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Abstract

Learning distances that are specifically designed to compare histograms in the probability
simplex has recently attracted the attention of the community. Learning such distances
is important because most machine learning problems involve bags of features rather than
simple vectors. Ample empirical evidence suggests that the Euclidean distance in general
and Mahalanobis metric learning in particular may not be suitable to quantify distances
between points in the simplex. We propose in this paper a new contribution to address this
problem by generalizing a family of embeddings proposed by Aitchison (1982) to map the
probability simplex onto a suitable Euclidean space. We provide algorithms to estimate
the parameters of such maps, and show that these algorithms lead to representations that
outperform alternative approaches to compare histograms.

Keywords: metric learning for histograms, Aitchison geometry

1. Introduction

Defining a distance to compare objects of interest is an important problem in machine learn-
ing. Many metric learning algorithms were proposed to tackle this problem in a supervised
way, using Mahalanobis distances as a template (Xing et al., 2002; Schultz and Joachims,
2003; Kwok and Tsang, 2003; Goldberger et al., 2004; Shalev-Shwartz et al., 2004; Glober-
son and Roweis, 2005). In particular, it seems that the Large Margin Nearest Neighbors
approach of Weinberger et al. (2006; 2008) and Information-Theoretic Metric Learning by
Davis et al. (2007) have emerged as popular tools to learn such metrics.

Among such objects of interest, histograms – the normalized representation for bags
of features – play a fundamental role in many applications, from computer vision (Julesz,
1981; Perronnin et al., 2010; Vedaldi and Zisserman, 2012), natural language processing
(Salton and McGill, 1983; Joachims, 2002; Blei et al., 2003; Blei and Lafferty, 2006), speech
processing (Doddington, 2001; Campbell et al., 2003) to bioinformatics (Burge et al., 1992;
Leslie et al., 2002). Mahalanobis distances can of course be used as such on histograms
or bags-of-features, but fail to incorporate the geometrical constraints of the probability
simplex (non-negativity, normalization) in their definition. Given this issue, Cuturi and
Avis (2011) and Kedem et al. (2012) have very recently proposed to learn the parameters
of distances specifically designed for histograms, namely the transportation distance and a
generalized variant of the χ2 distance respectively.

We propose in this work a new approach to compare histograms, which builds upon
older work by Aitchison (1982). In a series of influential papers and monographs, Aitchison
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(1980; 1982; 1985; 1986; 2003) proposed to study different maps from the probability simplex
onto a Euclidean space of suitable dimension. These maps are constructed such that they
preserve the geometric characteristics of histograms yet make subsequent analysis easier
by relying only upon Euclidean tools, such as Euclidean distances, quadratic forms and
ellipses. Our goal in this paper is to follow this line of work and propose suitable maps from
the probability simplex to Rd before carrying out classical Mahalanobis metric learning.
However, rather than relying on a few mappings defined a priori, such as those proposed in
(Aitchison, 1982), we propose to learn such maps directly in a supervised fashion.

This paper is organized as follows: after providing some background on Aitchison trans-
formations in Section 2, we propose a generalization of Aitchison embeddings in Section 3.
In Section 4, we propose an algorithm to learn the parameters of such embeddings using
training data. We also review related work in Section 5, before providing experimental
evidence in Section 6 that our approach improves upon other adaptive metrics on the prob-
ability simplex. We conclude in Section 7.

2. Aitchison Transformations

We consider the probability simplex of d-dimensional histograms,

Sd def
=

{
x ∈ Rd

∣∣∣∣∣
d∑

i=1

xi = 1 and xi ≥ 0, 1 ≤ i ≤ d

}
,

throughout this paper. Aitchison (1982, 1986, 2003) claims that the information reflected
in histograms lies in the relative values of their components rather than on their absolute
value. Therefore, using a Euclidean distance between histograms is not appropriate, since
it only considers arithmetic differences between components. To tackle this issue, Aitchison
proposed to define several embeddings for histograms that stress the importance of ratios.
A central element in Aitchison’s analysis is the log-ratio between components of a vector x,

log
xi

xj
= log xi − log xj ,

which appears throughout the three embeddings proposed in his work, which we detail
below.

2.1. Additive log-ratio transformation

The first transformation proposed by Aitchison (1982, p.144, 2003, p.29) is the additive
log-ratio transformation (alr) which maps a vector x from the probability simplex Sd onto
Rd−1,

alr (x)
def
=


...

log xi+ε
xd+ε
...


1≤i≤d−1

∈ Rd−1,

where ε is a small positive number. The alr map for x ∈ Sd can be reformulated as:
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alr (x) = U log (x + ε1d) ,U =

1 · · · 0 −1
...

. . .
...

...
0 · · · 1 −1

 , (1)

where U ∈ R(d−1)×d, 1d ∈ Rd is the vector of ones, and log x is the element-wise logarithm.
The formula of the alr transformation is directly derived from the definition of the

logistic-normal distribution (Aitchison and Shen, 1980; Blei and Lafferty, 2006) on Sd, which
is simply equivalent to a multivariate normal distribution on the image of the alr transfor-
mation onto Rd−1. The alr map is an isomorphism between

(
Sd,⊕,⊗

)
and

(
Rd−1,+,×

)
where ⊕ and ⊗ are the perturbation (Aitchison, 2003, p.24) and power (Aitchison, 2003,
p.26) operations respectively in the probability simplex, but not isometric since it does not
preserve the distance between them.

2.2. Centered log-ratio transformation

The second transformation proposed by Aitchison (2003, p.30) is the centered log-ratio
transformation (clr), which considers now the log-ratio of each coordinate of x with the
geometric mean of all coordinates,

clr (x)
def
=


...

log xi+ε

d

√
d∏

j=1
(xj+ε)

...


1≤i≤d

∈ Rd. (2)

The clr map can be also expressed with simpler notations using a weight matrix and the
element-wise logarithm:

clr (x) =

(
I− 1d×d

d

)
log (x + ε1d) .

Here, I and 1d×d stand for the identity matrix and the matrix of ones in Rd×d. The clr
map is not only an isomorphism, but also an isometry between the probability simplex Sd
and Rd. Note that the clr map spans the orthogonal of 1d in Rd.

2.3. Isometric log-ratio transformation

Egozcue et al. (2003) proposed to project the images of the clr map onto Rd−1, to define
the isometric log-ratio transformation (ilr). The ilr map is defined as follows:

ilr (x)
def
= Vclr (x) = V

(
I− 1d×d

d

)
log (x + ε1d) , (3)

where V ∈ R(d−1)×d, whose row vectors describe a base of the null space of 1T
d in Rd. The

ilr transformation maps a histogram in the probability simplex Sd onto Rd−1, and is also
an isometric map between both spaces in Aitchison’s sense.
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Remark 1 Aitchison’s original definitions do not consider explicitly the regularization co-
efficient ε (1982; 1986; 2003). In that literature, the histograms are either assumed to have
strictly positive values or the problem is dismissed by stating that all values can be regular-
ized by a very small constant (Aitchison, 1985, p.132; 1986, §11.5). We include explicitly
this constant ε here because it forms the basis of the embeddings we propose in the next
section.

3. Generalized Aitchison Embeddings

Rather than settling for a particular weight matrix – such as those defined in Equa-
tions (1), (2) or (3) – and defining a regularization constant ε arbitrarily, we introduce
in the definition below a family of mappings that leverage instead these parameters to
define a flexible generalization of Aitchison’s maps.

Definition 2 Let P be a matrix in Rm×d and b be a vector in the strictly positive orthant
Rd

+. We define the generalized Aitchison embedding a(x) of a point x in Sd parameterized
by P and b as

a(x)
def
= P log (x + b) ∈ Rm. (4)
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Figure 1: Influence of different pseudo-count values in the log-
arithm function.

Vector b in Equation (4),
can be interpreted as a
pseudo-count vector that
weights the importance of
each coordinate (or bin)
of x. Figure 1 illustrates
the influence of the pseudo-
count vector b on each co-
ordinate. A large value for
bi directly implies that the
map for that value is nearly constant, thereby canceling the influence of that coordinate in
subsequent analysis. Smaller values for bi denote on the contrary influential coordinates,
or bins.

We propose to learn P and b such that histograms mapped following a can be efficiently
discriminated using the Euclidean distance. The Euclidean distance between the images of
two histograms x and z under the embedding a is:

da(x, z)
def
= d (a (x) , a (z)) = ‖P log (x + b)−P log (z + b)‖2 =

∥∥∥∥log

(
x + b

z + b

)∥∥∥∥
PTP

, (5)

where the division between two vectors is here considered element-wise. We will also consider
the quadratic form Q = PTP associated with P. Let S+ def

=
{
Q
∣∣ xTQx ≥ 0,∀x ∈ Rd

}
be

a set of positive semi-definite matrix, so Q ∈ S+ or abbreviated as Q � 0. Our goal is to
learn either P or Q in addition to the pseudo-count vector b to obtain an embedding that
performs well with k-nearest neighbors.

296



Generalized Aitchison Embeddings for Histograms

4. Learning Generalized Aitchison Embeddings

4.1. Criterion

We follow Weinberger et al.’s approach to define a criterion to optimize the parameters
(Q,b) of generalized Aitchison embeddings (2006). Ideally, a distance should be parame-
terized following the information contained in a subset, where the k-nearest neighbors (or
target neighbors) of each point should belong to the same class, whereas other points from
different classes should be sufficiently far (large margin). Consequently, we consider the
following problem for a training set (xi, yi)i:

min
Q,b

F def
=
∑
i,j i

d2
a (xi,xj) + µ

∑
i,j i

∑
`

(1− yi`)Hij` + λ‖b‖22

s. t. Q � 0, b > 0d, (6)

where Hij`
def
=
[
1 + d2

a (xi,xj)− d2
a (xi,x`)

]
+

, j  i means that the vector xj is in the target
neighbors of xi. This notation is not symmetric since i j does not necessarily imply that
j  i. ‖.‖2 denotes the `2-norm. yi is the corresponding label of a point xi, and yi` is
an indicator variable such that yi` = 1 if yi = y`, and yi` = 0 otherwise. µ is a trade-off
constant of the second objective term in F , and λ is a constant number to penalize for

`2-regularization of the pseudo-count vector b. [t]+
def
= max(t, 0) is the hinge loss function.

In the optimization, the first objective term penalizes large distances between each vector
xi and its target neighbors xj while the second objective term penalizes small distances
between points which have different labels, and the last term in the objective is an `2-
regularization for the pseudo-count vector b. As analyzed in Section 3, the constraint
Q � 0 ensures that we learn a well-defined pseudo-metric.

4.2. Alternating Optimization

We propose a naive approach to learn parameters (Q,b) of the non-convex optimization
(6) by an alternating optimization scheme as described in Algorithm 1. We compute target
neighbors for each point using a naive k-nearest neighbors search with da (Equation (5)) as
a base distance.

4.2.1. Fix the pseudo-count vector b to learn the matrix Q

With a fixed vector b, we show that optimization problem (6) with respect to Q can be
cast as a Mahalanobis metric learning problem. By mapping each training vector x onto
log (x + b), problem (6) is equivalent to the LMNN optimization problem (Weinberger et al.,
2006) where the training data are mapped vectors log (x + b) and corresponding labels y.

4.2.2. Fix the matrix Q to learn the pseudo-count vector b

With a fixed matrix Q, we use a projected subgradient descent to learn the pseudo-count

vector b. Defining g(b; xi,xj)
def
= d2

a (xi,xj) we can compute the gradient of g as:

∇g(b; xi,xj) = 2

(
Q log

xi + b

xj + b

)
◦
(

1

xi + b
− 1

xj + b

)
,
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Algorithm 1 Alternating optimization (AO) to learn parameters of the generalized Aitchi-
son embedding

Input: data (xi, yi)i, a pseudo-count vector b0 and a matrix Q0.
Set t← 0.
repeat

Find target neighbors for each vector xi with da as in Equation (5) at (Qt,bt).
Calculate Qt+1 ← LMNN algorithm with training data (log (xi + bt) , yi)i and an initial
matrix Qt.
Update target neighbors for each vector xi at (Qt+1,bt).
Calculate bt+1 ← Algorithm 2 with training data (xi, yi)i, matrix Qt+1 and an initial
vector bt.
Calculate Ft+1 ← F(Qt+1,bt+1).
t← t+ 1.

until t < tmax or insufficient progress for Ft.
Output: matrix Qt, pseudo-count vector bt.

Algorithm 2 Projected subgradient descent to learn a pseudo-count vector b with a fixed
matrix Q.

Input: data (xi, yi)i, a matrix Q, a gradient step size t0, an initial vector b0.
Set t← 0.
Set bt ← b0.
repeat

Compute a set Ω+
t = {(xi,xj,x`) | Hij` (Q,bt) > 0 } .

Compute a subgradient ∂F
∂b at bt as in Equation (7).

Calculate bt+1 ← πRd
+

(
bt − t0√

t
∂F
∂b(bt)

)
.

Calculate Ft+1 ← F(Q,bt+1).
Set t← t+ 1.

until t < tmax or insufficient progress for Ft.
Output: a pseudo-count vector bt.

where ◦ denotes the Schur product between vectors or matrices. Additionally, let Ω+
t denote

a set of triplet (xi,xj,x`) at iteration t where Hij` is positive at bt and a fixed matrix Q,

Ω+
t

def
= {(xi,xj,x`) | Hij` (Q,bt) > 0 } .

Then, we can express a subgradient for the objective function F at bt as follows:

∂F
∂b

(bt) =
∑
i,j i

∇g(bt; xi,xj) + µ
∑

(xi,xj,x`)∈Ω+
t

[∇g(bt; xi,xj)−∇g(bt; xi,x`)] + 2λbt. (7)

Therefore, an update step of the projected subgradient descent for b with an adaptive
monotonic decreasing gradient step size t0√

t
is as follows:

bt+1 = πRd
+

(
bt −

t0√
t

∂F
∂b

(bt)

)
,
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Algorithm 3 Projected subgradient descent with Nesterov’s acceleration (PSGD-NES) to
learn a matrix Q and a pseudo-count vector b.

Input: data (xi, yi)i, a gradient step size t0, an initial matrix Q0, an initial vector b0

and a number of periodic iteration τ for updating target neighbors.
Set t← 1.
Set bt−1 ← b0, bt−2 ← b0.
Set Qt−1 ← Q0, Qt−2 ← Q0.
Find target neighbors for each vector xi with da as in Equation (5) at (Qt−1,bt−1).
repeat

Compute bnes
t−1 ← πRd

+

(
bt−1 + t−2

t+1 (bt−1 − bt−2)
)

,

Qnes
t−1 ← πS+

(
Qt−1 + t−2

t+1 (Qt−1 −Qt−2)
)
.

Compute Ω+
bt−1

=
{

(xi,xj,x`)
∣∣ Hij`

(
Qt−1,b

nes
t−1

)
> 0

}
,

Ω+
Qt−1

=
{

(xi,xj,x`)
∣∣ Hij`

(
Qnes

t−1,bt−1

)
> 0

}
.

Compute ∂F
∂Q

(
Qnes

t−1,bt−1

)
=
∑

i,j i
∂h(Qnes

t−1,bt−1;xi,xj)

∂Q

+µ
∑

(xi,xj,x`)∈Ω+
Qt−1

[
∂h(Qnes

t−1,bt−1;xi,xj)

∂Q − ∂h(Qnes
t−1,bt−1;xi,x`)

∂Q

]
.

∂F
∂b

(
Qt−1,b

nes
t−1

)
=
∑

i,j i
∂h(Qt−1,bnes

t−1;xi,xj)

∂b

+µ
∑

(xi,xj,x`)∈Ω+
bt−1

[
∂h(Qt−1,bnes

t−1;xi,xj)

∂b − ∂h(Qt−1,bnes
t−1;xi,x`)

∂b

]
+ 2λbnes

t−1.

Update bt ← πRd
+

(
bnes
t−1 − t0√

t
∂F
∂b

(
Qt−1,b

nes
t−1

))
,Qt ← πS+

(
Qnes

t−1 − t0√
t
∂F
∂Q

(
Qnes

t−1,bt−1

))
.

if mod(t, τ) = 0 then
Update target neighbors for each vector xi at (Qt,bt).

end if
Calculate Ft ← F(Qt,bt).
Set t← t+ 1.

until t < tmax or insufficient progress for Ft−1.
Output: a pseudo-count vector bt.

where πRd
+
(x) stands for a projection of x into the strictly positive orthant Rd

+. Since Rd
+

is an open set, πRd
+
(x) is not well-defined. Thus, in practice, we use a minimum positive

threshold, ε = 10−20, to implement the projection onto Rd
+. A pseudo-code of the projected

subgradient descent to learn pseudo-count vector b with a fixed matrix Q is summarized
in Algorithm 2.

We have Q0 = PT
0 P0 where P0 is a generalized linear transformation matrix of Aitchison

embeddings. Therefore, we can consider Palr, Pclr or Pilr as an initial point for P0. In
term of the initial pseudo-count vector b0, without any prior knowledge of data, we set 1d

d .

4.3. Projected Subgradient Descent with Nesterov’s Acceleration

Although LMNN is an efficient algorithm with a specific purpose solver (Weinberger and
Saul, 2008), alternating optimization (Algorithm 1) with LMNN in each iteration seems a
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quite high-complexity approach. Thus, we propose a projected subgradient descent with
Nesterov’s acceleration scheme (Nesterov, 1983) to optimize the parameters (Q,b) in (6).

Define h(Q,b; xi,xj)
def
= d2

a (xi,xj) to underline the fact that the distance between xi and
xj is a function of Q and b. The partial derivatives of h with respect to Q and b are

∂h(Q,b; xi,xj)

∂Q
=

(
log

xi + b

xj + b

)(
log

xi + b

xj + b

)T

,
∂h(Q,b; xi,xj)

∂b
= ∇g(b; xi,xj).

At iteration t+ 1, a partial subgradient of F with respect to b is given in Equation (7) by
setting Q = Qt. A subgradient with respect to Q can be given as

∂F
∂Q

(Qt,bt) =
∑
i,j i

∂h(Qt,bt; xi,xj)

∂Q
+ µ

∑
(xi,xj,x`)∈Ω+

t

[
∂h(Qt,bt; xi,xj)

∂Q
− ∂h(Qt,bt; xi,x`)

∂Q

]
.

Nesterov’s acceleration scheme, builds gradient updates using a momentum that involves
two previous iterations. An update step for b is given as follows:

bnes
t−1 = πRd

+

(
bt−1 +

t− 2

t+ 1
(bt−1 − bt−2)

)
, bt = πRd

+

(
bnes
t−1 −

t0√
t

∂F
∂b

(
Qt−1,b

nes
t−1

))
.

while Q can be updated following

Qnes
t−1 = πS+

(
Qt−1 +

t− 2

t+ 1
(Qt−1 −Qt−2)

)
, Qt = πS+

(
Qnes

t−1 −
t0√
t

∂F
∂Q

(
Qnes

t−1,bt−1

))
.

Let Q = UΣUT by SVD decomposition and Σ+
def
= max (Σ,0), so a projection into the

positive semidefinite cone is calculated as πS+(Q) = UΣ+UT . The proposed projected
sugradient descent with Nesterov’s acceleration is summarized in Algorithm 3.

4.4. Learning a Low-Rank Generalized Aitchison Embedding

Inspired by the work of Torresani and Lee (2006), we also propose a low-rank learning
algorithm to improve the speed of optimizing parameters in the generalized Aitchison em-
beddings. Instead of learning a psd matrix Q ∈ Rd×d, we will learn a low-rank matrix
P ∈ Rm×d, with m < d.

It is easy to plug this idea in Algorithm 3 without changing the algorithm structure.
In particular, a subgradient of the objective function F with respect to the matrix P is as
follows:

∂F
∂P

= 2P
∂F
∂Q
∈ Rm×d.

Since the matrix P does not need in the positive semidefinite cone, its update step is
computed as follows:

Pnes
t−1 = Pt−1 +

t− 2

t+ 1
(Pt−1 −Pt−2) , Pt = Pnes

t−1 −
t0√
t

∂F
∂P

(
Pnes

t−1

)
.
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Thus, by replacing a subgradient and an update step in term of P to those corresponding
in Q in Algorithm 3, we will have a low-rank learning algorithm for parameters in the
generalized Aitchison embeddings of the optimization problem (6).

5. Related Work

Notwithstanding Aitchison’s work, the logarithm mapping has been consistently applied in
information retrieval to correct for the burstiness of feature counts (Rennie et al., 2003;
Lewis et al., 2004; Madsen et al., 2005). The most common of those mapping is

x 7→ log(x + α1d), (8)

for x ∈ Sd. α is a constant in R+ which is usually set to α = 1 in practice. This embed-
ding can be directly applied to the original histograms or used on term-frequency inverse-
document-frequency (TFIDF) transformation and its variants (Aizawa, 2003; Madsen et al.,
2005). All of these logarithm maps are particular cases of the embeddings we propose in
this work.

In the computer vision literature, the most successful embedding is arguably Hellinger’s,
which considers the elementwise-square root vector of a histogram (x 7→

√
x)(Perronnin

et al., 2010; Vedaldi and Zisserman, 2012). This embedding was also considered as an
adequate representation to learn Mahanlanobis metrics in the probability simplex as argued
by Cuturi and Avis (2011, §7.3.2). Some other explicit feature maps such as χ2, intersection
and Jensen-Shannon are also benchmarked in Vedaldi and Zisserman (2012).

6. Experiments

6.1. Setup

We evaluate our algorithms on 12 benchmark datasets of various sizes. Table 1 displays
their properties and relevant parameters. These datasets include problems such as scene
classification, image classification with a single label or multi labels, handwritten digit and
text classification. We follow recommended configurations for these datasets. If they are
not provided, we randomly generate 5 folds to evaluate in each run. Additionally, we also
repeat the experiments at least 3 times to obtain their averaged results, except for PASCAL
VOC 2007 and MirFlickr datasets where we use a predefined training and testing set.

6.2. Metrics and Metric Learning Methods

We consider LMNN metric learning for histograms using: their original representation; the
ilr representation (Section 2, Equation (3)); Hellinger’s map (element-wise square root) of
histograms. We also include the simple Euclidean distance in our benchmarks. We expect
from a literature survey that the combination of LMNN and Hellinger’s map to be the best
performing of these baselines.

To illustrate the fact that learning the pseudo-count vector b results in significant perfor-
mance improvements, we also conduct experiments with an algorithm that learns Q through
LMNN but only considers a uniform pseudo-count vector of α ∈ {0.0001, 0.001, 0.01, 0.1, 1}
as in Equation 8. α is selected via cross validation on the training fold. We call this
approach Log-LMNN.
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Table 1: Properties of datasets and their corresponding experimental parameters.

Dataset #Train #Test #Class Feature Representation #Dim #Run
MIT Scene 800 800 8 SIFT BoF 800 5
UIUC Scene 1500 1500 15 SIFT BoF 800 5
DSLR 409 89 31 SURF BoF 800 5
WEBCAM 646 149 31 SURF BoF 800 5
AMAZON 2262 551 31 SURF BoF 800 5
OXFORD Flower 680 680 17 SIFT BoF 400 5
CALTECH-101 3060 2995 102 SIFT BoF 400 3
Pascal Voc 2007 5011 4952 20 Dense Hue BoF 100 1
MirFlickr 12500 12500 38 Dense Hue BoF 100 1
MNIST 5000 5000 10 Normalized Intensity Level 784 5
20 News Group 600 19397 20 BoW Topic Modeling 200 5
Reuters 500 9926 10 BoW Topic Modeling 200 5

6.3. Scene Classification

We conduct experiments on the MIT Scene1 and UIUC Scene2 datasets. In these datasets,
we select randomly 100 training and 100 testing points from each class. Histograms are
obtained by using dense SIFT features with bag-of-feature representation (BoF) where the
number of visual words is set to 800. We repeat experiments 5 times on each dataset and
split randomly onto training and testing sets.

The two leftmost graphs in Figure 2 shows averaged results with error bars on these
datasets. The performance of the proposed embedding improves upon that of LMNN on the
original histograms by more than 15% and is slightly better than LMNN combined with the
Hellinger map. These graphs also illustrates that Hellinger is the most efficient embedding
for histograms. The performance of Hellinger distance is even better than that of LMNN
in these datasets. The performances of all alternative embeddings with LMNN are better
than those with Euclidean distance respectively.

6.4. Handwritten Digits Classification

We also perform experiments for handwritten digits classification on MNIST3 dataset. A
feature vector for each point is constructed from a normalized intensity level of each pixel.
We randomly choose 500 points from each class for training and testing, repeat 5 times for
averaged results. The middle graph in Figure 2 illustrates that the generalized Aitchison
embedding also outperforms other alternative embeddings.

6.5. Text Classification

We also carry out experiments for text classification on 20 News Groups4 and Reuters5

(the 10 largest classes) datasets. In these datasets, we calculate bag of words (BoW) for

1. http://people.csail.mit.edu/torralba/code/spatialenve-lope/
2. http://www.cs.illinois.edu/homes/slazebni/research/
3. http://yann.lecun.com/exdb/mnist/
4. http://qwone.com/˜jason/20Newsgroups/
5. http://archive.ics.uci.edu/ml/datasets/Reuters–21578+Text+Categorization+Collection
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Figure 2: Classification on scene (MIT Scene & UIUC Scene), handwritten digit (MNIST)
and text (20 News Group & Reuters).

each document, and then we use topic modeling to reduce the dimension of histograms by
gensim toolbox6, so we have a histogram of topics for each document (Blei et al., 2003). We
randomly choose 30 points and 50 points from each class in 20 News Groups and Reuters
datasets for training respectively, and using the rest for testing. We randomly generate 5
different training and testing sets for each dataset and average results.

The two rightmost graphs in Figure 2 shows that the proposed embedding improves the
performance of LMNN on histograms more than 10% on each dataset. It also outperforms
original, ilr and Hellinger representation on these datasets, except Hellinger representation
on Reuters dataset where their performances are comparative.

6.6. Single-label Object Classification

DSLR, AMAZON & WEBCAM We evaluate the proposed embedding on DSLR,
AMAZON and WEBCAM datasets7. These datasets are widely used for object classifica-
tion, especially when we considered the performance on various domains of same objects. We
randomly split these datasets in 5 folds to evaluate for each run. Each point is a histogram
of visual words obtained by BoF representation on SUFR feature where the code-book size
is set to 800. We repeat experiments 5 times on each dataset with different random splits
and average results.

The three leftmost graphs in Figure 3 illustrate that the performance of the proposed
embedding outperforms that of LMNN on these datasets and even improves about 30%,
25% and 10% on DSLR, WEBCAM and AMAZON dataset respectively. Our proposed
algorithm also improves the performances of Log-LMNN about 7%.

6. http://radimrehurek.com/gensim/
7. http://www1.icsi.berkeley.edu/˜saenko/projects.html
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Figure 3: Single-label object classification on DSLR, AMAZON, WEBCAM, OXFORD
FLOWER and CALTECH-101.

OXFORD FLOWER We consider the OXFORD Flower8 dataset. We randomly choose
40 flower images in each class for training and using the rest for testing. We construct
histograms by employing BoF representation with 400 visual words on a dense SIFT feature
and repeat experiments 5 times on different random splits to obtain averaged results. The
fourth graph in Figure 3 shows that the proposed embedding outperforms that of histograms
more than 30%, and also improves about 15% comparing to the ilr transformation as well
as the Hellinger representation with LMNN.
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Figure 4: Multi-label object classification on PASCAL VOC
2007 & MirFlickr.

CALTECH-101 We also
conduct experiments on
CALTECH-1019 dataset. We
randomly choose 30 im-
ages for training and up to
50 other images for test-
ing. We use BoF repre-
sentation with 400 visual
words on a dense SIFT
feature to construct his-
tograms for each image.
The rightmost graph in
Figure 3 illustrates aver-
aged results on 3 differ-
ent random splits of the
CALTECH-101 dataset. The proposed embedding appears again as the best choice, outper-
forms original, ilr representation and be comparative to Hellinger’s mapping with LMNN.

8. http://www.robots.ox.ac.uk/˜vgg/data/flowers/17/
9. http://www.vision.caltech.edu/Image Datasets/Cal-tech101/
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6.7. Multi-label Object Classification

We evaluate the proposed method on multi-label image categorization in PASCAL VOC
200710 and MirFlickr11 datasets. We follow a predefined training and testing set for these
datasets. Histograms for each image are built in these datasets based on BoF representation
with 100 visual words on a dense hue feature. Then, we employ a one-versus-all strategy for
k-NN classification and calculate averaged precisions for each dataset. Figure 4 illustrates
that the proposed embedding outperforms original, ilr, and Hellinger representation with
LMNN again. Additionally, the performance of Hellinger distance is better than that of
LMNN and comparative with that of Log-LMNN in these datasets.

6.8. Low-Rank Generalized Aitchison Embedding

0 5 10

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

DSLR

0 5 10
0.35

0.4

0.45

0.5

0.55

AMAZON

0 5 10

0.75

0.8

0.85

0.9

WEBCAM

0 10 20
0.45

0.5

0.55

0.6

OXFORD FLOWER

0 10 20

0.3

0.32

0.34

0.36

0.38

0.4

0.42

CALTECH−101

0 10 20

0.75

0.8

0.85

0.9

MIT SCENE

A
v
e
ra

g
e
 A

c
c
u

ra
c
y

0 10 20

0.6

0.65

0.7

0.75

UIUC SCENE

0 10 20

0.94

0.945

0.95

0.955

0.96

MNIST

Parameter k in kNN

 

 

100% x DIM

80% x DIM

60% x DIM

40% x DIM

20% x DIM

0 10 20

0.25

0.3

0.35

0.4

20 NEWS GROUPS

0 10 20
0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

REUTERS

Figure 5: Classification results for low-rank generalized Aitchison embedding.
We conduct experiments for low-rank generalized Aitchison embedding learning where

a dimension is set {80%, 60%, 40%, 20%} of the original one in these single-label datasets.
Figure 5 illustrates the trade-off performance for low-rank to make the algorithm averaged
{2×, 3×, 4×, 6×} faster respectively.

6.9. Computational Speed and Experimental Convergence of the Objective

Figure 6 provides a log-scale time estimate related to an objective value for our proposed
alternating optimization (Section 4.2) and projected subgradient descent with Nesterov’s
acceleration (Section 4.3), also compare with a standard projected subgradient descent.
Since we use the LMNN solver, it is only possible to measure time consuming and an
objective value for the whole LMNN algorithm instead of those for each iteration. So, there
are some gaps in the curve of alternating optimization in Figure 6.

10. http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/
11. http://press.liacs.nl/mirflickr/
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Figure 6: Log-plot illustration for the relation between behavior of the objective function
and time consuming in the proposed algorithms and Hellinger-LMNN.

In term of a naive alternating optimization, the running cost is about one order of mag-
nitude larger than that of a direct application of LMNN. This increase in cost is exclusively
due to the fact that we run the LMNN solver multiple times. The burden of optimizing
the pseudo-count vector is small due to the fact that the gradient has a closed-form solu-
tion for each pair in the objective function. We only need to run a few iterations of the
LMNN algorithm using warm start when alternating. Our experiments show that we only
need to run 6 to 10 alternating iterations for these datasets. However, its time consuming
seems still quite high. Therefore, we also propose the projected subgradient descent with
Nesterov’s acceleration to significantly reduce time consuming as showed in Figure 6 while
its performances are comparative with the alternating optimization approach as illustrated
in Figure 2, Figure 3 and Figure 4.

7. Conclusion

We illustrate that the proposed embedding is an effective representation for histograms, it
outperforms histograms in the original, ilr and Hellinger substantially from scene, object
with a single label or multi labels to handwritten digit and text classification. We also show
that our jointly learning parameters for the generalized Aitchison embedding algorithm sub-
stantially improve the performance of the algorithm which only learns Mahalanobis matrix
by LMNN and uses a uniform pseudo-count vector chosen via cross-validation (Log-LMNN).
Especially, the proposed projected sugradient descent with Nesterov’s acceleration is ef-
ficient in both performance and time consuming which covers the main drawback about
computational burden of the naive alternating optimization. Additionally, the proposed
low-rank method also helps improve computational aspect for the generalized Aitchison
embedding approach more effectively.
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