui|, define the
rating interval of its neighbors as [r̂min, r̂max]. If (u, i) does not match the following
conditions:

1. r̂mui > rui, and r̂mui − r̂min < errthreshold
2. r̂mui < rui, and r̂max − r̂mui < errthreshold

For each of its k-nearest neighbors (u, j), adjust the sample weight wm+1
uj with formula

(10).
(4) Normalize sample weights;

end for

Prediction
(1) For each recommender, set its weight as:

wm = log
1− err(Rm)

err(Rm)

(2) For each sample X(u, i), its predicted rating is: R(X) =
∑M

m=1Rm(X)× wm;

are used to adjust the value of parameter λ so as to control the extent of regularization for
each sample during the optimization process, the weights can directly affect the prediction
model and properly represent the attention paid for the samples’ correctness. Specifically,
in model training process of the m-th recommender, for each sample (u, i) we change its
original learning rate λ to λ · wm

ui , where wm
ui is acquired by the last boosting process.

When calculating the error rates of recommenders, we use sample weights directly. That
is,

err(Rm) =
∑

(u,i)∈Ttrain

wm
ui∑

(u,i)∈Ttrain
wm
ui

× |rui − r̂
m
ui|

D
(11)

Not only this, for each sample (u, i) among the largest T (≤ 1) of the sample errors we
directly decrease the sample weight of its own with the formula below.

wm+1
ui = w1

ui ×
(

1− err(Rm)

1− err(Rm)
× UEm

uj × ρ
)

(12)

By weakening the extent of regularization to get the predicted rating values fitter to
the existing rating data, the generated model focuses more on samples that was poorly
predicted by the last recommender.

94

Boosting For Collaborative Filtering

3.3. Complexity Analysis

Complexity analysis of the two proposed frameworks are elaborated as follows.
The time complexity of ItemCF’s training process includes that of calculating item-item

similarity matrix (O(|I|2|U |)) and sorting all items for each item according in similarity
descending order (O(|I|2log|I|)). For each loop in the training process of Algorithm 1, we
first calculate the estimated value of each sample in the training dataset(O(n|I|)), then
use these results to calculate err(Rm) (O(n|I|)). In update phase, the time complexity is
O(n|I|). The last phase of the training process is normalization, and its time complexity
is O(n). So the time complexity of the training process of the proposed model is O(|I|2 ×
(log|I|+|U |)+Mn|I|), and that of the prediction part isO(M |I|). For most recommendation
datasets, whose sparsity is under 8%, Mn is less than |I||U |. So time complexity can be
O(|I|2(log|I|+ |U |)), which is the same as that of ItemCF. As for the space complexity, the
main space cost is on the storage of item-item similarity matrix (O(|I|2)), the sorted item
list for each item (O(|I|2)), sample weights for each recommender (O(Mn)) and err(Rm)
(O(M)). So the space complexity of the algorithm is O(|I|2 + Mn). The complexity is
higher than the original form, but in consideration of that M is usually small (3 to 8) and
the recommendation is very sparse, the time and space cost is acceptable.

Complexity of Algorithm 2 is less than that in Algorithm 1. This is because this frame-
work directly updates the sample itself instead of updating the weights of its neighbors.
Here we directly present the time and space complexity in Table 1, where S denotes the
iteration times of SVD-based approaches.

Table 1: Time and Space Complexity Comparisons
Training Time Online Time Space

ItemCF O(|I|2(log|I|+ |U |)) O(|I|) O(|I|2)
Algorithm 1 O(|I|2(log|I|+ |U |) +Mn|I|) O(M(|I|)) O(|I|2 +Mn)
BiasSVD O(SnF) O(F) O(F (|U |+ |I|))
Algorithm 2 O(MnSF) O(MF) O(MF (|U |+ |I|))

4. Experiments

To evaluate the performance of the two proposed frameworks, we carried out experiments
on seven popular collaborative filtering algorithms and present the experimental process in
this section. The detailed experimental settings and result analysis is depicted below.

4.1. Datasets

We use two datasets of difference scale for test: MovieLens-1M and MovieLens-100K. Their
statistics are listed in Table 2, and the rating scale is [1, 5].

4.2. Evaluation Metrics

In the above-mentioned two datasets, each user had rated over 20 items. Based on this
feature, we divided each of the two datasets into five disjoint splits. Each split contains

95

Jiang Niu Guo Mustafa Lin Chen Zhou

Table 2: Statistics of MovieLens-100K and MovieLens-1M
ML-100K ML-1M

Users 943 6,040
Items 1,682 3,952
Ratings 100,000 1,000,209
Avg Ratings per user 106.04 165.60
Sparsity 0.063 0.0422

20% of the items that each user had rated. One split was used for testing and the rest four
for training. We repeated our experiments on different split and found that the change of
splits do not lower the improvement of the proposed frameworks, though the performance
on the original algorithms may vary.

In this paper, we employ Root Mean Square Error (RMSE) to evaluate the performance
of our frameworks. The definition is as follows.

RMSE =

√∑
(u,i)∈Ttest

(rui − r̂ui)2

|Ttest|
(13)

It is worth noting that Mean Absolute Error (MAE) is also a famous measure. In this
paper we employ RMSE because this measure is stricter than MAE. It further increases the
penalty to bad predictions. And this is why RMSE was also employed by Netflix Prize as
a better indictor to the performance of recommender systems.

4.3. Evaluated Algorithms

In experimental section, we employ UserCF, ItemCF, BUserCF, BItemCF to evaluate the
performance of the boosting framework for memory-based collaborative filtering, and Base-
line(baseline predictor), BiasSVD, FNM to evaluate the performance of the boosting frame-
work for SVD-based collaborative filtering. We employ a parallel set of parameters in both
datasets to make the experimental result more comparable. Detailed parameter settings
are based on those presented in the referenced papers, such as in Koren and Bell (2011)
Resnick et al. (1994) and Sarwar et al. (2001). Parameters of the proposed methods, ρ the
update extent, m the number of recommenders in use and T the update proportion, are
chosen by a grid search process. The relationship between ρ and m is detailedly illustrated
in section 4.4.

4.4. Experimental Results and Analysis

The experimental results are listed in Table 3, where methods that have clearly improve-
ments are marked in bold.

From this table, we can clearly perceive that most of the methods have better per-
formances after applying the proposed framework. It is worth noting that methods that
earned higher improvement when using the proposed frameworks on Movielens-1M are also
the methods that performed better on Movelens-100K. On both datasets, ItemCF obtains
the best improvement. Specifically, the RMSE drops from 0.8655 to 0.8140 on Movielens-
1M and from 0.9410 to 0.8954 on Movielens-100K. This improvement is quite impressive

96

Boosting For Collaborative Filtering

Table 3: Performance Comparisons on Movielens-1M and Movielens-100K.

Methods
Movielens-1M Movielens-100K

unboosted boosted unboosted boosted

Baseline 0.8581 0.8239 0.9188 0.8918

UserCF 0.9327 0.9272 1.0335 1.0299

BUserCF 0.8091 0.8018 0.8844 0.8807

ItemCF 0.8655 0.8140 0.9410 0.8954

BItemCF 0.7502 0.7368 0.8315 0.8200

BiasSVD 0.7392 0.7055 0.8449 0.8262

FNM 0.7306 0.7225 0.8374 0.8353

given that the gap between ItemCF and BiasSVD, which is famous for its high accuracy,
is only about 0.13. Methods like Baseline, BItemCF and BiasSVD also received obvious
performance improvements. Equally noteworthy is that the performance of the boosted
version of BItemCF is in exceed of that of BiasSVD.

During the experimental process, it is found that the relationship between ρ and the
numbers of recommenders is interesting, so we employed ItemCF as a base recommender
and drew Fig.1(a) and Fig.1(b), where m means the number of recommenders.

1 2 3 4 5 6 7 8 9 10
0.81

0.815

0.82

0.825

0.83

0.835

0.84

0.845

0.85

0.855

0.86

m

R
M

S
E

ρ=0.2
ρ=0.3
ρ=0.4
ρ=0.5
ρ=0.6

(a) Movielens-1M

1 2 3 4 5 6 7 8 9 10
0.89

0.895

0.9

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

m

R
M

S
E

ρ=0.2
ρ=0.3
ρ=0.4
ρ=0.5
ρ=0.6

(b) Movielens-100K

Figure 1: The relationship between ρ and m on Movielens-1M and Movielens-100K

From these two tables, we can clearly see that ρ actually affects the number of recom-
menders needed to achieve the largest improvement that the framework can offer. As ρ gets
smaller, the curve gets flatter. So we need more recommenders to achieve the best perfor-
mance, but it is more possible to choose an appropriate value of m. As ρ get larger, the
curve gets steeper. The number of recommenders we need is decreasing, but a steep curve
may lead to the incapability to approach the optimal performance. Supposing that the
largest improvement is achieved when mopt = 7.5. Since the m in use must be an integer,
we have to suffer loss when choosing 6 or 8 as the actually adopted value. If a steer curve
is given, there may be a heavy loss. So, a larger ρ means less improvement with quicker
calculation, while a smaller ρ means greater improvement with slower calculation.

97

Jiang Niu Guo Mustafa Lin Chen Zhou

5. Conclusion

In this paper, we propose two boosting frameworks to improve the performance of memory-
based collaborative filtering and SVD-based collaborative filtering. The experimental results
on seven popular collaborative filtering algorithms show their effectiveness.

The future work is concentrated on efficiency and Top-N recommendation. Efficiency of
the framework can be improved by two means. On one hand, we can employ and modify
the parallel version of AdaBoost (Chen et al. (2008)) for recommendation. On the other
hand, we can also adjust the parameter ρ to generate fewer recommenders, though it may
cause performance degradation.

The real challenge comes from how to adapt this framework to the Top-N Recommen-
dation. We attempted to use the Top-N metrics proposed in Cremonesi et al. (2010) to test
its performance. However, the improvements are not striking. That may be due to that
Boosting, as a classification method, does not take ranking information into consideration.
Instead of ensuring the correctness of few Top-N samples, the aim of boosting is to improve
the performance on the overall samples. This aim coincides with rating prediction, so we
obtain notable improvements on RMSE. In the future, we hope better results are achievable
by adapting boosting to fit the Top-N recommendation.

6. Acknowledgement

This work is supported by the National Natural Science Foundation of China (no. 61250010
and no. 61370137), the Program for Beijing Municipal Commission of Education (grant
no.1320037010601) and the 111 Project of Beijing Institute of Technology.

References

Ariel Bar, Lior Rokach, Guy Shani, Bracha Shapira, and Alon Schclar. Improving sim-
ple collaborative filtering models using ensemble methods. In Zhi-Hua Zhou, Fabio
Roli, and Josef Kittler, editors, Multiple Classifier Systems, volume 7872 of Lecture
Notes in Computer Science, pages 1–12. Springer Berlin Heidelberg, 2013. ISBN 978-
3-642-38066-2. doi: 10.1007/978-3-642-38067-9 1. URL http://dx.doi.org/10.1007/

978-3-642-38067-9_1.

Robin Burke. Hybrid web recommender systems. In The adaptive web, pages 377–408.
Springer, 2007.

Wei Chen, Zhendong Niu, Xiangyu Zhao, and Yi Li. A hybrid recommendation algorithm
adapted in e-learning environments. World Wide Web, pages 1–14, 2012.

Yen-Kuang Chen, Wenlong Li, and Xiaofeng Tong. Parallelization of adaboost algorithm on
multi-core processors. In Signal Processing Systems, 2008. SiPS 2008. IEEE Workshop
on, pages 275–280. IEEE, 2008.

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recommender algo-
rithms on top-n recommendation tasks. In Proceedings of the fourth ACM conference on
Recommender systems, pages 39–46. ACM, 2010.

98

http://dx.doi.org/10.1007/978-3-642-38067-9_1
http://dx.doi.org/10.1007/978-3-642-38067-9_1

Boosting For Collaborative Filtering

Simon Funk. Netflix update: Try this at home (december 2006). URL http://sifter. org/˜
simon/journal/20061211. html.

Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: concepts and techniques. Mor-
gan kaufmann, 2006.

Yehuda Koren. Factor in the neighbors: Scalable and accurate collaborative filtering. ACM
Transactions on Knowledge Discovery from Data (TKDD), 4(1):1, 2010.

Yehuda Koren and Robert Bell. Advances in collaborative filtering. In Recommender
Systems Handbook, pages 145–186. Springer, 2011.

Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. Grou-
plens: an open architecture for collaborative filtering of netnews. In Proceedings of the
1994 ACM conference on Computer supported cooperative work, pages 175–186. ACM,
1994.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th international conference
on World Wide Web, pages 285–295. ACM, 2001.

Chris Seiffert, Taghi M Khoshgoftaar, Jason Van Hulse, and Amri Napolitano. Resam-
pling or reweighting: A comparison of boosting implementations. In Tools with Artificial
Intelligence, 2008. ICTAI’08. 20th IEEE International Conference on, volume 1, pages
445–451. IEEE, 2008.

Xiangyu Zhao, Zhendong Niu, and Wei Chen. Interest before liking: Two-step recommen-
dation approaches. Knowl.-Based Syst., pages 46–56, 2013.

99

	Introduction
	Preliminaries
	Baseline Predictor
	Memory-based Collaborative Filtering
	SVD-based Collaborative Filtering
	AdaBoost

	Two Boosting Frameworks for Collaborative Filtering
	The Boosting Framework for Memory-based Collaborative Filtering
	Sparsity
	Recommender Error Rate
	Sample Weight Update
	Potential

	The Boosting Framework for SVD-based Collaborative Filtering
	Complexity Analysis

	Experiments
	Datasets
	Evaluation Metrics
	Evaluated Algorithms
	Experimental Results and Analysis

	Conclusion
	Acknowledgement

