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Abstract

Manifold learning algorithms rely on a neighbourhood graph to provide an estimate of the
data’s local topology. Unfortunately, current methods for estimating local topology assume
local Euclidean geometry and locally uniform data density, which often leads to poor data
embeddings. We address these shortcomings by proposing a framework that combines local
learning with parametric density estimation for local topology estimation. Given a data set
D ⊂ X , we first estimate a new metric space (X, dX) that characterizes the varying sample
density of X in X, then use (X, dX) as a new (pilot) input space for the graph construction
step of the manifold learning process. The proposed framework results in significantly
improved embeddings, which we demonstrated objectively by assessing clustering accuracy.

Keywords: Manifold learning, neighbourhood graphs, neighbourhood topology, diver-
gence based graphs, low rank covariance matrix estimation.

1. Introduction

Manifold learning algorithms have recently played a crucial role in unsupervised learning
tasks such as clustering and nonlinear dimensionality reduction (Roweis and Saul, 2000;
Tenenbaum et al., 2000; Ng et al., 2002; Brand, 2003; Belkin and Niyogi, 2003; Wein-
berger and Saul, 2004; Shaw and Jebara, 2009). Many such algorithms have been shown
to be equivalent to Kernel PCA (KPCA) with data dependent kernels, itself equivalent to
performing classical multidimensional scaling (cMDS) in a high dimensional feature space
(Scholkopf et al., 1998; Williams, 2002; Bengio et al., 2004).
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A common aspect of these algorithms is that they rely on a neighbourhood graph con-
structed from the input data D = {xi}ni=1 with the points xi ∈ Rd as its vertices.1 Such
a graph provides an estimate for the topology of the underlying low dimensional manifold
that (approximately) encapsulates the data. A manifold learning algorithm then tries to
“unfold”, or “flatten” this manifold—while preserving some local information—to partition
the graph (e.g. as in clustering), or to redefine some metric information (e.g. as in dimen-
sionality reduction). The standard distance used to construct this graph—whether it be a
fully connected, ε-ball, or k-nearest neighbours graph—is the Euclidean distance. Unfortu-
nately, the Euclidean distance creates severe inaccuracy problems for graph estimation, and
thus for the subsequent manifold learning process. In this paper, we show how to overcome
these inaccuracies by introducing a new manifold learning framework that mitigates the
liability incurred by using Euclidean geometry on real data.

One reason for inaccurate topology estimates is the finite nature of data, which means
that low probability regions will be poorly sampled and hence poorly represented in the
data D. This results in an uneven sample distribution in the input space X (Bottou and
Vapnik, 1992). In practice, the situation is exacerbated by the multimodal nature of the
data, noise, nonlinearity, and its high dimensionality. Unfortunately, the Euclidean metric
cannot accommodate any of these factors. First, the Euclidean distance, by definition,
assumes a constant density over the entire input space X , and hence does not take the
varying sample distribution into consideration. To see this note that for any data of the
form D = {xi}ni=1, the Euclidean distance enforces an identity covariance matrix I to
measure pairwise distances between points. By expanding the squared norm of ‖x−y‖2 to
(x − y)>I(x − y), one obtains a special case of the generalized quadratic distance (GQD)
d(x,y; A) =

√
(x− y)>A(x− y) which itself, generalizes the Mahalanobis2 distance for

any symmetric positive definite matrix A. If A = I, then the Euclidean distance enforces
a unit variance for all the variables in the data with zero correlation among them.

Second, similar remarks apply for the GQD if A is the inverse of the data’s global covari-
ance matrix, or it is learned via a metric learning algorithm (Xing et al., 2002; Weinberger
et al., 2006) that might impose some local and/or global constraints on distances (based on
labels or side information). For most metric learning algorithms A is constant over X and
hence, it is still not a faithful modelling for the varying density in X . More importantly,
such metric learning algorithms are either supervised or semi-supervised, and hence they
cannot be used in the unsupervised setting discussed here. These factors impart serious
inaccuracy in the data graph construction, which in turn yields erroneous estimates for the
manifold topology and increases uncertainty of point locations in the lower dimensional
subspace. A manifestation of these effects is topological instability of manifold learning and
sensitivity to noise (Balasubramanian et al., 2002).

Recently, it has been observed that the majority of manifold learning algorithms can
be expressed as a regularized loss minimization of a reconstruction matrix, followed by a
singular value truncation (Neufeld et al., 2012). In the nonlinear case (manifold learning),
the loss functions deals with a matrix D̂ ∈ Rn×n that encodes the (dis)similarity between

1. Notations: Bold small letters x,y are vectors. Bold capital letters A,B are matrices. Calligraphic and
double bold capital letters X , Y, X, Y denote sets and/or spaces. Symmetric positive definite (SPD) and
semi-definite (SPSD) matrices are denoted by A � 0 and A � 0 respectively. tr(·) is the matrix trace.

2. For the Mahalanobis distance, A is the inverse of the data’s covariance matrix.
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Figure 1: Standard manifold learning methods divide learning into two stages. First, Transducer 1 trans-
forms the data matrix X into a graph G with weight matrix W. Second, Transducer 2 defines
a (dis)similarity matrix D̂(W) and embeds graph G into a low dimensional representation Y.
Note that for most manifold learning algorithms, the input for Transducer 1 is in fact the metric
space (X, ‖·‖2). In this work, we replace (X, ‖·‖2) with the pilot metric space (X, dX) to mitigate
the shortcomings of Euclidean geometry when dealing with real world data.

all pairs of points in a nonlinear manner. The matrix D̂, however, is induced by a weighted
graph G through its adjacency and weight matrices. Most work on manifold learning
algorithms has in fact focused on issues that are independent from the graph construction
step; see Figure (1). Our observation is that any misleading information in the graph
construction step, due to any of the aforementioned difficulties, will inevitably propagate
to the loss function of the manifold learning algorithm.

In this paper we propose an algorithmic framework that overcomes these liabilities
by learning a new input space for the manifold learner, such that the new input space,
X, characterizes the varying sample density in the original input space X . In particular,
we integrate the concept of local learning algorithms (Bottou and Vapnik, 1992), with
parametric density estimation to learn from D a new metric space 3 (X, dX) that becomes
the (pilot) input space for the graph construction step in manifold learning. The proposed
framework, depicted in Figure 2, redefines the proximity between two points in D based on
the divergence between the local density surrounding each of the two points, then passes
this proximity to the manifold learner. The set X contains all the parameters that define
the local density for each point in D, while the new proximity information is characterized
by the divergence measure dX, which defines the metric space (X, dX).

2. The Elements of the Set X

We begin our discussion with a formal definition for the elements of X. We assume that the
input space X is locally smooth, hence it can be considered a smooth differentiable manifold
that is locally Euclidean. Under this assumption, Euclidean geometry only holds in a small
neighbourhood N around each point x ∈ X . In the finite sample setting, for each xi ∈ D,
the neighbourhood N (xi), or Ni for short, is the set of neighbouring points for xi, which can
be defined using an ε−ball or the m nearest neighbours of xi. Throughout the experiments
in Section 6, we defined the Ni’s using the m nearest neighbours for each point. This is

3. A metric space is an ordered pair (X , d) such that X is a non-empty abstract set (of any elements, whose
nature is left unspecified), and d is a distance function, or a metric, defined as: d : X ×X 7→ R, and the
following axioms hold for all a, b, c ∈ X : (i) d(a, b) ≥ 0, (ii) d(a, a) = 0, (iii) d(a, b) = 0 iff a = b, (iv)
Symmetry: d(a, b) = d(b, a), and (v) The triangle inequality: d(a, c) ≤ d(a, b) + d(b, c). Semi-metrics
satisfy axioms (i), (ii), and (iv) only. The axiomatic definition of metrics and semi-metrics, in particular
axioms (i) and (ii), produce the positive semi-definiteness of d. Hence metrics and semi-metrics are
positive semi-definite (PSD).
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(a) (b)

Figure 2: (a) The standard distance used for data graph construction in manifold learning is Euclidean
distance, indicated by the straight line between the points x and y. (b) In the proposed frame-
work (dashed black box), the distance between two points is defined in two steps: I. Each point
defines a local neighbourhood by finding its m nearest neighbours. II. A Gaussian distribution
with a low rank covariance is fit to each local neighbourhood. The distance between the two
points is then the divergence between these two Gaussian distributions. This information is then
conveyed to the graph construction step of the manifold learning algorithm.

similar to various learning algorithms that rely on local learning (Bottou and Vapnik, 1992;
Ng et al., 2002; Vincent and Bengio, 2003; Belkin and Niyogi, 2003).

In principle, the neighbourhood size should grow slowly until it circumscribes the region
where Euclidean geometry holds. Beyond this size, the local Euclidean assumption will
break due to manifold curvature. Hence, if m is too small, the estimate for the local
Euclidean subspace will be inaccurate, while if m is too large, the local linear structure will
be smoothed out by the influence of distant points. In practice, m can be set either by
using cross validation, grid search, or the method of (Brand, 2003).

For large data sets with very high dimensionality, finding the nearest neighbours for each
xi can be time consuming. In this case, approximate neighbours can be found using methods
based on random projections. For example, locality-sensitive hashing (LSH) (Shakhnarovich
et al., 2006) can be used where for h hash tables, each defined using k hash functions, the
time complexity for finding m approximate nearest neighbours for all query points qi is
reduced to O (nmh(kτ + dnε)). Here τ is the time to evaluate the hash function on point
x, and ε� 1 is the probability that the distance between xi and xj , i 6= j, is greater than
a predefined threshold. Since τ is usually small, this complexity is substantially less than
the O(mn2d2) required for brute force search.

2.1. Local learning for manifold estimation

Local learning algorithms overcome a nonuniform data distribution by introducing a local
adjustment mechanism that limits the influence to individual regions of the input space
(Bottou and Vapnik, 1992). The Euclidean distance and the GQD do not have such a
control mechanism, and hence do not take the varying sample density into consideration.
We propose to introduce such a control mechanism to manifold learning in three steps:
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1. Estimate the density for each Ni, i = 1, . . . , n. The parameters of these densities will
define the elements of X.

2. Define dX as a dissimilarity measure on X (§ 4).

3. Use (X, dX) to construct the neighbourhood graph for manifold learning.

Formally, let Ni ≡ N (xi) = {xi1, . . . ,xim}, where xij ∈ D, and 1 ≤ i ≤ n. A reasonable
density model for Ni under the local smoothness assumption is the Gaussian. That is for
x ∈ N (xi), then Pr(x) = Gi(x; xi,Σi), where Gi( · ; xi,Σi) is the Gaussian density centred
at xi for neighbourhood Ni, Σi ∈ Sd×d++ is the sample covariance with respect to the mean

xi, given by Σi = m−1
∑

x∈Ni
(x−xi)(x−xi)

>, and Sd×d++ is the space of symmetric positive
definite matrices. Note that such a local density model does not impose any constraints or
assumptions on the global density for the data. Since in practice it might be that d � m,
the sample covariance Σi will be a poor estimate for the true covariance, and generally rank
deficient. Therefore, Σi can be replaced with a reliable low rank estimate Σ̂i ∈ Sd×d++ which
shall be discussed in § 3.

In terms of local learning, µi and Σ̂i are the local parameters that provide the means for
coping with the uneven sample distribution. Ideally, each Gi defines a local neighbourhood
around the point xi with axes defined by the eigenvectors of Σi, while its eigenvalues indicate
the amount of data variance along each axis direction. If the data manifold is locally linear
in the vicinity of xi, then all but the d0 dominant eigenvalues will be very close to zero,
while their associated leading eigenvectors will constitute the optimal variance preserving
local coordinate system (Brand, 2003). In an ideal setting, a local maximum likelihood
procedure will naturally capture this structure. However, to leverage the cases when Σi

is degenerate for the above mentioned reasons, Σi is replaced with the low rank estimate
Σ̂i. This local Gaussian assumption at each point xi is in the same spirit of stochastic
neighbour embedding (SNE) (Hinton and Roweis, 2003), manifold charting (Brand, 2003),
and manifold Parzen windows (Vincent and Bengio, 2003) for instance.

Given the set {Ni}ni=1, their corresponding local densities G = {Gi}ni=1 characterize
the varying sample density for X according to the parameters xi and Σ̂i. Since all local
densities have the same parametric form, we define the set of 2-tuples {(xi, Σ̂i)}ni=1 ⊂ X,
where X ⊂ Rd × Sd×d++ . Note that N (x) and Σ̂ are defined in an unsupervised manner.
However, if auxiliary information is available in the form of labels or side information, the
proposed approach can be extended to supervised and semi-supervised learning.

3. Low Rank Covariance Estimation

In various applications of machine learning such as computer vision and bioinformatics,
one can be easily confronted with high dimensional data, thereby making d larger than the
number of samples m in a neighbourhood N (x). The resulting scenario of “large d small
m”, often, tends to break the standard assumptions of classical statistics, and can cause
conventional estimators to behave poorly (Donoho, 2000). This problem is more serious
when estimating a covariance matrix from a small number of samples. Indeed, accurate
estimation of a covariance matrix from high dimensional data is a fundamental problem
in statistics, since the number of parameters to be estimated grows quadratically with the
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number of variables. In particular, for m samples and d� m, the sample covariance matrix
will have a distorted eigen structure (Johnstone, 2001) and d −m eigenvalues erroneously
estimated as zeros (i.e. rank deficient). Learning a model under these conditions can be eas-
ily prone to overfitting, and yield poor generalization to out-of-sample points. In addition,
computational tractability becomes another problem for handling such large matrices.4

Under the assumption that the data lies on a manifold of dimensionality d0 � d, we
would like to obtain a reliable estimate Σ̂i from the few m samples in Ni = {xi1, . . . ,xim}.
In particular, we would like to ensure that Σ̂i has a rank at most k ≤ m � d by being
decomposable into Σ̂i = BiB

>
i such that Bi ∈ Rd×k. Besides being a reliable low rank

estimate, such an estimate would also be computationally appealing (in space and time)
since any vector–matrix product with Σ̂i, as well as the space required to store it, is O(dk).

Under the Gaussian modelling of Ni, a maximum likelihood estimate of Σi will be:

Σ̂∗i = arg max
Σi∈Sd×d

++

L(Ni,Σi), where (1)

L(Ni,Σi) =

m∏
xj∈Ni

Pr(xj) =

m∏
xj∈Ni

G(xj ; xi,Σi),

and G(xj ; xi,Σi) = (2π)−d/2 det(Σi)
−1/2 exp{12(xj − xi)

>Σ−1i (xj − xi)}. Taking the loga-
rithm of L(Ni,Σi) and rearranging the terms, problem (1) will be:

Σ̂∗i = arg max
Σi∈Sd×d

++

L(Σi), where (2)

L(Σi) = − log det(Σi)− tr(Σ−1i Ci), (3)

and Ci is the sample covariance matrix of Ni. Note that the mean vector for each Gi is the
point of interest xi, and hence Ci = m−1

∑
Xj∈Ni

(xj − xi)(xj − xi)
>.

There are a few observations to make about that objective L(Σi). First, L(Σi) is
not concave in Σi, however with a change of variable Si = Σ−1i , it becomes concave in
Si. Second, for high dimensional data, Ci will be rank deficient and a poor estimate
for the sample covariance. Hence, Ci can be replaced with the regularized estimate Ri

which can be obtained by means of shrinkage estimators.5 Taking these two remarks into
consideration, and adding the constraint that rank(Si) ≤ k, we obtain the constrained
optimization problem:6

max `(Si), Si ∈ Sd×d++ (4)

s.t . rank(Si) ≤ k,

where

`(Si) = log det(Si)− tr(SiRi). (5)

4. A simple trick when d� n is to project the data on the first n principal components of the total scatter
matrix St. This results in zero loss of discriminatory information since the null space of St contains no
discriminatory information.

5. Ri can be obtained by shrinking Ci towards a scaled identity matrix: Ri = (1− γ)Ci + γtr(Ci)d
−1I, or

the diagonal entries of Ci: R = (1− γ)Ci + γdiag(Ci), where γ ∈ (0, 1) is the intensity coefficient.
6. It is well known that the optimal solution to problem (4) without the rank constraint is the regularized

sample covariance matrix Ri.
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Algorithm 1 ApproxLowRankSDP

Require: Concave function ` with curvature constant C` and target accuracy ε.
Initialize S(1) = v0v

>
0 with an arbitrary unit length vector v0.

for t = 1 :∞ do
Compute vt = ApproxEig(∇`(S(t)), C`

t2
)

Set αt = min(1, 2
t
)

Set S(t+1) = S(t) + αt(vtv
>
t − S(t))

end for

Since Si ∈ Sd×d++ , problem (4) is equivalent to:

max `(Si), Si ∈ Sd×d++

s.t . tr(Si) = k.

By rescaling all the entries in Si by 1/k we obtain:

max `(Si), Si ∈ S (6)

s.t . tr(Si) = 1,

where S = {S ∈ Sd×d++ | tr(S) = 1} is the set of unit trace symmetric PSD matrices. That
is, the objective is to maximize the concave function `(Si) over the bounded semidefinite
cone S. This can be solved efficiently, as explained in the following section.

3.1. Approximate solution to SDPs

Problem (6) is a special case of a semidefinite program (SDP) where the objective is to
maximize the concave function `(Si) over the bounded semidefinite cone S. This particular
type of program can be efficiently solved using the recent first order optimization scheme for
SDPs (Hazan, 2008). In particular, Hazan’s algorithm provides an ε-approximate7 solution
to the SDP problem with a strong approximation guarantee in the sense of obtaining ε-small
primal–dual error after at most O(1/ε) iterations. In this algorithm, each iteration only
involves the calculation of a single approximate eigenvector of a matrix A ∈ Sd×d++ . Thus,
after t iterations the algorithm attains a 1

t -approximate solution with rank at most t.
Hazan’s algorithm, shown in Algorithm (1), is a first order gradient decent (a.k.a Frank–

Wolfe) type algorithm that proceeds in iterations, such that in each iteration the solution is
provably better than the preceding one, with rank increased by at most one. The resulting
approximate solution has the favourable property of being low rank and decomposable into
BB> where B ∈ Rd×k, and k � d. Furthermore, the algorithm is free of tuning param-
eters, easy to implement and parallelize as it only uses the power method (alternatively
Lanczos steps) to approximate the largest eigenvector of a matrix. It is worth noting the
following with regards to Algorithm (1). First, the curvature constant C` (or the modulus
of convexity) determines the convergence speed of the algorithm and is defined as:

C` = sup
x,z∈S, α∈R
y=x+α(z−x)

1
α2 [`(x)− `(y)− 〈y − x,−∇`(x)〉].

7. An ε-approximate solution to an SDP over the bounded cone is a PSD matrix with trace equals one,
which satisfies all the constraints up to an additive term ε.
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Note that C` is upper bounded by the largest eigenvalue of the Hessian of −`, and for
various types of functions, C` is usually small. Second, the function ApproxEig(A, τ) is an
approximate eigenvalue solver that computes the leading eigenvector of matrix A with the
desired accuracy τ ; i.e. it yields a unit length vector v such that v>Av ≥ λmax(A) − τ .
Last, note that for `(Si) in (5), the gradient ∇`(Si) = S−1i −Ri is also a SPSD matrix.

So far we have defined the space X which will be the input to the graph construction
step of the manifold learning algorithm. To convey the information on the nonuniform
density characterized in X to the graph algorithm, we need to define dissimilarity measures
between the elements of X. This is introduced in the following section.

4. The Divergence Measure dX

The measure dX conveys the dissimilarity between two local densities, Gi and Gj , which
describe the local neighbourhoods Ni and Nj around points xi and xj respectively. Note
that dX measures the difference between two local coordinate systems located at xi and xj
in terms of: (i) the location, specified by µi and µj , and (ii) the scaling and orientation,

specified by the eigenvectors of Σ̂i and Σ̂j , which define the axes of each local coordinate
system. It is important, therefore, to understand the properties of dX, how these proper-
ties can affect the topology estimation, and how they affect the final embedding. Before
proceeding to these questions, let us formally define the measure dX.

Since the elements of X are the parameters of the local Gaussians G = {Gi}ni=1, a natural
measure for the dissimilarity between two densities is the divergence. For Gi and Gj , some
well known divergence measures with closed form expressions are: (1) The symmetric KL
(or Jeffreys) divergence:

dJ(Gi,Gj) = 1
2u>Ψu + 1

2tr{Σ̂−1i Σ̂j + Σ̂−1j Σ̂i} − d, (7)

where Ψ = (Σ̂−1i + Σ̂−1j ), and u = (µi − µj). (2) The Bhattacharyya distance dB:

dB(Gi,Gj) = 1
8u>Γ−1u + 1

2 ln
[
|Σ̂i|−

1
2 |Σ̂j |−

1
2 |Γ|

]
, (8)

where Γ = (12Σ̂i + 1
2Σ̂j). (3) The Hellinger distance dH =

√
1− ρ(Gi,Gj), where ρ is the

Bhattacharyya coefficient: ρ(Gi,Gj) = |Γ|−1/2|Σ̂i|1/4|Σ̂j |1/4 exp{−1
8u>Γ−1u}. Note that

dB(Gi,Gj) = − log[ρ(Gi,Gj)]. (4) Recently Abou-Moustafa and Ferrie (2012) proposed vari-
ants of dJ and dB where the second term in (7) and (8) is replaced with a metric, which
yields the Jeffreys-Riemann and the Bhattacharyya-Riemann metrics:

dJR(Gi,Gj) = (12u>Ψu)
1
2 + dR(Σ̂i, Σ̂j), (9)

dBR(Gi,Gj) = (u>Γ−1u)
1
2 + dR(Σ̂i, Σ̂j), (10)

where dR(Σ̂i, Σ̂j) = tr{log2 Λ(Σ̂i, Σ̂)}1/2 is the Riemannian metric for symmetric positive

definite matrices (Rao, 1945) such that Λ(Σ̂i, Σ̂j) = diag(λ1, . . . , λd) is the generalized

eigenvalue matrix for the generalized eigenvalue problem Σ̂iΦ = ΛΣ̂jΦ.
Note that dR is the metric for the manifold Sd×d++ and hence it satisfies all metric axioms.

The measure dX, therefore, can be any of the above mentioned divergence measures and
in the following, we shall consider their metric properties and how they affect the final
embedding obtained by a manifold learning algorithm.
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4.1. Manifold learning using (X, dX)

The divergence between any two probability distributions, P1 and P2, has the following
properties: Div(P1, P2) ≥ 0, and Div(P1, P2) = 0 iff P1 = P2 (Kullback, 1997). Therefore,
by definition, Div satisfies axioms (i), (ii), and (iii) of metrics (see Footnote 3), and in
general, is not symmetric nor does it satisfy the triangle inequality. However, for the
particular cases of the above divergence measures, all are symmetric, and hence axiom (iv) is
also satisfied. Unfortunately, the triangle inequality does not hold for the KL divergence, nor
does it for the Bhattacharyya distance dB (Kailath, 1967). For dH , and the variants dJR and
dBR, they all satisfy the triangle inequality. The metric properties of divergence measures
are intimately related to the positive semi-definiteness of the affinity matrix A ∈ Rn×n
extracted from the graph’s adjacency matrix. To see this, consider for instance the two
algorithms; classical multidimensional scaling (cMDS) (Young and Householder, 1938), and
Laplacian eigenmaps (LEM) (Belkin and Niyogi, 2003). Further, let D ∈ Rn×n be the
matrix of pairwise divergences where Dij = Div(Gi,Gj), ∀i, j, and Div is a symmetric PSD
divergence measure.

For cMDS, the affinity matrix A is defined as Aij = −1
2D2

ij , ∀i, j. The matrix A is
guaranteed to be PSD if and only if Div(Gi,Gj) is a metric; in particular if it satisfies the
triangle inequality. This result is due to Theorem (3) in (Young and Householder, 1938).
Therefore, Div in the case of cMDS can be dH , dJR, or dBR since they all metrics. For
LEM, and for input vectors xi,xj , the affinity matrix A is defined as Aij = K(xi,xj),
∀i, j, where K is a symmetric PSD kernel that measures the similarity between xi and xj .
From Mercer kernels, it is known that A is PSD if and only if K is symmetric and PSD.
A possible kernel for Gi and Gj using a symmetric Div is: K(Gi,Gj) = exp{− 1

σDiv(Gi,Gj)},
where σ > 0 is a parameter that scales the affinity between two densities. Since Div is PSD
and symmetric, then K(Gi,Gj) is PSD and symmetric as well. This simple fact is due to
Theorems (2) and (4) in (Schoenberg, 1938) and a discussion on these particular kernels in
the context of LEM can be found in (Abou-Moustafa et al., 2011). Therefore, for LEM,
a symmetric PSD affinity matrix can be defined as Aij = K(Gi,Gj), ∀i, j, and using any
symmetric Div to define the kernel K.

4.2. Neighbourhood estimation using (X, dX)

We will make a slight abuse of the notation and let: dX ≡ dX(xi,xj) = Div(Gi,Gj), to
imply that querying the distance between xi and xj with respect to the space X returns
the divergence between their respective local densities, where Div is dJ , dB, dH , dJR, or
dBR. The expressions for Div in Equations (7), (8), (9), and (10) are summations of two
terms; the first term is for the difference in means µi and µj weighted by a symmetric

positive definite matrix, and the second term is for the discrepancy between Σ̂i and Σ̂j

(Kullback, 1997). Now consider how dX behaves in different scenarios and how it will affect
the neighbourhood graph construction for manifold learning. If µi = µj = µ (or µi ≈ µj),
then the first term in (7), (8), (9), and (10) will be zero (or very small), and dX(xi,xj) will

be mainly determined by the dissimilarity in the covariances. If Σ̂i = Σ̂j = Σ (or Σ̂i ≈ Σ̂j),
then the second term in (7), (8), (9), and (10) will be zero (or very small) and dX(xi,xj)

reduces to the Mahalanobis distance. Further, if Σ̂i = Σ̂j = I, then dX(xi,xj) reduces to
the Euclidean distance between µi and µj .

349



Abou–Moustafa Schuurmans Ferrie

How does dX affect the neighbourhood estimation? Any two points xi and xj in
D (equivalently two nodes on the graph) will be close to each other, if and only if µi ≈ µj
and Σ̂i ≈ Σ̂j . That is, it is not sufficient that ‖xi−xj‖2 is small. This new meaning for the
distance between points is more restrictive and different from the Euclidean distance and
the GQD, which are special cases from dX(xi,xj). Note that dX(xi,xj) has an effect only
on xi and xj , but not on any other points in D. This is due to the nature of local learning
employed to learn (X, dX), together with the nature of dX as a divergence measure. Note
also that our previous discussion did not rely on labels nor side information, and the whole
process was unsupervised. The only assumption made was the smoothness of X , and that
it is locally Euclidean to bootstrap (X, dX).

Selecting parameters m and γ: The metric space (X, dX) is adaptive and mainly
controlled by m which is data dependent and task dependent. The intensity parameter γ is
less influential than m since it only occurs in Ri in Equation (5) to avoid numerical problems
in Algorithm (1) (Hazan, 2008). Hence γ should be small and sufficient to ensure that Ri

is PSD. This is unlike selecting m which controls the resolution of X. In practice, however,
learning algorithms have a clear objective function to optimize, and m should be chosen in
accordance to this objective function. For instance, in classification, m can be selected to
minimize the classification error on a training or a validation set. In clustering, assuming k
clusters and using LEM (see § 6), the best value for m is the one that maximizes the sum
of the first k eigenvalues (i.e. the energy) of LEM’s affinity matrix8 (Luxburg, 2007).

Computational complexity: It is important to note that the computational com-
plexity for (X, dX) is independent from that of the manifold learning algorithm. Computing
X using LSH (see § 2) is O (nmh(kτ + dnε)), while the low rank estimate for all n points
using Hazan’s algorithm is O(ndk), and computing dX is O(n(n− 1)dk/2), where k � d.

5. Related Work

Other work has considered the problem of inferring good neighbourhood graph structure
for manifold learning. For example, the well known ISOMAP method extends cMDS by
redefining the distance metric between any two points as the shortest path connecting them
on the neighbourhood graph (Tenenbaum et al., 2000). The neighbourhood graph approxi-
mates the underlying manifold topology, while the shortest path distance approximates the
geodesic distance between the points. By passing this distance to cMDS, the algorithm then
finds an Euclidean embedding that preserves this geodesic distance between points. Note
that the weights on the neighbourhood graph in ISOMAP are Euclidean distances. Since
the shortest path distance satisfies the triangle inequality (Cormen et al., 2001) (Lemma
24.10), ISOMAP’s inferred geodesic distances must preserve the triangle inequality in the
embedding space.9 Note that the same argument follows when (X, dX) is combined with
ISOMAP and dX is a metric. In § 7, we will discuss why this can be an interesting property.

ISOLLE (Varini et al., 2006) extends LLE (Roweis and Saul, 2000) by finding the nearest
neighbours for each point using the geodesic distance defined by ISOMAP. Unfortunately,
in the finite sample setting, the uneven sample distribution and noise in the data can greatly

8. For LEM, in a perfect k clusters setting, the first k eigenvalues of the affinity matrix are all equal to 1.
9. See the discussion on metric properties in § 4.1.
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Table 1: Attributes of the twelve data sets used in our experiments.

Data set size features classes Data set size features classes

Balance 625 4 3 Lymphography 148 18 4
Bupa 345 6 2 NewThyroid 215 5 3
Glass 214 9 6 Wine 178 13 3
Ionosphere 351 33 2 Corel 500 36 5
Segment 2310 18 7 Sonar 208 60 2

impact the topological stability of ISOMAP and all other manifold learning methods (Bal-
asubramanian et al., 2002). This is our rationale for proposing (X, dX) as an adaptive
mechanism that explicitly captures the varying sample density in the data, and leverages
the impact of noise. Carreira-Perpinan and Zemel (2004) considers graph ensembles instead
of a single graph as an estimate for the manifold topology, where the ensemble is obtained
from various perturbed versions of the data. The main limitation of this approach is its high
computational complexity (in space and time) when considering large data sets. Recently,
Gashler and Martinez (2011) proposed the CycleCut algorithm to remove shortcut connec-
tions in order to enhance the manifold estimation. Note that this approach patches some of
the problems caused by the Euclidean distance, while our approach redefines a new input
space for manifold learning that has a different geometry and distance between points.

Another related approach is the Graph–DBD algorithm (Bijral et al., 2011) for com-
puting density based distances (DBDs). Here, a distance between two points on a manifold
is defined as the path connecting these two points such that, paths passing through high
density regions should be much shorter than paths passing through low density regions.
However, since there are possibly various paths connecting any two points, the DBD is de-
fined as the shortest path connecting these two points. Intuitively, if the distance between
a point and its few nearest neighbours is small, then it is expected that the neighbourhood
is a high density region. Algorithmically, a weight matrix W is computed for all points
such that Wij = ‖xi − xj‖qp, where q > 1. The matrix W is the adjacency matrix of a
fully connected graph with points {xi}ni=1 as its vertices. Following this definition, the DBD
between xi and xj is the shortest path between nodes i and j on the graph defined by W.

Similar to Graph–DBD, our proposed metric space (X, dX) takes into consideration
regions of high and low density when computing the distance between any two points.
In fact, (X, dX) explicitly characterizes the local density for each point through the local
low rank covariance estimate Σ̂i. Recalling § 4.2, note that the second term in Equations
(7) – (10), acts as a penalty when the local densities are not similar, thereby increasing the
final distance between the points. If two points are very close each to other and have very
similar local densities, then the second term in Equations (7) – (10) is zero, and the final
distance is very small. Note that parameter q in Graph–DBD controls the resolution of the
manifold structure sought, which is similar to the neighbourhood size m in our approach.

6. Experiments

We performed a series of extensive experiments to test the validity and efficacy of the input
space (X, dX) for four different manifold learning methods; ISOMAP (ISM) (Tenenbaum
et al., 2000), LEM (Belkin and Niyogi, 2003), LLE (Roweis and Saul, 2000), and tSNE
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Table 2: k–Means clustering accuracy (ARI, NMI and PUR) for all algorithms described in the
text on the twelve UCI data sets. Best performers are marked in bold.

ARI NMI PUR
Data set Euc PCA ISM X–ISM Euc PCA ISM X–ISM Euc PCA ISM X–ISM

balance 0.161 0.178 0.226 0.387 0.137 0.125 0.183 0.273 0.659 0.696 0.701 0.763
bupa 0.005 0.005 0.007 0.014 0.001 0.001 0.001 0.017 0.58 0.58 0.58 0.58
glass 0.255 0.246 0.251 0.435 0.378 0.357 0.362 0.428 0.589 0.547 0.626 0.673
iono. 0.178 0.168 0.149 0.182 0.131 0.124 0.104 0.129 0.712 0.707 0.695 0.715
iris 0.73 0.716 0.759 0.818 0.751 0.736 0.796 0.804 0.893 0.887 0.907 0.933
lymph. 0.123 0.116 0.238 0.275 0.142 0.128 0.181 0.205 0.703 0.703 0.75 0.784
newthy. 0.579 0.568 0.579 0.647 0.485 0.48 0.485 0.497 0.86 0.856 0.86 0.884
wdbc 0.491 0.491 0.497 0.707 0.422 0.422 0.427 0.582 0.854 0.854 0.856 0.921
wine 0.371 0.371 0.363 0.421 0.429 0.429 0.432 0.48 0.702 0.702 0.713 0.747
corel 0.199 0.163 0.176 0.237 0.288 0.242 0.263 0.321 0.488 0.462 0.49 0.562
segment 0.339 0.218 0.273 0.592 0.463 0.372 0.387 0.666 0.508 0.459 0.491 0.735
sonar 0.006 0.006 0.004 0.068 0.009 0.009 0.027 0.05 0.553 0.553 0.534 0.635

Data set Euc PCA LEM X–LEM Euc PCA LEM X–LEM Euc PCA LEM X–LEM

balance 0.161 0.178 0.034 0.416 0.137 0.125 0.034 0.289 0.659 0.696 0.467 0.778
bupa 0.005 0.005 0.012 0.011 0.001 0.001 0.008 0.016 0.58 0.58 0.58 0.58
glass 0.255 0.246 0.232 0.262 0.378 0.357 0.353 0.383 0.589 0.547 0.533 0.565
iono. 0.178 0.168 0.11 0.165 0.131 0.124 0.068 0.151 0.712 0.707 0.67 0.729
iris 0.73 0.716 0.759 0.904 0.751 0.736 0.796 0.88 0.893 0.887 0.907 0.967
lymph. 0.123 0.116 0.128 0.237 0.142 0.128 0.138 0.191 0.703 0.703 0.709 0.757
newthy. 0.579 0.568 0.366 0.674 0.485 0.48 0.303 0.501 0.86 0.856 0.8 0.884
wdbc 0.491 0.491 0.047 0.725 0.422 0.422 0.049 0.604 0.854 0.854 0.659 0.926
wine 0.371 0.371 0.359 0.432 0.429 0.429 0.419 0.445 0.702 0.702 0.713 0.736
corel 0.199 0.163 0.204 0.259 0.288 0.242 0.288 0.328 0.488 0.462 0.51 0.586
segment 0.339 0.218 0.577 0.581 0.463 0.372 0.666 0.689 0.508 0.459 0.724 0.759
sonar 0.006 0.006 0.004 0.053 0.009 0.009 0.027 0.075 0.553 0.553 0.534 0.62

Data set Euc PCA LLE X–LLE Euc PCA LLE X–LLE Euc PCA LLE X–LLE

balance 0.161 0.178 0.344 0.397 0.137 0.125 0.297 0.333 0.659 0.696 0.749 0.814
bupa 0.005 0.005 0.105 0.146 0.001 0.001 0.084 0.105 0.58 0.58 0.664 0.693
glass 0.255 0.246 0.152 0.34 0.378 0.357 0.179 0.407 0.589 0.547 0.519 0.668
iono. 0.178 0.168 0.065 0.608 0.131 0.124 0.03 0.48 0.712 0.707 0.641 0.892
iris 0.73 0.716 0.316 0.922 0.751 0.736 0.442 0.901 0.893 0.887 0.713 0.973
lymph. 0.123 0.116 0.144 0.308 0.142 0.128 0.172 0.262 0.703 0.703 0.723 0.784
newthy. 0.579 0.568 0.528 0.781 0.485 0.48 0.355 0.669 0.86 0.856 0.805 0.935
wdbc 0.491 0.491 0.067 0.705 0.422 0.422 0.038 0.603 0.854 0.854 0.666 0.921
wine 0.371 0.371 0.062 0.492 0.429 0.429 0.121 0.486 0.702 0.702 0.466 0.792
corel 0.199 0.163 0.041 0.348 0.288 0.242 0.08 0.417 0.488 0.462 0.332 0.612
segment 0.339 0.218 0.144 0.601 0.463 0.372 0.222 0.672 0.508 0.459 0.403 0.774
sonar 0.006 0.006 0.019 0.227 0.009 0.009 0.016 0.173 0.553 0.553 0.577 0.74

Data set Euc PCA tSNE X–tSNE Euc PCA tSNE X–tSNE Euc PCA tSNE X–tSNE

balance 0.161 0.178 0.275 0.34 0.137 0.125 0.206 0.232 0.659 0.696 0.722 0.742
bupa 0.005 0.005 0.014 0.052 0.001 0.001 0.016 0.041 0.58 0.58 0.58 0.617
glass 0.255 0.246 0.21 0.223 0.378 0.357 0.346 0.361 0.589 0.547 0.607 0.631
iono. 0.178 0.168 0.124 0.523 0.131 0.124 0.098 0.395 0.712 0.707 0.678 0.863
iris 0.73 0.716 0.773 0.941 0.751 0.736 0.805 0.93 0.893 0.887 0.913 0.98
lymph. 0.123 0.116 0.142 0.278 0.142 0.128 0.152 0.214 0.703 0.703 0.709 0.743
newthy. 0.579 0.568 0.107 0.625 0.485 0.48 0.156 0.463 0.86 0.856 0.698 0.865
wdbc 0.491 0.491 0.415 0.719 0.422 0.422 0.405 0.595 0.854 0.854 0.822 0.924
wine 0.371 0.371 0.401 0.452 0.429 0.429 0.393 0.453 0.702 0.702 0.725 0.742
corel 0.199 0.163 0.241 0.294 0.288 0.242 0.318 0.354 0.488 0.462 0.536 0.584
segment 0.339 0.218 0.63 0.637 0.463 0.372 0.684 0.693 0.508 0.459 0.781 0.784
sonar 0.006 0.006 0.011 0.079 0.009 0.009 0.012 0.065 0.553 0.553 0.562 0.644

(van der Maaten and Hinton, 2008). Following previous work on spectral dimensionality
reduction and clustering (Ng et al., 2002; Ding and Li, 2007), we assess the benefit of (X, dX)
for manifold learning by the accuracy of k-Means clustering. More specifically, we quantify
the impact of the proposed input space by comparing clustering accuracy for the data in
the embedding space obtained before and after using (X, dX). Our hypothesis is that, for
a manifold learning algorithm, say LLE, the clustering accuracy in the embedding space
obtained by (X, dX)+LLE and denoted by X–LLE, will always be higher than the accuracy
in the embedding space obtained by LLE alone.

For the purpose of these experiments, we used twelve data sets, shown in Table (1),
from the UCI Machine Learning Repository (Newman et al., 1998). We used k–Means for
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(a) LEM’s energy for iris (b) LEM’s energy for wine

(c) k–Means loss for iris (d) k–Means loss for wine

Figure 3: LEM’s energy (a and b) and k–Means loss (c and d) for two real data sets, iris and wine, as
functions of m (No. Points) and the neighbourhood size for LEM (No. Patches).

clustering the data in each of the embedding spaces mentioned above, and the number of
clusters was assumed to be known. To leverage the impact of local minima for k–Means,
the algorithm was restarted with 50 different initializations and the best clustering result
was the one that minimized the sum of squared distances between the points and their
respective cluster means. After that, the accuracy of the best clustering result was assessed
using the adjusted rank index (ARI), the normalized mutual information index (NMI), and
the purity index (PUR).

The baseline performance for these experiments was that of the k–Means algorithm
in the Euclidean input space (Euc), and the subspace obtained by principal component
analysis (PCA). The hyperparameters for each algorithm were tuned as follows. For PCA,
the number of retained components constituted 98% of the total variance in the data. For
ISOMAP, LLE, and LEM, the neighbourhood size was allowed to vary from 3 to 25 nearest
neighbours. For LEM, and using a Gaussian kernel, there is an additional hyperparameter
to optimize: σ the kernel width. Three values were considered for σ; from all the pairwise
similarities in the affinity matrix, we selected the median, the 0.25 and the 0.75 of the
distribution’s quantile. The dimensionality d0 for LEM was fixed to the number of classes
in the data (Luxburg, 2007), and for ISOMAP and LLE it varied from 2 to bd/2c For tSNE,
d0 = {2, 3}, and the perplexity parameter varied from 10 to 35, with increments of 5 points.

For (X, dX), there are two hyperparameters: m and γ. In all our experiments we used a
regularized sample covariance of the form: Ri = Σi +γI, γ = 1.0e− 4, while m varied from
3 to 25 neighbours. These values were found to work well in practice for all our experiments.

Table (2) shows the clustering accuracy (ARI, NMI and PUR) for all algorithms on the
twelve UCI data sets. It can be seen that (X, dX) yields a consistent improvement in the
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clustering accuracy in the embedding spaces obtained by the four different algorithms. To
assess the significance of the improvement caused by (X, dX), we carried two significance
tests on the results in Table (2), the nonparametric Friedman test, followed by a post
Friedman multiple comparisons test, the Bonferroni–Dunn test (Demšar, 2006). These
tests showed that (X, dX) yielded significant improvements for ISOMAP (ARI, PUR), LEM
(ARI, NMI, PUR), LLE (ARI, NMI, PUR), and tSNE (ARI, NMI, PUR). However, X–ISM
was not significantly different from ISM under the NMI index. These results demonstrate
that (X, dX) helps the manifold learner to better characterize regions of high density in the
data revealing by that its latent class structure.

The results in Table (2) are not sensitive to γ for the reasons discussed in § 4.2. However,
m has a strong influence on these results. Figure (3) depicts the influence of m (No. Points),
and the neighbourhood size for LEM (No. Patches), on the energy for X–LEM and the loss
of k–Means in each embedding space obtained by X–LEM. Since k is assumed to be known,
LEM’s energy is the sum of the first k eigenvalues of its affinity matrix, and the k–Means
loss is the sum of squared distances between points and their respective cluster mean. Note
that regions with high energy (dark red) for LEM nicely overlap with regions with minimal
loss for k–Means (dark blue). This implies that in these regions X–LEM reveals well defined
compact clusters. Note also that, as expected from our assumptions, small values of m –
i.e. small neighbourhoods where Euclidean geometry holds – yield better defined clusters.

It is worth noting that we have not discussed how to choose which divergence measure
to use for a particular data set with a particular manifold learning algorithm. In the scope
of this paper, however, we considered how metric properties of divergence measures impact
the positive semi–definiteness of the affinity matrix for manifold learning in general (§ 4.1).

7. Discussion

We have proposed a framework for manifold learning algorithms that allows the liabilities
of Euclidean geometry to be overcome when dealing with real world data. Our framework
combines the concepts of local learning with parametric density estimation to learn, in an
unsupervised manner, the metric space (X, dX) which becomes a pilot input space to the
graph construction step of the manifold learning process.

An interesting property of the proposed framework is that it is not only limited to the
four manifold learners chosen here; in fact, it can be combined with any manifold learning
algorithm that relies on a data graph to learn a low dimensional embedding for the data
(Weinberger and Saul, 2004; Shaw and Jebara, 2009). Further, the framework does not
intervene with, nor prevent the use of the Nyström method, which is a crucial technique
for generalizing learned manifold structures to out of sample points, and scaling manifold
learning methods. Another interesting property is that the framework can preserve the
triangle inequality in the embedding space if dX is a metric and the manifold learner is
either LEM, cMDS or ISOMAP. Therefore, in the context of clustering on large data sets,
the practitioner can make use of the advances in accelerating the k−Means algorithm based
on the triangle inequality property (Elkan, 2003).

Last, since (X, dX) is an adaptive metric space with tuning parameter m, it is possible
to compute a distance matrix DX ∈ Rn×n using the divergence dX – assuming a fully
connected graph. In the same spirit of Graph–DBD (Bijral et al., 2011), DX can be used
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with supervised or semi-supervised distance based methods such as nearest neighbours
methods, Parzen windows methods, or kernel methods with distance based kernels (e.g.
Gaussian kernel). Further, it is legitimate to ask whether it is possible to replace the
weighted distance ‖xi − xj‖qp in the Graph–DBD algorithm with the divergence measure
dX(xi,xj) and proceed by computing all pairs shortest paths for all points; i.e. Graph–DBD
based on dX. While this is an interesting research direction, we leave it as future work.
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