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Abstract
We address a problem of efficiently estimating the influence of a node in information diffusion over
a social network. Since the information diffusion is a stochastic process, the influence degree of a
node is quantified by the expectation, which is usually obtained by very time consuming many runs
of simulation. Our contribution is that we proposed a framework for predictive simulation based
on the leave-N-out cross validation technique that well approximates the error from the unknown
ground truth for two target problems: one to estimate the influence degree of each node, and the
other to identify top-K influential nodes. The method we proposed for the first problem estimates
the approximation error of the influence degree of each node, and the method for the second prob-
lem estimates the precision of the derived top-K nodes, both without knowing the true influence
degree. We experimentally evaluate the proposed methods using the three real world networks, and
show that they can serve as a good measure to solve the target problems with far fewer runs of
simulation ensuring the accuracy if N is appropriately chosen, and that estimating the top-K nodes
is easier than estimating the influence degree, which means one can identify the influential nodes
without knowing exactly their influence degree.
Keywords: Predictive simulation, Influence degree, Information diffusion

1. Introduction

The emergence of Social Media such as Facebook, Digg, Twitter, Weblog, Wiki, etc. has provided
us with the opportunity to create large social networks. Once an article is posted on social media,
it can rapidly and widely spread through these networks and can be shared by a large number of
people. Thus, it has a large influence on our thought and decision making. This phenomenon has
attracted the interest of many researchers from diverse fields, e.g, sociology, psychology, economy,
computer science (Kleinberg, 2008). In view of the importance of this phenomenon it is becoming
pressingly important that we are able to efficiently analyze this huge amount of information and
estimate its influence.
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Among a large number of studies on modeling how information propagates through a social
network (Yang and Counts, 2010; Yang and Leskovec, 2010; Bakshy et al., 2011; Cui et al., 2011;
Guille and Hacid, 2012), of particular importance is the influence maximization problem (Kempe
et al., 2003; Leskovec et al., 2007; Chen et al., 2009, 2010b; Kimura et al., 2007, 2010) in which the
task is to identify a limited number of nodes which together maximize the information spread, and its
variants. Variants include the contamination minimization problem in which the task is to identify
a limited number of links which together, if blocked, minimizes the information spread (Kimura
et al., 2008, 2009b), and the target selection problem in which the task is to identify a limited
number of target nodes to send information from outside of a network such that the influence spread
is maximized (Saito et al., 2013)1.

All of these problems need to estimate the influence of a node (a set of nodes) and rank the nodes
in accordance with the influence degree. Since the process of information diffusion is modeled as a
stochastic process, quantification of influence is meaningful only in the sense of expectation. The
influence degree of a node v is defined to be the expected number of the active nodes at the end
of information diffusion, i.e., the expected number of nodes where the information started at the
node v eventually reaches as the results of information cascade (See 2.1). Kempe et al. (2003) first
solved the influence maximization problem by approximating the influence degree by the empirical
mean of many runs of simulation and selecting the best set of nodes using a greedy search strategy.
Since then, various techniques have been proposed to improve the computational efficiency both
in estimating the influence degree and finding the best set of nodes. These include bond percola-
tion (Kimura et al., 2007, 2010), pruning (Kimura et al., 2009a), lazy evaluation (Leskovec et al.,
2007; Goyal et al., 2011), burnout (Saito et al., 2009a), shortest path heuristics (Kimura and Saito,
2006; Chen et al., 2009, 2010a,b), belief propagation (Nguyen and Zheng, 2012) and linear system
approximation (Yang et al., 2012). Pruning, lazy evaluation and burnout are techniques to reduce
the cost of search. The rests are related to techniques to reduce the cost of estimating the influ-
ence degree or to reduce the cost of both. A bond percolation is the process in which each link
of a network is randomly designated either “occupied ” or “unoccupied” according to the diffusion
probability associated with each link, and the probabilistic simulation is replaced with the counting
of nodes reachable from the starting node (See 2.2). A single bond percolation allows to estimate
the number of reachable nodes from all the starting nodes at once, which reduces the computation
cost by 2 to 3 orders of magnitude. However, it requires many runs of bond percolation. As the
number of runs goes to infinity, the empirical mean converges to the true expectation. The shortest
path heuristics, belief propagation and linear system application introduce approximation to the dif-
fusion paths, e.g., assume DAG, and estimate the influence directly, but there is no formal measure
how close the estimated influence degree is to the ground truth.

In this paper we take the approach to estimate the expectation by the empirical mean of many
runs (weather each run is bond percolation and counting or direct probabilistic simulation or some
other does not matter), and propose a framework to evaluate how close the approximation is to the
ground truth without knowing the correct answer. We have two targets to estimate: one is the influ-
ence degree of individual node and the other is ranking of the nodes. Since we are only interested
in the influential nodes, we consider only the top-K nodes with respect to the influence degree. The
framework we propose is based on the cross-validation, in particular, we show the one based on
leave-N-out in this paper. It returns an approximated difference between the estimated answer and

1. This is similar to the influence maximization problem, but is different in that the target nodes are not guaranteed to
spread the passed information, i.e., the cascade may stop there.
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the unknown ground truth, i.e., the approximation error of the estimated influence degree for the
former target and the precision of the estimated top-K nodes for the latter target. We have tested our
method using three real world network structures. The ground truth we used to evaluate our method
is obtained by the empirical mean of one million independent runs. Extensive experiments were
performed varying the number of runs and repeating them multiple times to evaluate the estimated
influence degree and its standard deviation, and top-K nodes precision. The global performance is
in line with what the central limit theory indicates, but the details vary depending on the specific
network structure and the individual node. We found that estimating top-K nodes is easier than
estimating the influence degree itself for all networks. This implies we can identify the influential
nodes without knowing the very accurate influence degree. The method we proposed is not specific
to social network application. It is very generic and is applicable to any other estimation prob-
lems for predictive simulation in which we need a criterion when to stop ensuring the predictive
performance.

The paper is organized as follows. Section 2 describes the information diffusion models we used,
formally defines influential degree and explains bond percolation. Section 3 is the main part where
the problem is mathematically defined as a machine learning problem, and a solution is proposed.
Section 4 reports experimental results for influence degree estimation and top-K influential node
identification using three real world networks. Section 5 summarizes what has been achieved in this
work and addresses the future work.

2. Information Diffusion Models

2.1. Stochastic Cascade Model and Influence Degree

We investigate the spread of information through a social network represented by a directed graph G
= (V, E), where V and E (⊂ V × V) are the sets of all the nodes and links in the network, respectively.
A node is called active if it has been influenced with the information, and inactive otherwise. We
assume that nodes can switch their states from inactive to active, but cannot switch the other way
around. When there is a link (u, v) from node u to node v, u is called a parent node of v and v is
called a child node of u. For any node v ∈ V , let Γ(v) denote the set of all parent nodes of v in G, that
is, Γ(v) = {u ∈ V; (u, v) ∈ E}. Here, we focus on stochastic cascade models of information diffusion
in G such that each node v can be influenced directly only by its parent nodes Γ(v).

For simplicity, we only describe basic discrete-time models although it is possible to extend
them to more realistic continuous-time models (e.g., asynchronous models with continuous-time
delays (Saito et al., 2009b, 2010)). Given an initial set V0 (⊂ V) of active nodes at time 0, the
diffusion process unfolds in the following way: If a node u first becomes active at time t, it has one
chance of activating each inactive child node v. If u succeeds, then v will become active at time
t + 1. If multiple parent nodes of v become active at time t, their activation attempts are sequenced
in an arbitrary order, but performed at time t. Whether or not u succeeds, it cannot make any further
attempts to activate v in subsequent rounds. The process terminates if no more activations are
possible. Here, the probability that node u succeeds to activate node v is given by some appropriate
function Pv(u, Γ̃∗t (v)), where Γ̃∗t (v) is the set of pairs (w, tw) such that w ∈ Γ(v) and tw < t; tw denotes
the time at which w first became active. Note that the diffusion (success) probability Pv(u, Γ̃∗t (v))
must be constructed so that the order-independence of multiple activation attempts at any time are
satisfied. Let A(V0) denote the number of active nodes at the end of the diffusion process. Note that
A(V0) is a random variable. Let 〈A(V0)〉 denote the expected value of A(V0). We refer 〈A(V0)〉 to
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as the influence degree of V0. When the initial active set V0 consists of a single node v0, we simply
denote A({v0}) and 〈A({v0})〉 by A(v0) and 〈A(v0)〉, respectively. In this paper, we explore an efficient
estimation of 〈A(v0)〉 for any node v0 ∈ V .

2.2. Independent Cascade Model and Bond Percolation

One of the simplest models in this framework is the independent cascade (IC) model (Kempe
et al., 2003), where the diffusion probability Pv(u, Γ̃∗t (v)) from node u to node v is a constant pu,v

(0 ≤ pu,v ≤ 1), which is independent of the history of the diffusion process. In our experiments,
we examine the effectiveness of the proposed estimation method for the IC model although the
method can be applied to other general stochastic cascade models. Note that the IC model on G
can be identified with the so-called susceptible/infective/recovered (SIR) model (Newman, 2003;
Watts and Dodds, 2007) for the spread of a disease on G, where the nodes that first become active
at time t in the IC model correspond to the infective nodes at time t in the SIR model. In the SIR
model, each node can have three states, “susceptible”, “infective”, and “recovered”, where a sus-
ceptible node becomes infective with a certain probability when its parent node is infective, and
subsequently recovers. It is known that the SIR model on a network can be exactly mapped onto a
bond percolation model on the same network (Newman, 2003; Kempe et al., 2003). Thus, the IC
model on G is equivalent to a bond percolation model on G, that is, these two models have the same
probability distribution for the final set of active/recovered nodes. In our experiments, we exploit
this equivalence between the IC and bond percolation models, and efficiently estimate the influence
degree of any node v ∈ V based on the bond percolation method (Kimura et al., 2010). Below, we
revisit the bond percolation method.

The bond percolation process with occupation probabilities {pu,v | (u, v) ∈ E} on graph G is the
random process in which each link (u, v) ∈ E is independently declared “occupied” with probability
pu,v. Note that in terms of information diffusion on a network, the occupied links represent the links
through which the information propagates, and the unoccupied links represent the links through
which the information does not propagate. Here we consider a set S defined by S = {1, · · · , |S |}.
For a positive integer |S |, we perform the bond percolation process |S | times, and sample a set of |S |
graphs constructed by the occupied links,{

Gs = (V, Es) | s ∈ S
}
.

For any v ∈ V , we define ĀS (v) by

ĀS (v) =
1
|S |

∑
s∈S

∣∣∣F(v; Gs)
∣∣∣ . (1)

Here, F(v; Gs) stands for the set of all the nodes that are reachable from node v on graph Gs. We
say that node u is reachable from node v on graph Gs if there is a path from v to u along the links
on graph Gs. Since for the IC model with diffusion probabilities {pu,v | (u, v) ∈ E} on graph G the
bond percolation proceeds with occupation probabilities {pu,v | (u, v) ∈ E} on graph G, the influence
degree 〈A(v)〉 of node v ∈ V for the IC model can well be approximated by ĀS (v), that is,

〈A(v)〉 ∼ ĀS (v), (v ∈ V), (2)
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if |S | is sufficiently large. We decompose each graph Gs into the strongly connected components
(SCCs) as follows:

V =

Js⋃
j=1

S CC(us
j; Gs),

where Js is the number of the strongly connected components of graph Gs, each us
j is an element of

V , and S CC(us
j; Gs) denotes the SCC of graph Gs that contains node us

j. Note that∣∣∣F(v; Gs)
∣∣∣ =

∣∣∣∣F(us
j; Gs)

∣∣∣∣ , if v ∈ S CC(us
j; Gs). (3)

Thus, by calculating {|F(us
j; Gs) | j = 1, · · · , Js} in advance and using Equation (3), we efficiently

calculate |F(v; Gs)| for all v ∈ V at once. Once we have {|F(v; Gs)| | v ∈ V, s ∈ S }, we can calculate
ĀS (v) for all v ∈ V from Equation (1).

Namely, the bond percolation method estimates all the influence degrees {〈A(v)〉 | v ∈ V} on
graph G as follows: It first specifies the value of integer |S |, calculates ĀS (v) for all v ∈ V by
performing the above procedure, and estimates 〈A(v)〉 for all v ∈ V by using Equation (2).

3. Predictive Simulation Framework

3.1. Influence Degree Estimation

We first consider a problem of estimating influence degree of node v ∈ V . More formally, for a given
set of samples {As(v) = |F(v; Gs)| | s ∈ S }, where each sample is independently generated accord-
ing to an identical distribution induced from a bond percolation process, we attempt quantitatively
evaluating the following expected approximation error of the estimated influence degree ĀS (v) of
Equation (1) with respect to the influence degree 〈A(v)〉,

DS (v) = 〈|〈A(v)〉 − ĀS (v)|〉. (4)

Namely, we formulate our problem as estimating the approximation error between 〈A(v)〉 and ĀS (v)
only from a limited number of samples {As(v) | s ∈ S } without assuming 〈A(v)〉 in a typical machine
learning problem setting.

To this end, we propose methods based on a leave-N-out cross validation technique in a machine
learning approach. For a positive integer N < |S |, let B ⊂ 2S be a family of subsets of S whose
number of elements is N, that is, |B| = N for B ∈ B. Then, we can consider the following estimation
formula for the approximation error of the influence degree:

D̄S (v; N) =

√
〈(ĀS (v) − ĀS \B(v))2〉B∈B

=

√√√√(
|S |
N

)−1 ∑
B∈B

ĀS (v) −
1

|S | − N

∑
s∈S \B

As(v)

2

= CS (N)σ̄S (v) (5)

Here CS (N) is the function calculated by

CS (N) =

√
N

(|S | − 1)(|S | − N)
, (6)
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and σ̄S (v) denotes the empirical standard deviation of |S | simulation results {As(v) | s ∈ S },

σ̄S (v) =

√
1
|S |

∑
s∈S

(
As(v) − ĀS (v)

)2
. (7)

As for settings to N, we focus on the two special cases which correspond to two methods. In the first
method, by setting N to 1, we consider D̄S (v; 1) where CS (1) = 1/(|S | − 1), which coincides with a
leave-one-out cross-validation. We refer to this method as the LOO method. In the second method,
by setting N to |S |/2, we consider D̄S (v; |S |/2) where CS (|S |/2) =

√
1/(|S | − 1). This coefficient

practically coincides with the value calculated from the central limit theorem. Thus, we refer to
this method as the CLT method. In our experiments, we evaluate the performances of these two
proposed methods.

3.2. Top-K Influential Node Identification

Next, we consider a problem of identifying the top-K nodes according to the influence degree 〈A(v)〉
of each node v ∈ V . For this purpose, we introduce a rank function, denoted by R(v; A(·)), which
returns the descending order of the node v ∈ V according to the value of A(v). By using this function,
we can respectively express the true top-K nodes T (K; 〈A(·)〉) and the empirically estimated top-K
nodes T (K; ĀS (·)) obtained from |S | times of simulation results as follows:

T (K; 〈A(·)〉) = {v ∈ V |R(v; 〈A(·)〉) ≤ K}, (8)

T (K; ĀS (·)) = {v ∈ V |R(v; ĀS (·)) ≤ K}. (9)

Then, for a given set of samples {As(v) | v ∈ V, s ∈ S } generated by bond percolation processes,
we attempt quantitatively evaluating the following expected precision of the estimated top-K nodes
T (K; ĀS (·)) of Equation (9) with respect to the true top-K nodes T (K; 〈A(·)〉) of Equation (8),

HS (K) = 〈
1
K
|T (K; 〈A(·)〉) ∩ T (K; ĀS (·))|〉. (10)

Namely, we formulate our problem as estimating the top-K nodes identification precision between
T (K; 〈A(·)〉) and T (K; ĀS (·)) from a limited number of samples {As(v) | v ∈ V, s ∈ S } without assum-
ing 〈A(v)〉 in a typical machine learning setting.

To this end, we also propose methods based on a leave-N-out cross validation technique in a
machine learning approach. As described above, by using B ⊂ 2S , a family of subsets of S whose
number of elements is N, that is, |B| = N for B ∈ B, we can consider the following formula for
estimating the identification precision of the top-K nodes:

H̄S (K; N) = 〈
1
K
|T (K; ĀS (·)) ∩ T (K; ĀS \B(·))|〉B∈B. (11)

However, unlike the problem for estimating the approximation error of influence degree, we cannot
derive effective calculation formulae with respect to Equation (11) for an arbitrary N. Thus, we
focus on the two special cases which correspond to the following two methods. In the first method,
by setting N to |S | − 1, we consider the following estimation formula:

H̄S (K; |S | − 1) =
1

K × |S |

∑
s∈S

|T (K; ĀS (·)) ∩ T (K; Ās(·))|. (12)
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We refer to the method following this equation as the SC method because it simply counts how
many times v ∈ T (K; ĀS (·)) appears as a top-K node in each independent simulation for s ∈ S . On
the other hand, in the second method, we consider changing N from 1 to S . Let H̄S (K; 〈|S |〉) be the
estimation formula for the second problem, then we can define it as follows:

H̄S (K; 〈|S |〉) =
1

K × |S |

∑
s∈S

|T (K; ĀS (·)) ∩ T (K; Ā{1,··· ,s}(·))|. (13)

We refer to the method following this equation as the CC method because it cumulatively counts
the number of times that each v ∈ V appears as a reachable node in the first s (∈ S ) simulations to
calculate Ā{1,··· ,s}(·) in the equation. In our experiments, we evaluate the performances of these two
proposed methods.

4. Experiments

4.1. Datasets

To experimentally evaluate the methods proposed in the previous sections, we employed three
datasets of real networks, where all networks are represented as directed graphs. The first one
is a reader network extracted from a Japanese blog service site “Ameba”2, in which each blog can
have a list of reader links. A reader link is directional and a link is constructed from blog u to blog
v if blog v registers blog u as her favorite one. We crawled the lists of 117, 374 blogs of “Ameba”
in June 2006, and extracted a large connected network that has 56, 604 nodes and 734, 737 directed
links. We refer to this network as the Ameblo network. The second one is a network extracted
from “@cosme”3, a Japanese word-of-mouth communication site for cosmetics, in which each user
page can have fan links. A fan link (u, v) means that user v registers user u as her favorite user. We
traced up to ten steps in the fan-link network from a randomly chosen user in December 2009, and
extracted a large connected network consisting of 45, 024 nodes and 351, 299 directed links. We
refer to this directed network as the Cosme network. The last one is a network derived from the
Enron Email Dataset (Klimt and Yang, 2004), in which an email address that appears in the dataset
as either a sender or a recipient is regarded as a node and two email addresses u and v are linked
by a directional link (u, v) if u sent an email to v. We refer to this directed network as the Enron
network, which has 19, 603 nodes and 210, 950 links.

4.2. Statistical Analysis

For each of the three real networks, G = (V, E), we estimated the true influence degree 〈A(v)〉 of each
node v ∈ V by the empirical mean ĀS 0(v) of one million simulations (|S 0| = 1.0× 106), according to
Equation (1). We also estimated the true standard deviation σ(v) of random variable A(v) as σ̄S 0(v),
according to Equation (7). As described earlier, in our experiments, we used the bond percolation
method instead of the direct simulations because of computation time issues. Figure 1 plots the pair(
ĀS 0(v), σ̄S 0(v)

)
for all v ∈ V for the Ameblo, Cosme, and Enron networks, where the horizontal

and vertical axes indicate influence degree ĀS 0(v) and standard deviation σ̄S 0(v), respectively. For
the diffusion probability p of the IC model, we investigated the three cases, p = 1/d̄, p = 1/2d̄,

2. http://www.ameba.jp/
3. http://www.cosme.net/
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(a) Ameblo network (b) Cosme network (c) Enron network

Figure 1: Results for “influence degree vs. standard deviation” (p = 1/d̄).

(a) Ameblo network (b) Cosme network (c) Enron network

Figure 2: Fluctuation of ĀS (v1) as a function of S .

(a) Ameblo network (b) Cosme network (c) Enron network

Figure 3: Fluctuation of ĀS (v∗) as a function of S .

and p = 2/d̄, where d̄ means the average out-degree of the network. We can observe that all the
results are qualitatively similar. Namely, there exists a critical influence degree ĀS 0(v∗) such that
the standard deviation σ̄S 0(v) for a node v is an increasing function of its influence degree ĀS 0(v) if
ĀS 0(v) ≤ ĀS 0(v∗), but σ̄S 0(v) is a rapidly decreasing function of ĀS 0(v) if ĀS 0(v) ≥ ĀS 0(v∗). Note
that the node v∗ gives the largest standard deviation. It seems natural that the standard deviation for a
node tends to become large as its influence degree becomes high. However, the experimental results
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show that the standard deviations for the nodes having very high influence degree become relatively
small. Let v1 denote the node of the highest influence degree. Then, the ratio σ̄S 0(v1)/ĀS 0(v1) is
less than 0.01 for all the cases. These results imply that very many simulations are not required for
estimating the influence degree of very influential nodes.

Next, for the nodes v = v1 and v = v∗ in the case of p = 1/d̄, we explored how AS (v) fluctuates
as a function of the number of simulations |S |. We limit |S | to 1, 000, and calculated Ā{1,··· ,s}(v) for
s ∈ S . We repeated this procedure ten times. Figures 2 and 3 show the influence degree ĀS (v) as a
function of |S | for the Ameblo, Cosme, and Enron networks, respectively. Here, we added the red
curves defined by

|S | 7→ AS 0(v) ±
ĀS 0(v)
√
|S |

as a guide since the central limit theorem states
√
|S |

(
ĀS (v) − 〈A(v)〉

)
σ(v)

→ N(0, 1) in law as |S | → ∞,

where N(0, 1) denotes the normal distribution of mean 0 and variance 1. As expected, we can see
that although the variance of AS (v∗) is large, the variance of AS (v1) is not large when |S | becomes
near 1, 000.

4.3. Evaluation of Influence Degree Estimation

First, we evaluated the two methods proposed in Section 3.1, i.e., the LOO and CLT methods,
that estimate the approximation error between the true influence degree of node v ∈ V , 〈A(v)〉,
and its estimation, ĀS (v), that is the empirical mean of the influence degree of node v over the |S |
simulations. We conducted |S | simulations to evaluate how accurately these methods can estimate
the approximation error with the limited number of simulations, and compared the error estimated
by these methods, D̄S (v; N), with the true approximation error DS (v) for each s ∈ S . Since we are
interested in the influential nodes, we focused on the top-K nodes in the true influence degree.

In fact, we repeated |S | simulations M times, and investigated the empirical mean of the errors
over the M trials. Let Dk,m(s) and D̄k,m(s) be the true and estimated approximation error of the
k-th node in the first s simulations of the m-th trial of the M repeated |S | simulations, respectively.
Namely, in each trial, Dk,m(s) is given by D{1,··· ,s}(vk) for the k-th node vk, and D̄k,m(s) is given
by D̄{1,··· ,s}(vk; N), where N = 1 for the LOO method and N = s/2 for the CLT method. It is
desirable that we have an upper bound of the approximation error. Thus we seek for the condition
that Dk,m(s)/D̄k,m(s) < 1 holds. Ideally Dk,m(s)/D̄k,m(s) should be as close to 1 as possible. Thus,
we used the following criterion to evaluate the LOO and CLT methods in this experiment:

δDK (s) =
1

M × K

M∑
m=1

K∑
k=1

|1 − Dk,m(s)/D̄k,m(s)|. (14)

Obviously, the closer to 0 the value of δDK (s) is, the better the performance of the corresponding
method is.

Figures 4 and 5 depict the empirical mean of the true approximation error (M−1K−1 ∑M
m=1

∑K
k=1

Dk,m(s)) and its estimation (M−1K−1 ∑M
m=1

∑K
k=1 D̄k,m(s)) obtained by the LOO and CLT methods

for the Ameblo, Cosme, and Enron networks, respectively, and Figure 6 shows the values of δDK (s)
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(a) Ameblo network
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Figure 4: The true approximation error of the estimated influence degree of the top-K nodes.
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Figure 5: The estimated approximation error of the estimated influence degree of the top-K nodes.
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Figure 6: The relative difference between the true and estimated approximation errors.

for the two methods. Here, we used ĀS 0(v) obtained by one million simulations in Section 4.2 as
the true influence degree of node v to calculate D{1,··· ,s}(·), and investigated for different values of
K = 100, 101, 102, 103. As in Section 4.2, we limited |S | to 1, 000, set M to 10 and the diffusion
probability to p = 1/d̄ for every network. It is noted that we cannot estimate the approximation
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error based on Equation (5) when |S | = 1 because σ̄S (v) defined by Equation (7) becomes 0. Thus,
every line in these figures starts from s = 2.

From Figure 4, we can observe common tendencies among all networks that 1) the approxima-
tion errors become smaller as s gets larger regardless of the value of K, 2) it is hard to distinguish
the lines for K = 100, 101, 102 from one another, while the line for K = 103 is clearly distinguish-
able from the others and always shows larger errors. These results are consistent with the analytical
results in Section 4.2 in which the expected influence degree of a node converges to the true value
as s becomes large as shown in Figures 2 and 3, while the influence degree of a lower-ranked node
has a larger variance compared to a higher-ranked node as shown in Figure 1, which implies that
it becomes harder to estimate the approximation error for a large K. The similar tendencies can be
observed in Figure 5.

Besides, by comparing Figures 4 and 5, it is found that the LOO method tends to underestimate
the approximation error compared to the CLT method regardless of the value of K for every network.
This tendency is quantitatively confirmed in Figure 6, in which the value of δDK (s) for the CLT
method becomes less than 1 after the first few simulations except for the case of K = 103 for the
Enron network, while that of the LOO method becomes larger than 1 as s increases in all cases. The
reason why the performance of both the methods is relatively worse in the case of K = 103 for the
Enron network compared to the other networks is that the top 1,000 nodes of the Enron network
include more nodes that have large variance with respect to the true influence degree compared to
the others. Actually, the true influence degree and its standard deviation of the 1,000-th node for the
Enron network are 5, 750.461 and 1, 209.592, respectively, while the corresponding values for the
Ameblo network and Cosme network are 13, 817.63 and 750.9033 and 11, 697.17 and 624.5759,
respectively. This makes it harder to estimate the approximation error for the Enron network.

It is evident that the CLT method outperforms the LOO method in terms of predicting the ap-
proximation error of the estimated influence degree. Indeed, for the networks and the parameters K
and M we used, the approximation error of the CLT method is the upper bound of the error. This
may not necessarily generalize to other networks, but we can say that CLT is a good measure to
estimate the approximation error. It is noted that Equation (7) can be calculated independently of
the value of N. Thus, the estimation given by Equation (5) is actually determined by the coefficient
defined by Equation (6). Our experiment shows that N = 1 (LOO) is too small and N = |S |/2 (CLT)
is the recommended value. In other words, if we set a threshold of the estimated error to terminate
the repeated simulations, the LOO method stops earlier than the CLT method, but the actual error of
the LOO method is worse than the threshold, while the actual error of the CLT method is expected
to be less than the threshold.

4.4. Evaluation of Top-K Influential Node Identification

Next, we evaluated the two methods proposed in Section 3.2, the SC and CC methods, that estimate
the precision of the top-K nodes based on a limited number of simulation results. To this end,
we compared the precision estimated by these methods, H̄S (K; N), with the true precision HS (v)
under the same settings as in Section 4.3, i.e., M = 10 trials of |S | = 1, 000 simulations. Here, let
HK,m(s) and H̄K,m(s) be the true and estimated precision of the top-K nodes identified in the first
s simulations of the m-th trial, respectively. Namely, in each trial, HK,m(s) is given by H{1,··· ,s}(K),
while H̄k,m(s) is given by H̄{1,··· ,s}(K; N), where N = s − 1 for the CC method and N = 〈s〉 for the
CC method. We directly evaluated the empirical mean of the difference between the two defined as
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Figure 7: The true precision for the top-K nodes prediction.
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Figure 8: The estimated precision for the top-K nodes prediction.
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Figure 9: The difference between the true and estimated precisions for the top-K nodes prediction.

follows:

δHK (s) =
1
M

M∑
m=1

|HK,m(s) − H̄K,m(s)|. (15)

It is obvious that the smaller the value of δHK (s) is, the better the performance of the corresponding
method is.

160



Predictive Simulation Framework of Stochastic DiffusionModel

Figures 7, 8 and 9 illustrate the empirical mean of the true precision (M−1 ∑M
m=1 HK,m(s)), its

estimation (M−1 ∑M
m=1 H̄K,m(s)) obtained by the SC and CC methods, and the values of δHK (s) for

the two methods for the Ameblo, Cosme, and Enron networks, respectively. Roughly speaking, from
Figure 7, we can observe that 1) the true precision approaches asymptotically to 1 as s increases,
2) especially, conducting only about 10 simulations seems to be enough to estimate the best node
(K = 1) , and 3) identifying the top 100 nodes seems to be somehow more difficult than the other
cases. The Enron network shows slightly different tendencies compared to the others as in the
previous section. This network needs more simulations than the other networks to correctly identify
the best node v1. This is attributed to the difference shown in Figure 2, in which the expected
influence degree of node v1 for the Enron network fluctuates more compared to the other networks
until about the first 102 simulations. On the other hand, the precision for the Enron network is better
than the other networks for K = 103. This is because in the Ameblo and Cosme networks the nodes
ranked around 1000-th in the true influence degree have influence degree close to each other, and
thus they are subject to switch ranks across the boundary K = 103 in each simulation. On the other
hand, in the Enron network, the influence degree of these nodes are not so close to each other, and
thus such swaps do not occur so often, which leads to the better performance shown in Figure 7.

Next, from Figure 8, we can observe that the precision estimated by the CC method approaches
to 1 as s becomes large for K = 100, 101, 103. However, for K = 102, it falls within the range of
0.8 to 0.9 and these are common to all networks. Somehow, the nodes around the 102th rank have
similar influence degree for each of the three networks and the opposite phenomenon mentioned
above (K = 103 for the Enron network) is happening. In contrast to these observations, we see
that the precision estimated by the SC method is not improved as s becomes larger for any value
of K for every network. Indeed, by comparing Figures 7 and 8, we note that the SC method overly
underestimates the precision for a large s. This difference is quantitatively revealed in Figure 9, in
which δHK (s) for the CC method becomes less than 0.1 at around s = 102 for K = 100, 101, 103 and
at around s = 103 for K = 102 for every network, while for the SC method it becomes larger as
s increases and does not approach to 0. This is because, as shown in Figure 4, for a large s ∈ S ,
Ā{1,··· ,s}(v) used in the CC method gives a better approximation of the true influence degree of node
v compared to As(v) used in the SC method that considers the result of a single simulation example
in isolation.

Consequently, these results suggest that for a small K, say 10, we could obtain a good approx-
imation of the true top-K nodes by running far fewer simulations using the CC method and an
appropriate threshold for the precision. Note that if we set the threshold to 0.9 for K = 10, from
Figure 8 the repeated simulations would stop before around s = 20, and from Figure 6 the value
of δDK (s) for the same s is around 0.5 for the CLT method, which means that the error estimated
by the CLT method is about twice as large as the true approximation error. This suggests that the
top-K nodes can be estimated with less effort compared to their influence degree. In other words,
estimating the top-K nodes is easier than estimating the influence degree of a node.

5. Conclusion

In this paper, we addressed a problem of estimating the influence of a node in terms of information
diffusion over a social network. It is crucial to efficiently and effectively calculate the influence
degree because node influence is an important ingredient to solve many practical problems in social
network analysis such as the influence maximization problem. The difficulty involved in estimating
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the influence degree comes from the stochastic nature of information diffusion. The influence degree
of a node is the expected number of nodes that are influenced by the node as the result of information
diffusion process. It is normally approximated by the empirical mean of the many runs of simulation
results, which is very time consuming.

We proposed a framework for predictive simulation, which enable us to evaluate how many runs
of simulations are required to ensure the accuracy without knowing the true answer. We provided
two measures, one for estimating influential degree of individual node and the other for identifying
the top-K influential nodes. The method is based on leave-N-out cross validation technique. It
approximates the expected difference of the estimated answer from the unknown true answer, i.e.,
the approximation error of the estimated influence degree of individual node and the precision of
the estimated top-K nodes.

We have conducted extensive experiments on three real world networks varying the number
of simulations and evaluated the proposed framework. In case of influence degree estimation, the
recommended value for N is the half of the number of simulations. Use of this value provides a
good measure. In our experiments, the measure provides an upper bound of the error. In case of
top-K influential node identification, cumulative handling of N rather than using a single value for N
provides a good measure. Estimating the top-K nodes is easier than estimating the influence degree,
which implies we can identify the influential nodes without knowing accurately their influence
degrees. These results suggest that we can stop running simulations earlier ensuring the predictive
performance by providing an appropriate threshold as a stopping criterion for either the estimated
approximation error or the estimated top-K precision, or both. It is noted that the framework we
proposed is not specific to information diffusion models. Indeed, it is very generic and applicable
to any other estimation problems in which such a criterion to avoid unnecessarily running extra
simulations is required. However, the method is empirical and does not theoretically guarantee the
error upper bound. We have yet to test out the proposed method in a broader setting and also in
different domains, too.
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