
JMLR: Workshop and Conference Proceedings 29:357–372, 2013 ACML 2013

Coinciding Walk Kernels: Parallel Absorbing Random Walks
for Learning with Graphs and Few Labels

Marion Neumann marion.neumann@uni-bonn.de
Universtiy of Bonn, Germany

Roman Garnett rgarnett@uni-bonn.de
Universtiy of Bonn, Germany

Kristian Kersting kristian.kersting@cs.tu-dortmund.de
Technical University of Dortmund, Germany

Editor: Cheng Soon Ong and Tu Bao Ho

Abstract
Exploiting autocorrelation for node-label prediction in networked data has led to great suc-
cess. However, when dealing with sparsely labeled networks, common in present-day tasks,
the autocorrelation assumption is difficult to exploit. Taking a step beyond, we propose the
coinciding walk kernel (cwk), a novel kernel leveraging label-structure similarity – the idea
that nodes with similarly arranged labels in their local neighbourhoods are likely to have
the same label – for learning problems on partially labeled graphs. Inspired by the success
of random walk based schemes for the construction of graph kernels, cwk is defined in
terms of the probability that the labels encountered during parallel random walks coincide.
In addition to its intuitive probabilistic interpretation, coinciding walk kernels outperform
existing kernel- and walk-based methods on the task of node-label prediction in sparsely
labeled graphs with high label-structure similarity. We also show that computing cwks
is faster than many state-of-the-art kernels on graphs. We evaluate cwks on several real-
world networks, including cocitation and coauthor graphs, as well as a graph of interlinked
populated places extracted from the dbpedia knowledge base.
Keywords: learning in graphs and networks, kernels on graphs, random walks, label
propagation

1. Introduction

The study of structure in networked data has led to great developments and success in
graph-based and collective learning (Sen et al., 2008). In this work, we concern ourselves
with learning tasks defined on labeled graphs, when only a subset of the nodes’ labels are
known. The most straightforward problem is using the available labels to predict those on
the remaining nodes. The main hypothesis behind most approaches for node-label prediction
is that the labels of instances are autocorrelated (Neville and Jensen, 2005). This stems from
the homophily assumption, that same-labeled nodes are more likely to link to each other.

Hypothesis 1 (Autocorrelation, homophily)

Nodes that are close to one another in the graph are likely to have the same label.

c© 2013 M. Neumann, R. Garnett & K. Kersting.

Neumann Garnett Kersting

Exploiting this assumption is often profitable, provided that within a small neighbourhood
of each unlabeled node, we have a sufficient amount of label evidence to make confident
predictions. Due to the enormous size of present-day networks, however, it is common
to have only very few labeled nodes, resulting in having too few observations near many
unlabeled nodes to effectively apply Hypothesis 1. In turn, classification gets increasingly
more difficult. When data are sparsely labeled, we therefore have to do more than exploiting
closeby labels to accurately classify unlabeled nodes. Previous work in this direction has
introduced latent graphs by adding additional edges (Gallagher et al., 2008; Shi et al., 2011),
run multiple random walks with restarts (Lin and Cohen, 2010a), and suggested schemes
for active learning (Ji and Han, 2012).

Here we propose an alternative approach. We move beyond the straightforward ho-
mophily assumption, to say that not only are nearby nodes likely to have the same label,
but also nodes with similar local structure, where we define “structure” to be “the arrange-
ment and connectivity of labels on nearby nodes.”

Hypothesis 2 (Label-structure similarity)

Nodes with similarly arranged labels in their local neighbourhoods
are likely to have the same label.

Our main contribution is a new kernel, the coinciding walk kernel (cwk),1 that uses short
random walks to quantify how similarly the labels surrounding each node are arranged.

Random walks (rws) in general enjoy huge popularity in graph-based learning and have
proven a powerful tool both for defining kernels on graphs (defined between nodes of a graph)
and graph kernels (where graphs are themselves inputs to the kernel).2 A common idea in
the graph kernel community is to measure the similarity of two labeled graphs by analyzing
the labels encountered during random walks on the respective graphs (Gärtner et al., 2003;
Kashima et al., 2003; Neumann et al., 2012); the last reference used this idea to design
a kernel among partially labeled graphs. cwks are inspired by the construction of these
graph kernels; however, they define a kernel among the nodes of a graph. Common kernels
on graphs include the diffusion kernel (Kondor and Lafferty, 2002), the p-step random walk
kernel (Smola and Kondor, 2003), and the Moore–Penrose pseudoinverse of the Laplacian,
L+, (Fouss et al., 2012) which is a limiting case of the regularized Laplacian kernel (Smola
and Kondor, 2003). All of these kernels have random-walk interpretations; however, none
of them considers known labels during their computation, and as a result, they cannot take
advantage of Hypothesis 2.

We view known node labels as providing valuable information that should be considered
in the construction of a kernel used for node-label prediction. More precisely, partially
absorbing random walks (parws), where, with some probability, the walks stop progressing
once they hit a label, give the known labels influence over the walk process (Zhu et al., 2003;
Wu et al., 2012). We consider the distribution over sequences of labels encountered during a
parw from a node as encoding its “label structure.” To address Hypothesis 2, we then define
the cwk between two nodes to be the probability that parallel parws leaving from those
nodes coincide, that is, hit the same label at the same time. By lifting the random walk

1. Portions of this work appeared in (Neumann et al., 2013).
2. We make this distinction between “kernels on graphs” and “graph kernels” throughout.

358

Coinciding Walk Kernels

from being on the nodes of a graph to being on its labels, two nodes can be similar even if
they are very distant from each other in the graph, or even on disconnected graphs. On the
other hand, two parws could encounter similar label sequences simply by virtue of having
left from nearby nodes in the graph, so the cwk is also compatible with Hypothesis 1.

Most rw-based approaches, absorbing or not, only analyse the walks’ steady-state dis-
tributions (Kondor and Lafferty, 2002; Zhu et al., 2003; Lin and Cohen, 2010a; Wu et al.,
2012). However, rws using the graph’s row-normalized adjacency matrix as the transition
matrix converge to a constant steady-state distribution. To address this, the idea of early
stopping was successfully introduced in power iteration methods for clustering (Lin and Co-
hen, 2010b) and node-label prediction (Szummer and Jaakkola, 2001). The insight here is
that the intermediate distributions obtained by the rws during the convergence process are
extremely interesting. In this paper, we adopt this idea as well and use the entire evolution
of labels encountered during partially absorbing rws up the a given length as representing lo-
cal structure, rather than only using the limiting distribution. cwks therefore substantially
leverage inference by aggregating label predictions based on different walk lengths.

The distribution of labels encountered during parws clearly depends on the locations and
labels of previously observed nodes, connecting the cwk to the concept of data-dependent
kernels. Data-dependent kernels are widely used in semi-supervised learning (Zhou et al.,
2003; Sindhwani et al., 2005), where the kernels are for example constructed from the Lapla-
cian of a graph modeling the data geometry. Approaches like semi-supervised support vector
machines (see (Chapelle et al., 2008) for an extensive comparison and review) then try to
enforce smoothness of predictions along a manifold defined by the data in feature space,
typically by modifying the optimization objective. In this paper, however, we investigate
kernel construction leveraging label-structure information in plain graph data where no fea-
tures on the nodes are given. This means that the cwk is – in contrast to the kernels
used in standard semi-supervised learning – a label-dependent kernel rather than a data-
dependent kernel. However, both approaches could complement each other under the right
circumstances. Previous methods using label information to improve the kernel known as
label-dependent kernels or kernel-target alignment have proven successful (Zhu et al., 2004;
Min et al., 2007). Thus, by exploiting label absorbing random walks, the cwk is a label-
dependent kernel on a graph using the label information directly in the kernel construction.
This is in contrast to existing approaches which modify an existing kernel to improve align-
ment on the labeled data.

To summarize, cwks combine the benefits of kernel methods and inference approaches
in networked data. As our extensive experimental results demonstrate, this can considerably
improve node-label prediction, especially in sparsely labeled graphs.
The main contribution of this paper is the introduction of the coinciding walk kernel,
• the first label-dependent kernel on graphs leveraging label information directly in the

kernel construction, and thus,
• providing a learning method for node-label classification that intertwines inference and

kernels on graphs.
We proceed as follows. We start off by defining the main ingredient of coinciding walk
kernels, namely partially absorbing random walks. After introducing the coinciding walk
kernel and its probabilistic interpretation, we show its positive definiteness. Then, we will

359

Neumann Garnett Kersting

relate cwks to other existing methods considering label-structure similarity. Before conclud-
ing, we present experimental results on several state-of-the-art graph datasets, and discuss
parameter sensitivity and computational complexity of the proposed kernel.

2. Parallel and Partially Absorbing Random Walks

As the main ingredient of coinciding walk kernels – the label-structure similarity of nodes
in a graph – is modeled by the probability that parallel rws coincide, we will now review
Markov random walks on graphs. Further, we will explain how we examine label-structure
similarity via parallel partially label-absorbing random walks.

2.1. Absorbing Random Walks

Consider a graph G = (V,E) with |V | = n vertices and a set of edges E specified by a
weighted adjacency matrix A ∈ Rn×n. For convenience we take V = {1, 2, ..., n}. A random
walk on G is a Markov process X = {Xt : t ≥ 0} with a given initial state X0 = i. We
will also write X(i)

t to indicate the walk began at i. The probability that the walk jumps
from i to j, i.e. the transition probability Tij = P (Xt+1 = j | Xt = i), only depends on
the current state Xt = i. These one-step transition probabilities for all nodes in V can be
easily represented by the row-normalized adjacency or transition matrix T = D−1A, where
D = diag(

∑
j Aij).

Let S ⊆ V be a set of nodes. Given T and S, we define an absorbing random walk to
have the modified transition probabilities T̂ , defined as

T̂ij =


0 if i ∈ S and i 6= j
1 if i ∈ S and i = j
Tij else,

(1)

Nodes in S are “absorbing” in that a walk never leaves a node in S after it is encountered.
Now, consider a partially labeled graph G = (V,E, `) where V = VL ∪VU is the union of

labeled and unlabeled nodes, respectively, ` : V → [k] is a label function with known values
for the nodes in VL, and k is the number of available labels. We will describe how we can
monitor the distribution of labels encountered during absorbing rws on G. Let the matrix
P0 ∈ Rn×k give the prior label distributions of all nodes in V. If node i ∈ VL is observed
with label `(i), then the ith row in P0 is the Kronecker delta distribution concentrating at
`(i), i.e., (P0)i = δ`(i). We initialize the label distributions for the unlabeled nodes VU with
some prior, for example a uniform distribution.3 The ith row of P0 now gives the probability
distribution for the first label encountered, `(X(i)

0), for an absorbing rw starting at i. Now,
it is easy to see by induction that by iterating the map

Pt+1 ← T̂Pt, (2)

(Pt)i similarly gives the distribution over `(X(i)
t).

If we define the absorbing states to be the labeled nodes, S = VL, then the label propaga-
tion algorithm introduced in (Zhu et al., 2003) can be cast in terms of simulating absorbing

3. This prior could also be the output of an external classifier built on available node attributes.

360

Coinciding Walk Kernels

rws with transition probabilities as given in Eq. (1) until convergence, then assigning the
most probable absorbing label to the nodes in VU . For the rest of this paper we will refer
to this “label-absorbing” random walk just as an absorbing random walk.

2.2. Partially Absorbing Random Walks

Recall that our main goal is to define a kernel on a graph to perform learning tasks like
node classification in sparsely labeled networks based on autocorrelation and label-structure
similarity. Utilizing rws with fully absorbing states at the labeled nodes as defined above,
however, is somewhat restrictive towards this goal – only the first label encountered will
have any impact on the evolution of a particular rw. This is compatible with the homophily
hypothesis, but not very useful for capturing the structure of surrounding labels. Hence,
we have to soften the definition of absorbing states. This can be naturally achieved by
employing partially absorbing random walks (parws) (Wu et al., 2012).

The simplest way to define parws, in the setting of label-absorbing rws considered here,
is to extend our graph G by adding a special node for each label in [k] and adding edges from
each labeled node i ∈ VL to its respective label node. We then make these auxiliary nodes
absorbing states and vary the transition probabilities from the labeled nodes to them. The
transition probabilities in this graph G̃ = (V ∪ [k], Ẽ) are given by T̃ having the following
block structure:

T̃ =

 TU,U TU,L 0

(1− α)TL,U (1− α)TL,L α δL

0 0 I

 , (3)

where α ∈ [0, 1] is the absorbing probability. Note that by setting α = 1 we can exactly
model the fully absorbing rws defined previously. On the other hand, by setting α = 0
we get a simple power iteration with constant steady-state distribution. When using the
latter setting for learning it is crucial to apply some kind of early termination in order
to learn meaningful clusters or class labels (Szummer and Jaakkola, 2001; Lin and Cohen,
2010b). We will utilize parws for our coinciding walk kernel on graphs by combining both
techniques, partial label propagation and early stopping, into a measure for local structure
similarity of the nodes in a graph.

2.3. Parallel Absorbing Random Walks

The final ingredient we need are parallel random walks, as they allow one to refer to the
sequences of states of two or more random walks of the same length. Co-occurring rws
can be used to describe the similarity of either entire graphs or nodes in a graph based
on the structure of the local neighbourhood of the nodes. These similarities will be the
basis of the coinciding walk kernel defined in the next section. Let us now give a formal
definition of parallel random walks. A parallel random walk of length tmax among a set of
nodes S is given by the sequences {X(i)

t }0≤t≤tmax of tmax states visited by the random walks
starting at the respective nodes i ∈ S. Parallel partially absorbing random walks are given
by straightforwardly combining the according definitions.

361

Neumann Garnett Kersting

Algorithm 1 cwk computation
Input: max walk length tmax, absorbing rate α, inital label distributions P0 ∈ Rn×k, adja-
cency matrix A ∈ Rn×n

Output: coinciding walk kernel Kcw
K ← P0P

>
0

T = D−1A, where D = diag(
∑

j Aij)

T̃ ← construct-trans(T, α) B cf. Eq. (3)
for t← 1...tmax do
P̃t ← T̃ P̃t−1 B one step transition
Pt ← (P̃t)i, i ∈ {1, .., n}
K ← K + PtP

>
t B add kernel contribution

end for
Kcw ← 1

tmax+1 K B normalize kernel

3. Coinciding Walk Kernel

Now, we can define the coinciding walk kernel, which is the main contribution of our work.
The intuition underlying cwks is simple: parws on partially labeled graphs encode both
label and structure similarity. Thus, cwks can exploit Hypotheses 1 and 2 for learning
tasks on graphs. Before we show that Kcw is a valid kernel, we discuss its probabilistic
interpretation as well as some interesting properties.

3.1. Definition and Random Walk Interpretation

The coinciding random walk kernel on a graph G = (V,E) is defined as

Kcw =
1

tmax + 1

tmax∑
t=0

PtP
>
t , (4)

where the matrices of label probabilities Pt ∈ Rn×k are obtained by replacing T̂ by T̃ in
Eq.(2) and considering the respective entries in the extended label probability matrix P̃t,

Pt = (P̃t)i∈V , and (5)

P̃t+1 ← T̃ P̃t. (6)

Note that P̃t ∈ Rn+k×k is simply the probability matrix Pt extended by a k × k identity
matrix. Kcw has two kernel parameters: the absorbing probability α, and the maximum
walk length tmax, where α controls trade-off between the homophily and label-structure
similarity assumptions.

The matrix (Pt)i(Pt)
>
j can be interpreted as the probability that parallel parws leaving

from i and j are on nodes with the same label at time t, that is, that `(X(i)
t) = `(X

(j)
t).

Hence, cwks have the following intuitive interpretation: the value of the coinciding walk
kernel for two nodes i and j is the probability that parallel parws of length tmax starting
from i and j encounter the same label at any given time 0 ≤ t ≤ tmax.

362

Coinciding Walk Kernels

Theorem 1

Kcw as defined in Eq. (4) is positive-semi definite (i.e., is a valid Mercer kernel).

It is obvious that Kcw is a positive-semi definite kernel as it is the scaled sum of polynomial
kernels k(x, y) = (x>y + c)d, with c = 0 and d = 1, i.e., Kcw(i, j) ∝∑tmax

t=0 (Pt)i(Pt)
>
j .

The computation of cwk on a graph G is summarized in Algorithm 1. The com-
putational complexities of the required naïve calculations are O(k tmax |E|n) for the one
step transition and O(k tmax n

2) for the kernel contribution, where |E| is the number of
edges. It is worth mentioning that for most learning tasks it is sufficient to compute the
train–train and train–test fractions of the kernel matrix. This can be accomplished effi-
ciently by precomputing the {Pt} and summing only the required outer products with a
complexity of O(k tmax |VL|n). Algorithm 1 has an overall computational complexity of
O(k tmax |E|n), however, the kernel computation for sparse graphs (small |E|) with few
labeled nodes (|VL| � n) is efficient.

In Figure 1 we provide an illustration of cwk on a subgraph of a labeled graph built from
concepts in the dbpedia ontology marked as “populated places.”4 Each concept is a node in
our graph and is backed by a Wikipedia page. We added an undirected edge between two
places if one of their corresponding Wikipedia pages links to the other. The dbpedia ontology
further divides populated places into “countries,” “administrative regions,” “cities,” “towns,”
and “villages;” these five labels serve as class labels. This example was chosen because the
resulting graph does not necessarily exhibit homophily; for example, villages (approximately
half the dataset) are much more likely to link to countries than to other villages. For our
illustration, we built a graph with |V | = 500 nodes by taking a breadth-first search from
“Atlanta.” We then calculate the pseudoinverse of the Laplacian kernel (L+) as well as the
coinciding walk kernel (with α = 0.5 and tmax = 10), using a random selection of 20% of the
nodes for VL. Atlanta was not among the labeled nodes. The rows of Kcw corresponding to
K(Atlanta, ·) are illustrated in Figure 1 (b) and (d). One can clearly see that cwk is able
to capture structure similarity as several distant nodes have high values and nearby nodes
including nodes in the direct neighbourhood of Atlanta show low values. The rows of L+

are shown in Figure 1 (c) and (e). We can see that L+ (on average) decreases smoothly
with increasing distance from Atlanta (reflecting the homophily assumption); whereas the
value of Kcw also shows some highly correlated far-away nodes, as well as less correlated
nearby nodes. Moreover, the magnitude of Kcw is highly correlated with the correct label
(“city”) – the highest kernel values are exclusively achieved by other cities throughout the
network, exactly the behavior desired for predicting Atlanta’s label. It is also interesting to
note that the lowest kernel values are exclusively among nodes in the “town” class, perhaps
due to strikingly different label structure in their neighbourhoods.

3.2. Learning with Structure Similarity

Before presenting our experimental results, we will describe one of the baseline approaches
and briefly review related work on learning with structure similarity. The closest approach to
cwks, also incorporating local structure similarity, is introduced in (Desrosiers and Karypis,

4. An implementation of the used dbpedia (www.dbpedia.org) graph extractor is available at https://
github.com/rmgarnett/dbpedia_graph_extractor.

363

www.dbpedia.org
https://github.com/rmgarnett/dbpedia_graph_extractor
https://github.com/rmgarnett/dbpedia_graph_extractor

Neumann Garnett Kersting

(a) True labels (b) Kcw (α = 0.5) (c) L+

K
(A

tl
an

ta
,·)

shortest path distance

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

(d) Kcw (α = 0.5)

K
(A

tl
an

ta
,·)

shortest path distance

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

(e) L+

Figure 1: Subgraph of the populated-places Dataset. Panels (a) - (c) show a sub-
graph of the populated-places graph extracted from dbpedia consisting of
the 500 nearest nodes to the node “Atlanta.” The graph layout algorithm used
(OpenOrd) was force-directed; nearby nodes have a high connectivity. The edge
colours are created by perceptual blending of the colours of the incident nodes.
Panel (a) shows the class labels (“country” (green), “administrative region” (light
green), “city” (blue), “town” (light blue), “village” (pink)). Panel (b) and (c) il-
lustrate the values of the coinciding walk kernel and L+ of the kernel row for
Atlanta, coloured red. Dark blue means high similarity, i.e., high kernel value,
and white represents low similarity. Panels (d) and (e) show scatter plots of the
shortest path distance vs. the normalized values of K(Atlanta, ·) for Kcw and L+

respectively, where the colours encode the class labels. Best viewed in colour.

2009). Desrosiers and Karypis use a similarity measure based on parallel rws with constant
termination probability in a relaxation labeling algorithm. We will compare cwk to this
method referred to as rl. The similarity measure used in rl corresponds to the probability
that parallel random walks with constant termination probability are of exactly the same
length and generate exactly the same sequence of labels at all times. Even though rl
is slightly more general in the sense of being able to use labeled edges, it has two major
drawbacks. First, it has four parameters, αrl and βrl, regulating the influence of label

364

Coinciding Walk Kernels

uncertainty and of the similarity measure in the relaxation labeling iterations, respectively,
γ, the constant termination probability, and N , the maximum walk length. Second, the
minimal space complexity for node-label prediction scales with the number of unlabeled
nodes (|VU | × n), whereas cwk scales with the number of labeled nodes (|VL| × n), which
is favourable for within-network classification in sparsely labeled graphs. Moreover, their
similarity measure Σ(t) is used in an iterative relaxation labeling approach in which Σ(t) is
changing over the iterations, and despite being a kernel5 it is not clear how to use it directly
in a kernel-based approach.

Another approach exploiting the structure of subnetworks is heterogeneous label propa-
gation (Hwang and Kuang, 2010). In contrast to the cwk, heterogeneous lp needs explicitly
known subnetworks. Random walks with restart are used as proximity weights for ghost
edges in (Gallagher et al., 2008), but then the features considered by a later bag of logistic
regression classifiers are only based on a one-step neighbourhood.

4. Experiments

Our intention here is to investigate the power of coinciding walk kernels for the task of
node-label prediction in sparsely labeled graphs.6 We compare their performance to exist-
ing methods from the kernel and collective inference community. The main questions to
answer are whether cwks are able to utilize structure similarity and whether employing
cwks improves over state-of-the-art graph-based learning methods on datasets suggesting
Hypothesis 2. Additionally, we show that cwks perform competitive on datasets where
mostly homophily (Hypothesis 1) holds. Further, we analyse parameter sensitivity and
computational properties of cwks, i.e., runtime and space complexity of the kernel compu-
tation.

4.1. Experimental Protocol

We compare the classification accuracy in several real-world graphs of the following methods:
• cwk: coinciding walk kernels,
• lp: label propagation (Zhu et al., 2003),
• rl: relaxation labeling using structure similarity, (Desrosiers and Karypis, 2009).
• lgc: local and global consistency (Zhou et al., 2003),
• vnd: von Neumann diffusion kernel (Zhou et al., 2003; Fouss et al., 2012),
• diff: diffusion kernel (Kondor and Lafferty, 2002), and
• l+: pseudoinverse of the (normalized) Laplacian (Fouss et al., 2012).

lp is the obvious baseline approach. rl is currently the most accurate method in the area
of collective classification, c.f. results in (Desrosiers and Karypis, 2009). lgc is a diffusion
scheme for semi-supervised learning suggested in (Zhou et al., 2003). During the develop-
ment of their method, Zhou et al. also suggested the kernel KVND = (I−αD−1/2AD−1/2)−1

5. Note that Desrosiers and Karypis did not show that their similarity matrix Σ is a kernel, but by taking a
slightly different view we can write Σ(t) = γ2 ∑N

j=1(1−γ2j)
∏j

i=0 P
(t)
i (P

(t)
i)>, leading to a straightforward

proof of positive definiteness for graphs with unlabeled edges.
6. A cwk implementation is available at https://github.com/rmgarnett/coinciding_walk_kernel.

365

https://github.com/rmgarnett/coinciding_walk_kernel

Neumann Garnett Kersting

Table 1: Dataset properties. pp-xk is short for populated-places-xk. # graphs indicates
the number of connected components and Pfreq the proportion of the most frequent
class. Pswitch reflects the probability of adjacent nodes switching their labels.

properties

dataset # nodes # edges # labels # graphs Pfreq Pswitch

pp-1k 1 000 5 253 5 1 43% 69%
pp-3k 3 000 16 546 5 1 50% 66%
pp-5k 5 000 26 648 5 1 53% 70%

webkb 1 462 61 766 6 4 28% 33%
dblp 1 711 2 898 4 1 36% 21%
cora 2 708 5 278 7 78 30% 18%
citeseer 3 264 4 536 6 390 21% 26%

pp-100k 100 000 374 480 (used for runtime analysis cf. Fig. 4(b))

which is the von Neumann diffusion kernel (vnd) (Fouss et al., 2012) on the normalized adja-
cency matrix. Note that, vnd is closely related to the regularized Laplacian kernel7 (Smola
and Kondor, 2003). Hence, we choose vnd, diff and l+ to represent existing successful
kernels on graphs. All kernel-based predictions (cwk, vnd, diff, and l+) are achieved via
support vector machine (svm) classification.

The following graph datasets are used for evaluation:
• populated-places8 (link graph extracted from dbpedia, described above),
• webkb9 (cocitation graph of webpages from computer science departments of four

universities),
• dblp10 (connected coauthor graph extracted from the dblp database),
• cora11 (citation network of scientific papers), and
• citeseer11 (citation network of scientific papers).

To measure homophily in the datasets, we compute a statistic, Pswitch, as the probability
that a mixed random walk switches labels on adjacent nodes. That is, if Ps is the stationary
distribution of the random walk12 and Pswitch|i is the vector of conditional probabilities of
switching labels from a given node, then Pswitch = P>s Pswitch|i. Low values of this measure
signal the presence of homophily (favouring Hypothesis 1); whereas high values indicate a
lack of label smoothness (rejecting Hypothesis 1). For datasets with low Pswitch, exploiting
label-structure similarity (Hypothesis 2) may be more beneficial. Pswitch and other properties
of all datasets are summarized in Table 1. For the populated-places dataset, we created
graphs of varying sizes by performing a breadth-first search from the first node in the graph

7. Kreglap = (I − αL̃)−1 = (I − αD−1/2LD−1/2)−1 = (I − α(I − D−1/2AD−1/2))−1 = ((1 + α)I −
αD−1/2AD−1/2)−1, where L̃ is the normalized Laplacian.

8. http://www-kd.iai.uni-bonn.de/pubattachments/727/populated_places.tar.xz
9. http://www.netkit-srl.sourceforge.net/data.html
10. http://www.cs.illinois.edu/homes/mingji1/DBLP_four_area.zip
11. http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html
12. Ps can be calculated as the normalized eigenvector of T> with maximal eigenvalue.

366

http://www-kd.iai.uni-bonn.de/pubattachments/727/populated_places.tar.xz
http://www.netkit-srl.sourceforge.net/data.html
http://www.cs.illinois.edu/homes/mingji1/DBLP_four_area.zip
http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html

Coinciding Walk Kernels

Table 2: Average accuracies (%) on 20 test sets of the populated-places datasets, where
pp-xk is short for populated-places-xk. Italic indicates statistically significant
best performance among the kernel methods and bold indicates statistically signif-
icant best performance among all methods both under a paired t-test (p < 0.05).

5% 10%

cwk diff l+ vnd rl lgc lp cwk diff l+ vnd rl lgc lp

pp-1k 52.4 44.3 45.2 46.1 42.6 42.8 32.7 55.0 50.6 48.5 49.9 46.1 48.2 33.8
pp-3k 61.0 60.2 51.5 52.6 57.7 60.9 44.7 63.3 63.2 53.9 55.8 59.4 62.0 50.2
pp-5k 58.4 59.7 53.4 54.5 53.3 58.8 39.9 64.0 61.6 55.5 57.4 59.2 60.4 40.4

(Alabama). Note that the populated-places datasets have a rather high probability
that adjacent nodes are of different labels, i.e. Pswitch is high. This can also be seen in
Figure 1(a). Hence, for these datasets we expect structure similarity to be important for
node label prediction. For webkb we combined the cocitation networks of all universities
(Cornell, Texas, Washington, and Wisconsin) into one disconnected graph.

We focus on sparsely labeled graphs and use 20 randomly generated test splits for 1%
up to 15% labeled nodes. The test sets are the same for each method and all reported
classification accuracies are an average over the results on the 20 test sets. The performance
of all kernel-based classifiers is evaluated by running c-svm classifications using libSVM.13

Parameter learning is done by the following protocol. For each method we train all param-
eters (including the svm cost parameter) jointly via grid search on 10 randomly generated
training splits having 5% and 10% labeled nodes. Again, the training sets are the same for
each method. For prediction we use the first set of parameters (trained for 5% labeled data)
for training percentages from 1% to 7% and the second set of parameters for all scenarios
with more than 7% labeled data. The following parameter values were tested: cwk: tmax ∈
{0, 1, . . . , 10, 20, . . . , 200}, α ∈ {0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, 0.98, 0.99, 1}; rl:
N ∈ {1, 2, . . . , 5}, γ ∈ {0.1, 0.3, 0.5, 0.7}, αrl ∈ {0.25, 0.5, . . . , 1.5}, βrl ∈ {0.5, 1.0, . . . , 3.0};
lgc and vnd: α ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, 0.98, 0.99}; diff: β ∈ 2{−7,...,7};
and all kernel methods: svm cost C ∈ 2{−7,...,7}.

4.2. Predictive Performance

Exploiting Structure Similarity. Here we analyse the performance of all methods on the
populated-places datasets where – indicated by a high switching probability Pswitch, cf.
Table 1 – one can expect structure similarity to be useful for classification. The predictive
performances for three variations with 1 000, 3 000, and 5 000 nodes (pp-1k, pp-3k, pp-5k)
for 5% and 10% labeled nodes are summarized in Table 2. cwk performed significantly
better (under a paired t-test with p < 0.05) than the comparing methods on three out
of six experiments. Only in one of six cases (5% on pp-5k) did diff and lgc perform
slightly better than cwk; however, the difference was not significant. Hence, exploiting
label-structure similarity via partially label absorbing random walks clearly improves over
existing graph-based learning on non-homophilic datasets. Figure 2 shows results for 1%

13. http://www.csie.ntu.edu.tw/~cjlin/libsvm/

367

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Neumann Garnett Kersting

(a) pp-1k (b) pp-5k
Figure 2: Average accuracies (and standard errors) on pp-1k and pp-5k. The dotted

lines indicate 5% and 10% training data, corresponding to the results in Table 2.
Best viewed in colour.

to 15% labeled nodes for pp-1k and pp-5k. In general, we observe that cwk achieves the
best results followed by all other kernels on graphs (vnd, diff, and l+), lgc and rl. lp
fails to accurately predict the labels in the populated places graphs as it relies purely on
the homophily assumption and therefore cannot leverage the structure similarity inherent
to these networks. Surprisingly, rl does not achieve convincing results either.
Common Benchmark Graphs. The predictive performances for four common bench-
mark graphs (dblp, webkb, cora, and citeseer) with 5% and 10% labeled nodes are
summarized in Table 3. These datasets mostly obey the autocorrelation assumption (Hy-
pothesis 1) which can be seen from the rather low label switching probabilities reported in
Table 1. In the scenario with 5% labeled nodes, cwk performed significantly better (under
a paired t-test with p < 0.05) than the comparing kernel methods (diff, l+, and vnd)
on all four datasets. Further, cwk performs significantly best for citeseer, whereas lgc
outperforms all other methods for dblp and cora. When considering 10% labeled nodes,
cwk performed significantly best among the kernels on graphs in three out of four cases.
Comparing all methods, cwk and lcg both win significantly on one dataset. Overall, cwk
outperforms all kernels on graphs on a representative sample of common benchmark graphs.
These results indicate that incorporating label information into the kernel construction, i.e.
using a label-dependent kernel such as cwk for node classification, improves performance
over kernels on graphs using graph structure only. Further, cwk perform competitively
compared to a range of successful prediction methods from the areas of semi-supervised
learning and collective inference. Figure 3 shows average accuracies and standard errors of
all compared methods for 1% up to 15% labeled nodes for webkb and citeseer. On we-
bkb, cwk is clearly the best performing kernel on graphs and in comparison to all methods
it is the second best classifier. On citeseer, cwk performs significantly better than all
baselines for label fractions larger then 3%. As Pswitch (26%) is fairly low on this dataset,
this success might be explained by the huge number of connected components (390) – cwk
is able to capture similarities between two nodes in disconnected components; whereas other
kernels on graphs always give a value of zero in these cases.

368

Coinciding Walk Kernels

Table 3: Average accuracies (%) on 20 test sets of the datasets dblp, webkb, cora, and
citeseer. Italic indicates statistically significant best performance among the
kernel methods and bold indicates statistically significant best performance among
all methods both under a paired t-test (p < 0.05).

5% 10%

cwk diff l+ vnd rl lgc lp cwk diff l+ vnd rl lgc lp

dblp 62.8 55.6 60.2 56.7 61.7 64.0 61.0 69.3 65.5 67.9 66.2 67.9 69.4 69.1
webkb 61.5 47.7 38.8 54.4 57.2 61.6 43.4 63.2 52.6 49.0 59.0 61.0 65.6 45.7
cora 72.1 70.6 57.2 59.9 67.9 73.8 73.2 76.0 77.2 67.4 70.9 73.5 78.2 78.2
citeseer 53.5 50.8 50.9 49.0 51.2 51.6 50.9 57.8 55.4 52.8 55.2 55.5 55.4 54.9

(a) webkb (b) citeseer

Figure 3: Average accuracies (and standard errors) on webkb and citeseer. The
dotted lines indicate 5% and 10% training data, corresponding to the results
reported in Table 3. Best viewed in colour.

4.3. Parameter Analysis and Runtimes

To analyse the sensitivity of cwk’s predictive power with respect to changes in the kernel
parameters, we computed the average accuracies over 10 randomly generated test sets for
all combinations of α and tmax, where α ∈ {0.0, 0.01, . . . , 1.0} and tmax ∈ {0, 1, . . . , 100} on
the cora dataset with 5% labeled data. A heatmap of the results is shown in Figure 4(a).
Whereas the highest accuracy (72.1%) is achieved for an absorbing probability of α = 0.75
and a maximum walk length of tmax = 59, we see that for all α > 0.4 and tmax > 2,
the accuracy is higher than 65% .This shows that cwk is not eminently sensitive to its
parameters. The slight slope to the isoperformance curves suggest that walks of a given
length and absorbing probability behave somewhat like slightly longer walks with a slightly
smaller absorbing probability, which agrees with intuition.

In the following we analyse the scalability of the cwk computation for sparsely la-
beled networks. As investigating fast and scalable kernel methods goes beyond the scope of
our work, we focus our analysis on the scalability of the kernel computation. We com-
pare the runtimes for calculating all tested kernels on the populated-places dataset

369

Neumann Garnett Kersting

(a) Heatmap (b) Runtimes
Figure 4: Panel (a) shows a heatmap of average accuracies w.r.t. tmax and α. The accura-

cies are averaged over 10 randomly generated test sets of the cora dataset with
5% labeled nodes. × marks the highest accuracy for tmax = 59 and α = 0.75.
Panel (b) shows the loglog plot of runtimes for the kernel computations of all
kernels on graphs (cwk with 1%, 5% and 10% labeled nodes, diff, l+, and vnd)
on pp-xk where x ∈ {103, 2× 103, 5× 103, . . . , 105}. Best viewed in colour.

with up to 100 000 nodes. Once the kernel matrix is computed, all kernel-based meth-
ods scale comparably. Note that the iterative lp method not having to compute a kernel
is usually faster then kernel-based classification; however, prediction results are also signif-
icantly worse for most datasets. Figure 4(b) shows the runtimes on the pp-xk dataset for
x ∈ {1, 2, 5, 10, 20, 50, 100}. For cwk, whose runtime depends on the training fraction, we
show curves for 1%, 5%, and 10% labeled nodes. We note that the cwk took about the
same amount of time with n = 100 000 as diff did for n = 10 000 and l+ and vnd did
for n = 20 000. The smaller slope for the cwk also shows a more slowly growing runtime
in general. Finally, we make two remarks regarding the rl method, whose runtime is on a
similar order as cwk’s. First, rl must recalculate the kernel matrix multiple times, whereas
we only compute it once. Second, the time and storage requirements of rl grow with the
test size rather than the training size. For example, on the pp-100k dataset with 5% training
data, cwk requires approximately 3.7GB of storage, whereas rl requires about 71GB.

5. Conclusions

In this paper, we introduced a new kernel on graphs, the coinciding walk kernel, bringing
together graph-based label inference and kernel methods to leverage benefits from both fields
for learning tasks in sparsely labeled networks. The kernel values of cwks are given by the
probability that the labels encountered during parallel absorbing random walks on partially
labeled graphs coincide. That is, two nodes have a high kernel value if the labels surrounding
each node are arranged similarly. Our extensive experiments demonstrated that cwk, which
takes both Hypotheses 1 and 2 into account, scales and is robust across all tested datasets
for node-label prediction in sparsely labeled graphs.

The probabilistic random walk design of cwks leads to exciting ideas for future work.
For example, we aim to use partially absorbing random walks for the design of a graph kernel
for graph classification and retrieval. Further, we plan to investigate active learning with
the cwk to improve even more upon the prediction results in sparsely-labeled networks.

370

Coinciding Walk Kernels

Finally, hybrid semi-supervised support vector machines also constitute a great framework
to investigate the power of cwks in semi-supervised learning.

Acknowledgments

This work was supported by the European Commission under “FP7-248258-First-MM”, the
German Federal Office for Agriculture and Food (ble) under “2815411310”, the German Sci-
ence Foundation (dfg) under “GA 1615/1-1”, and the Fraunhofer attract grant stream.

References

O. Chapelle, V. Sindhwani, and S. S. Keerthi. Optimization Techniques for Semi-Supervised
Support Vector Machines. Journal of Machine Learning Research, 9:203–233, 2008.

C. Desrosiers and G. Karypis. Within-Network Classification Using Local Structure Simi-
larity. In Proceedings of the European Conference on Machine Learning and Knowledge
Discovery in Databases (ECML/PKDD-09), pages 260–275, 2009.

F. Fouss, K. Françoisse, L. Yen, A. Pirotte, and M. Saerens. An Experimental Investigation
of Kernels on Graphs for Collaborative Recommendation and Semisupervised Classifica-
tion. Neural Networks, 31:53–72, 2012.

B. Gallagher, H. Tong, T. Eliassi-Rad, and C. Faloutsos. Using Ghost Edges for Classifica-
tion in Sparsely Labeled Networks. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-08), pages 256–264, 2008.

T. Gärtner, P. Flach, and S. Wrobel. On Graph Kernels: Hardness Results and Efficient
Alternatives. In Computational Learning Theory and Kernel Machines — Proceedings of
the 16th Annual Conference on Computational Learning Theory and 7th Kernel Workshop
(COLT/Kernel-03), pages 129–143, 2003.

T. Hwang and R. Kuang. A Heterogeneous Label Propagation Algorithm for Disease Gene
Discovery. In Proceedings of the SIAM International Conference on Data Mining (SDM-
10), pages 583–594, 2010.

M. Ji and J. Han. A Variance Minimization Criterion to Active Learning on Graphs. Journal
of Machine Learning Research - Proceedings Track (AISTATS-12), 22:556–564, 2012.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized Kernels Between Labeled Graphs.
In Machine Learning, Proceedings of the Twentieth International Conference (ICML-03),
pages 321–328, 2003.

R. I. Kondor and J. D. Lafferty. Diffusion Kernels on Graphs and Other Discrete Input
Spaces. In Machine Learning, Proceedings of the Nineteenth International Conference
(ICML-02),, pages 315–322, 2002.

F. Lin and W. W. Cohen. Semi-Supervised Classification of Network Data Using Very Few
Labels. In International Conference on Advances in Social Networks Analysis and Mining
(ASONAM-10), pages 192–199, 2010a.

371

Neumann Garnett Kersting

F. Lin andW.W. Cohen. Power Iteration Clustering. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages 655–662, 2010b.

M. R. Min, A. J. Bonner, and Z. Zhang. Modifying Kernels Using Label Information Im-
proves SVM Classification Performance. In The Sixth International Conference on Ma-
chine Learning and Applications (ICMLA-07), pages 13–18, 2007.

M. Neumann, N. Patricia, R. Garnett, and K. Kersting. Efficient Graph Kernels by Ran-
domization. In Machine Learning and Knowledge Discovery in Databases - European
Conference (ECML/PKDD-12), pages 378–393, 2012.

M. Neumann, R. Garnett, and K. Kersting. Coinciding Walk Kernels. In Eleventh Workshop
on Mining and Learning with Graphs (MLG-13), 2013.

J. Neville and D. Jensen. Leveraging Relational Autocorrelation with Latent Group Models.
In Proceedings of the 5th IEEE International Conference on Data Mining (ICDM-05),
pages 322–329, 2005.

P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad. Collective
Classification in Network Data. AI Magazine, Vol. 29, Nr. 3, 29(3):93–106, 2008.

X. Shi, Y. Li, and P. S. Yu. Collective Prediction with Latent Graphs. In Proceedings of the
20th ACM Conference on Information and Knowledge Management (CIKM-11), pages
1127–1136, 2011.

V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the Point Cloud: from Transductive
to Semi-supervised Learning. In Proceedings of the 22nd International Conference on
Machine Learning (ICML-05), pages 824–831, 2005.

A. Smola and R. I. Kondor. Kernels and Regularization on Graphs. In Computational Learn-
ing Theory and Kernel Machines, 16th Annual Conference on Computational Learning
Theory and 7th Kernel Workshop (COLT/Kernel-03), pages 144–158, 2003.

M. Szummer and T. Jaakkola. Partially Labeled Classification with Markov Random Walks.
In Advances in Neural Information Processing Systems (NIPS-01), pages 945–952, 2001.

X.-M. Wu, Z. Li, A. M.-C. So, J. Wright, and S.-F. Chang. Learning with Partially Absorbing
Random Walks. In Advances in Neural Information Processing Systems (NIPS-12), pages
3086–3094, 2012.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with Local and
Global Consistency. In Advances in Neural Information Processing Systems (NIPS-03),
pages 321–328, 2003.

X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-Supervised Learning Using Gaussian Fields
and Harmonic Functions. InMachine Learning, Proceedings of the Twentieth International
Conference (ICML-03), pages 912–919, 2003.

X. Zhu, J. S. Kandola, Z. Ghahramani, and J. D. Lafferty. Nonparametric Transforms of
Graph Kernels for Semi-Supervised Learning. In Advances in Neural Information Pro-
cessing Systems (NIPS-04), pages 1641–1648, 2004.

372

	Introduction
	Parallel and Partially Absorbing Random Walks
	Absorbing Random Walks
	Partially Absorbing Random Walks
	Parallel Absorbing Random Walks

	Coinciding Walk Kernel
	Definition and Random Walk Interpretation
	Learning with Structure Similarity

	Experiments
	Experimental Protocol
	Predictive Performance
	Parameter Analysis and Runtimes

	Conclusions

