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Abstract

In visual data exploration with scatter plots, no single plot is sufficient to analyze com-
plicated high-dimensional data sets. Given numerous visualizations created with different
features or methods, meta-visualization is needed to analyze the visualizations together.
We solve how to arrange numerous visualizations onto a meta-visualization display, so that
their similarities and differences can be analyzed. We introduce a machine learning ap-
proach to optimize the meta-visualization, based on an information retrieval perspective:
two visualizations are similar if the analyst would retrieve similar neighborhoods between
data samples from either visualization. Based on the approach, we introduce a nonlin-
ear embedding method for meta-visualization: it optimizes locations of visualizations on a
display, so that visualizations giving similar information about data are close to each other.
Keywords: Meta-visualization, Neighbor embedding, Nonlinear dimensionality reduction

1. Introduction

We consider exploration of high-dimensional data by scatter plots, which is crucial in data
analysis when strong hypotheses are not yet available. A scatter plot can show 2-3 original
data features, or a mapping created by dimensionality reduction. A low-dimensional scatter
plot cannot represent all properties of a high-dimensional data set; even nonlinear dimen-
sionality reduction (NLDR) methods cannot preserve all essential data properties when the
output is lower-dimensional than the effective data dimensionality. No single scatter plot is
then enough to comprehensively explore the data; multiple visualizations must be created.
For high-dimensional data there are numerous possible visualizations: with D features
there are (D? — D)/2 traditional scatter plots each showing two features. NLDR methods
can yield infinitely many plots by emphasizing different features in the similarity metric and
by different hyperparameter values. Each plot reveals different data properties. It is hard
and time-consuming to get an overview of a data set from an unorganized set of scatter plots;
to aid analysis, the multiple plots must be related to one another. Analysing and displaying
the similarities and relationships between visualizations can be called meta-visualization.
We introduce a machine learning approach for meta-visualization: we solve how to
arrange numerous scatter plots of a data set onto a display, to show their relationships.
Such a meta-visualization can reveal which plots have redundant information, and which
different aspects of the data are shown in a set of plots. Our solution principle is that
visualizations showing similar information about the data should be close-by on the display.
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Given several visualizations of a data set, the first step is to evaluate similarity or
distance between them. We introduce an information retrieval approach to evaluate the
similarity: two scatter plots are similar if they reveal similar neighborhoods between data
samples. The similarity is quantified as an information retrieval cost of retrieving neighbors
seen in one plot from the other plot. High similarity often indicates the same structure of
data is visible in both plots. Given the similarities, the plots must be mapped onto the meta-
visualization display. This is an NLDR task where each complex object is an individual
visualization. We introduce an NLDR approach for meta-visualization: locations of plots
on the meta-visualization display are optimized for an information retrieval task, so that
close-by plots show similar data relationships, under a non-overlappingness constraint. In
experiments our approach yields informative meta-visualizations for analysing data through
different feature sets, NLDR with different hyperparameters, and numerous NLDR methods.

We contribute, based on an information retrieval approach, 1) an NLDR formalization
of the meta-visualization task; 2) a data-driven divergence measure between scatter plots;
3) an NLDR method arranging plots on a meta-visualization display, optimized for retrieval
of related plots.

2. Background

We use “meta-visualization” to denote works that relate several visualizations. It has also
denoted analysing user interaction with a visualization system (Robinson and Weaver, 2006);
we do not focus on such work. We concentrate on meta-visualization of scatter plots; parallel
coordinate plots and recent visualizations (Wickham and Hofmann, 2011) are alternatives.

The need to organize visualizations has been noted (Bertini et al., 2011); common or-
ganizations are simple lists or matrices. In a scatter plot matriz, an element (i, j) is a plot
of the ith feature vs. the jth feature; related methods include HyperSlice (Wong and Berg-
eron, 1997). Some methods find orderings of visualizations (Peng et al., 2004). The Grand
Tour (Asimov, 1985) animates overviews of data projections. Rankings are used to find the
most “interesting” visualizations, see Tatu et al. (2009). Some NLDR methods (Cook et al.,
2007) arrange data onto several displays, but do not solve how to relate numerous displays.

Interactive systems like DEVise (Weaver, 2006) show multiple visualizations and let
users lay them out. Ouverview+detail techniques show data subsets next to an overall view
in (see Cockburn et al., 2008). Methods with linked views (Kehrer and Hauser, 2013)
highlight items in several views. Claessen and van Wijk (2011) integrate scatter plots,
parallel coordinate plots, and histograms in regular arrangements. Viau and McGuffin
(2012) connect multivariate charts by curves showing relations between feature tuples.

Most works above relate a small number of visualizations. Given numerous plots, ar-
ranging them onto the meta-visualization becomes crucial; we solve this task. One can
then e.g. add parallel coordinate plots connecting axes of nearby plots or axes interactively
chosen by the analyst; the above works thus complement our method.

Tatu et al. (2012) arranged plots of subspaces by applying multidimensional scaling to
Tanimoto similarities, which evaluate dimension overlap between subspaces. Such arrange-
ments are not based on the data, only on annotation of subspace parameters. Such layouts
cannot be computed when plots arise from more complicated NLDR. Tatu et al. also used
a similarity based on overlap of k-NN lists, but not for laying out plots, only for group-
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ing them. Simple k-NN lists are insufficient to notice nuances of neighborhood changes (see
Venna et al. (2010)), but can be seen as a precursor to similarities proposed in our approach.
Ours is the first neighbor embedding method organizing plots onto a meta-visualization.

3. The Method: Information Retrieval Approach to Meta-Visualization

We optimize meta-visualizations for analysts studying data through neighborhood relation-
ships. From each scatter plot, the analyst visually retrieves neighborhood relationships of
samples. Given many plots the analyst retrieves which plots show similar neighborhoods as
a plot she is interested in, vs. which ones show different information.

Let {x;}X¥, be a set of input data samples. Let there be M different low-dimensional
scatter plots of the data set; in the mth plot the samples have positions {ymz}f\’:1 on the
plot. The different plots might arise from different features or similarity metrics for the
data, different NLDR methods, or different parameters within an NLDR method. Since a
low-dimensional plot cannot represent all features of the high-dimensional data, each plot
will show different data aspects; in particular, each plot will show different neighborhood
relationships between data. In the mth plot, let each data point ¢ have a probabilistic output
neighborhood, defined as a distribution ¢', = {gx(j|i)} over the possible neighbors j # 4,
where ¢, (j]7) is the probability that an analyst starting from point 7 on the display would
retrieve point j as an interesting neighbor for further study.

The output neighborhood. The ¢,,(j]7) should depend on positions of data on the
mth plot, so that samples j close to ¢ are more likely to be retrieved as neighbors. We set

\2/ai,i>)_l 1)

gm (i) = exp(=[lym,i = Ymj|[*/omm,:) - (Z exp(—|[ym,i = Ym,k
ki

EM. controls how quickly ¢, (j]7) falls off with distance. If more accurate user models

are available, e.g. estimated from eye tracking, they can be plugged in place of (1). We set
Om, to half of the maximum pairwise distance between points in m. Alternatively the
entropy of neighborhood distributions could be fixed as in traditional NLDR (Hinton and
Roweis, 2002; Venna et al., 2010), but the simple choice already worked well in experiments.

where o

3.1. Information Retrieval View of Comparing Neighborhoods between Plots

In visual information retrieval an analyst looking at a scatter plot retrieves neighbors for
each data point. When several plots are available for the data, the analyst can compare the
neighborhoods between plots. If two plots show similar neighborhoods, findings from them
support each other; if they show different neighborhoods, they reveal different data aspects.

Suppose the analyst studied plot m, and now studies plot m’. As the plots have different
data arrangements, when the analyst tries to retrieve the neighborhoods visible in m from
m/, two kinds of errors happen. For each query point 4, some points j that used to be
neighbors of i in plot m (having high probability g,,(j]i)) no longer look like neighbors in
plot m’ (low g, (j]i)); they are missed when neighbors are retrieved from m’. Conversely,
some points j that were not neighbors of i in plot m (low ¢,,,(j]7)) look like neighbors in plot
m’ (high ¢,,/(j]7)); they are novel neighbors when neighbors are retrieved from m'. Figure
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Scatter plot visualization 1 Scatter plot visualization 2

miss novel neighbors

Figure 1: Errors in visual information retrieval for query point 7, when neighbors in a scatter
plot (left) are retrieved from a second plot (right). QY denotes points with high
neighborhood probability ¢;(j]7) in the first plot, Qé denotes points with high
q2(7]7) in the second plot. Missed neighbors have high q1(j|i) but low ¢2(j]7); an
analyst looking at the second plot would miss them. Novel neighbors have low
q1(7]7) but high ¢o(j|7); they were not apparent in the first plot.

1 illustrates the setup. The concept is symmetric: if plot m’ misses a neighbor that was
visible in plot m, equivalently m yields the neighbor as a novel neighbor compared to m/'.
Cost of errors. If the analyst found interesting relationships from plot m but fails to
find them in m/, each missed neighbor and novel neighbor can have a cost to the analyst.
The difference measure between plots arising from the information retrieval task is the total
cost of information retrieval errors when retrieving the neighbor relationships in m from
m/. The total cost can be shown to be a sum of Kullback-Leibler divergences D, between
neighborhood distributions. ! In detail, if ¢/, and ¢’ , are “nearly discrete” so g, (ji)
is uniformly high for a small number of neighbors j and very small for other points, and

similarly for m/, then Dkp(g.,,q" /) ~ Const - (N MISS’/T ) where 7% is the total number

of neighbors of ¢ in m and N, MIS,S " is the number of those neighbors missed when retrieving

the neighbors from v1suahzat10n m/. We thus use D, to measure the cost of misses around
query point 7 between plots m and m’. The total amount of misses between two plots is

4 am (j7)
Dot = 3 Dict s i) = 3 am(5l0) log 22 ?
p 1,7 "

Similarly, it can be shown? the total cost of novel neighbors for each query point i is
equivalent to Dk (¢! /,q,), we could use Y. Dkr(q’,,q%,) to measure the cost of novel
neighbors between m and m'. However, the only difference between this and (2) is that
roles of m and m’ have been swapped, thus the cost of novel neighbors comparing m’ to m
is the same as the cost of misses comparing m to m’. Costs of novel neighbors are thus are
already included in the M x M matrix of pairwise miss costs between plots.

Discussion of the divergence measure. Eq. (2) measures how the different plots
contribute errors in an information retrieval task of the analyst. This has useful properties:
1) The measure is data-driven and applies between any scatter plots of the data set, whether

1. As in an earlier paper Venna et al. (2010) but in a meta-visualization retrieval setting. Although the
steps are similar, Venna et al. (2010) is about traditional NLDR and not applicable in meta-visualization.
2. Again similarly to Venna et al. (2010), but in our meta-visualization setting.
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they arose from pairs of data features or from NLDR. Moreover, (2) only needs the plots, the
original data {x;} are not needed. 2) It can be seen from (1) that neighborhood probabilities
are invariant to translation, rotation, and mirroring of plots, thus also (2) is invariant to
them. 3) The measure considers all local information, not only a global shape of data; this is
important especially when invididual samples are meaningful to the analyst. In Section 4.3
we see cases where the overall shape of plots can be deceptively similar but neighborhoods
are very different, our measure and meta-visualization reveals this.

3.2. Mapping the Visualizations onto the Meta-Visualization

Given M plots of a data set, we use (2) between each pair of plots m and m/, to compute a
matrix of divergences Dy, ,,,. The matrix could be used to order plots: at simplest, pick a
plot m of interest then place other plots m’ on a line in order of the D, ,,,/; such ordering is
based on one row of the matrix. We go further and create meta-visualizations based on the
whole matrix. The matrix encodes desired properties of a meta-visualization: plots with
small divergence are similar and should be close-by, and plots with large divergence large
should be far-off. It remains to lay out the plots onto the meta-visualization based on the
divergences; we introduce a meta-visualization NLDR method for this task.

Information retrieval approach for meta-visualization. Given a scatter plot of
interest, the analyst may wish to find other plots for inspection containing similar neigh-
borhoods. On a meta-visualization such plots should be nearby, so the analyst does not
have to scan the entire meta-visualization to find similar plots. We formalize this as an
information retrieval task on the meta-visualization; we then and optimize the ability of
the meta-visualization to serve the information retrieval. The divergence (2) measures how
similar information two plots give to the analyst; we use it to define a true neighborhood
for each plot m, as a neighborhood distribution w,, = {u(m’|m)} is telling the probability
that plot m’ would be chosen for inspection next:

-1
u(m'|m) = exp(— Dy, s /202,) - < Z exp(—Dm,m/Qafn)) (3)
m#m

2 controls the falloff rate of the probability and is set as in Venna et al. (2010).
We next define neighborhoods on the meta-visualization display, based on the on-screen
locations of plots. Let each plot m have a location z,, on the meta-visualization display,
e.g. as a small “mini-plot” drawn inside the meta-visualization. We define neighborhood

distributions v, = {v(m’|m)} for plots by their locations on the meta-visualization:

where o

—1
ol m) = exp(lla — 2o /202 (3 expl-llan ~zallf202)) (@)

m#m

where ||z, — z,y|| is the Euclidean distance between the plot locations. The probabilities
v(m’|m) represent which nearby plot m’ the analyst is likely to look at next after looking at
plot m on the meta-visualization, based on locations of the plots. The wu,, = {u(m/|m)} and
vm = {v(m/|m)} are neighborhoods between entire plots in a meta-visualization, instead of
neighborhoods of data within one plot like (1); we call u,, and v, meta-level neighborhoods.
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Information retrieval cost in retrieval of plots from the meta-visualization.
Suppose the analyst studied plot m and wants to retrieve similar plots from the meta-
visualization. If plots are not well arranged on the meta-visualization, retrieval may yield
missed neighbor plots and false neighbor plots. The setup is similar to Figure 1, but instead
of comparing data points retrieved from two plots, we retrieve entire plots from the meta-
visualization and compare them to true neighborhoods of plots. Suppose each missed plot
or false neighbor plot has a cost to the analyst; a good meta-visualization should minimize
the total meta-visualization information retrieval cost: the smaller the cost, the less errors
there are, and the better the meta-visualization shows the relationships between plots. It
can again be shown (same steps, now between objects that are entire plots) the total cost
is equivalent to a sum of two types of Kullback-Leibler divergences:

E =X Dir(tmvm)+ (1 =AY Drr(Um, tm) (5)

where Dy (um, vnm) is a generalization of the total cost of missed neighbor plots from plot
m (plots that are similar to m but are far-off on the meta-visualization), and Dgr(vp,, un,)
is the total cost of false neighbor plots retrieved for plot m (plots that are dissimilar but
are close-by). Here A controls the tradeoff between costs of missed plots and false neighbor
plots desired by the analyst: all A give good visualization, large A avoids misses and small
A avoids false neighbor plots, we use A = 0.5 to emphasize both kinds of errors equally.

Repulsion to avoid overlap of plots on the meta-visualization display. Op-
timizing (5) makes the meta-visualization informative in the sense that neighboring plots
yield similar neighborhood information of data samples. However, the meta-visualization
must also be readable by the analyst. We address one simple aspect of readibility: if plots
are placed too close-by they will overlap, making it hard to see the data in individual plots.
To preserve readability of the meta-visualization, we add a repulsion term to the cost, which
gives an additional cost for any pair of plots closer on the meta-visualization than a desired
distance threshold. Optimization then tends to keep plots further apart than this threshold,
and plots do not overlap when drawn with a size smaller than the threshold. Optimizing
the final cost then optimizes information retrieval performance of the meta-visualization,
under a readability constraint of non-overlappingness. The final cost is

E = /\Z D1, (U, ) + (1 — X) ZDKL(vm, Um) + Z 9(Zmy Z) (6)
m m m#m/

where the last sum term is the repulsion term, p controls importance of repulsion, and g is a
simple shrinkage Gaussian function: g(zn,, 2, ) = exP(*HzmIf’;"HQ/U%)*t if ||Zy — 2o || < T
and zero otherwise. Here t = 0.95 and 02 = —T/log(t) where T is the desired threshold;
each repulsion term yields zero cost if plots are further apart than 7" and cost one if plots
fully overlap. The threshold T is set by the analyst according to how large plots are needed
on the display. We use simple data-driven choices: after an initial optimization we set T to
an average (squared) distance to nearest plots, and p to make the repulsion term have the
same overall weight (times a constant) as the information retrieval terms. To help find good

local minima, we increase y iteratively during optimization from zero to the final value.
Optimization of the meta-visualization. Eq. (6) is our final measure of meta-
visualization quality, in terms of performance in the information retrieval task and read-
ability. It is a smooth function of the plot locations z,, which yield the distributions v,,. To
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optimize the meta-visualization, we minimize (6) with respect to all the z,, by conjugate
gradient descent. The optimization yields a meta-visualization optimized for information
retrieval: neighborhoods of plots on the meta-visualization are optimized under the read-
ability constraint for minimal retrieval errors compared to true neighborhoods of the plots,
which in turn are defined based on neighborhoods of data in the plots. Thus the entire
process of meta-visualization, from comparing the individual plots to placing them on the
meta-visualization, is based on an information retrieval formulation.

Theoretical connections. Preservation of neighborhood information has been used
as a cost function for NLDR of data points onto a single scatter plot by neighbor embed-
ding (NE; see, e.g., Hinton and Roweis (2002); Venna et al. (2010)). Such NE methods
are unsuitable for meta-visualization as they do not trivially have available a measure to
compare visualizations; moreover, they are designed to embed simple data points as dots
onto a scatter plot and do not consider overlap of larger objects. Our comparison measure
D,y 1s similar to a stochastic neighbor embedding (SNE) cost function Hinton and Roweis
(2002), but SNE and other NE methods only used such costs to compare a visualization
to a high-dimensional ground truth, whereas we have turned it into a pairwise difference
measure where no single visualization is a “ground truth”. Our approach takes advantage
of theory, bounds and optimization tools inherited from NE, but brings it into the domain
of meta-visualization, with three novelties: 1) the meta-visualization setting, 2) an informa-
tion retrieval based distance measure between visualizations, and 3) an NLDR method that
optimizes both information retrieval performance and readability of the meta-visualization.

A precursor of readability was used in a limited setting by Vesanto (1999) to arrange
component planes of a Self-Organizing Map, by a glyph placement method where overlap-
ping component planes were moved to next-best-matching units. This could be seen as a
precursor of our cost which preserves readability (non-overlappingness) as part of optimiza-
tion. Glyph positioning approaches are not typical in meta-visualization of two-dimensional
scatter plots. The method of Vesanto (1999) uses global correlation of one-dimensional com-
ponent planes and does not apply to two-dimensional plots.

Using and interpreting the meta-visualization. Plots close-by on the meta-
visualization (for example, a tight cluster of plots) have similar data neighborhoods. Plots
far away from each other (for example, separated clusters of plots) show different neigh-
borhood information about the data, i.e., different aspects of the data. The arrangement
of plots reveals the different aspects of data as groups of plots, and relationships between
data aspects by closeness of groups and by plots inbetween groups.

Meta-visualization lessens the workload of the analyst compared to analysing an un-
ordered set of plots: instead of analysing each plot separately, the analyst can see which
plots provide similar information, and can notice different aspects of the data shown by the
plots. Insights about shown similarities and differences can be made: for example, two plots
might show similar information because they are based on separate but redundant feature
sets. Section 4 shows benefits of meta-visualization in different analysis scenarios.

Computational aspects. Our meta-visualization arranges multiple scatter plots,
which can be created in parallel; the complexity of each plot is determined by the cho-
sen method. Optimizing the meta-visualization first computes pairwise distances between
plots in O(N2M?) time for N data samples and M plots. The iterative NLDR optimization
of the meta-visualization has O(M?) complexity per iteration. To avoid local minima, the
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method can be run in parallel from several initializations, taking the result with smallest
cost. In most cases the method yielded good results from a single random initialization.
A fast computation approach was proposed for neighbor embedding Yang et al. (2013),
approximating distances to far-off points by distances to means of clusters in a quad-tree,
with O(N log(N)) complexity. The approach can be used in meta-visualization, but we did
not implement such approximations as the method was fast enough without approximation.

4. Experiments

We demonstrate the meta-visualization in case studies. We use a benchmark S-curve data
set, Olivetti faces data (400 face images of 40 persons, 64 x 64 pixels each) from http:
//www.cs.nyu.edu/~roweis/data.html, Face Pose data (images of 15 persons from 63
angles) from Gourier et al. (2004), and a collection of gene expression experiments.

4.1. Meta-visualization of Feature Pairs, versus a Scatter Plot Matrix

We first show the ability of the meta-visualization to reveal to the analyst which plots are
similar. Consider analysing a multivariate data set based on plots of each feature pair.
Suppose some pairs actually provide the same information as other pairs; then this should
be revealed to the analyst. Relationships between different feature pairs can be hard to see
from a simple scatter plot matrix, but a well-optimized meta-visualization can reveal them.

We create a data set where each individual feature is unique, but some feature pairs
contain the same neighborhood information as other pairs; we create a scatter plot of each
feature pair, and show meta-visualization arranges the known-to-be similar pairs close-by.

In detail, we take a 5-dimensional face image data (a subset of 405 images from the Face
pose data, each image rescaled to 16 x 16 pixels and projected to the 5 largest PCA compo-
nents of the data set). We then add 20 new features: the original data has 10 feature pairs,
and from every such pair [z, y] we add two new features [cos(7/4)x —sin(mw/4)y, sin(r/4)z+
cos(m/4)y] as a 45-degree rotation of the original features. The resulting 25-dimensional
data contains 25 -24/2 = 300 feature pairs to be visualized. Each of the 10 pairs of original
features contains the same information as its rotated version, but noticing the 10 pairs and
their matching other pairs without meta-visualization would be arduous.

Figure 2 (left) shows the meta-visualization. It reveals an interesting grouping of feature
pairs, with several major groups which are further split into subgroups; such structure will
be analyzed in later experiments, here we concentrate on analysing the known ground-truth
pairings of plots. Visually, the meta-visualization is very readable: as desired, optimizing
the readability cost (repulsion) has kept plots at a distance so that they do not overlap. Note
that in an interactive system the meta-visualization can be combined with focus+context
techniques such as further enlargement of selected plots.

The 10 matching plot pairs we are interested in are shown with colored borders (same
color for both plots in each pair). The meta-visualization placed the plots of the matching
pairs close to one another as desired, which is intuitive as they contain the same information.

We compare the result to the widely used scatter plot matrix. Figure 2 (right) shows the
same plots in a 25 x 25 scatter plot matrix. We colored the 10 original feature pairs and their
10 rotated versions with corresponding background colors. Unlike our meta-visualization,
the 10 matching pairs of plots are now essentially in arbitrary positions which depend on
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Figure 2: Left: Meta-visualization of face pose image data. Each of the 300 mini-plots
shows an individual feature pair. 10 plots m have a matching other plot m/
where both plots show the exact same information up to rotation. For each of the
10 matches the meta-visualization placed the matching plots (colored mini-plot
borders; corresponding colors are matches) close to each other. In each mini-plot,
faces are shown as dots colored by person identity. Right: The same set of plots
as a traditional scatter plot matrix. (Each plot in row 7, column j also has a trivial
match in the transposed cell, row j, column i.) The nontrivial matching plots are
shown with background in the same color; it would be very difficult to notice the
non-trivial matches from the scatter plot matrix. (A higher-resolution image of
the matrix is available in supplementary material at http://ow.1ly/oyb2P.)

the order of feature indices. It would be difficult to notice correspondence between a pair
and its match from the scatter plot matrix; in contrast our meta-visualization finds the
correspondence and shows it by plot locations on the meta-visualization. We measure this
difference quantitatively by a retrieval measure, recall of matching pairs, by evaluating the
8-neighborhoods of the 10 feature pairs: on the meta-visualization, each of the plots of the
10 feature pairs has its matching rotated version as one of the 5 nearest neighboring plots,
whereas in the scatter plot matrix, none of the 10 plots of feature pairs has the matching pair
in the 8 nearest neighbors on the matrix. Thus the meta-visualization is more faithful to
the data than the scatter plot matrix is. The meta-visualization can also be used in cases
where plots do not originate from feature pairs and thus an ordered scatter plot matrix
cannot be trivially constructed; Section 4.3 shows meta-visualizations for such cases.

4.2. Meta-visualization of Hyperparameter Influence on NLDR.

Besides analysing data by feature pairs or simple projections, NLDR is often used to map
high-dimensional data onto a two-dimensional plot, hoping to capture essential data struc-
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ture. NLDR cannot preserve all properties of high-dimensional data in one low-dimensional
plot (Venna and Kaski, 2007; Venna et al., 2010); an NLDR method implicitly chooses some
aspect of the data to show, with tradeoffs such as global vs. local preservation, trustworthi-
ness vs. continuity, and others. A single NLDR result is thus insufficient to analyze a data
set and multiple NLDR results should be created. To create Multiple NLDR results one can
(1) run multiple NLDR methods, or (2) run variants of an NLDR method by e.g. adjusting
parameters to emphasize different data aspects. We treat the first case in Section 4.3, in
this section we treat the second case. We create multiple plots with one NLDR method,
and use meta-visualization to study the results. Besides the different views of data given by
the NLDR method, meta-visualization can give insight into behavior of the NLDR method.

As a case study we create a meta-visualization of Olivetti faces data, where 20 different
plots are created by the NLDR method Neighbor Retrieval Visualizer (NeRV; Venna et al.
(2010)). NeRV has a precision-recall tradeoff hyperparameter A between 0 and 1; we vary
it with values in [0,0.04,...,0.96]. With X near 0 NeRV emphasizes precision and avoids
false neighbors; with A near 1 NeRV emphasizes recall and avoids misses. It has been shown
Venna et al. (2010) that emphasizing precision or recall yields different plots; we use our
method to meta-visualize the tradeoff. Figure 4 (left) shows the result. The hyperparameter
values yield a smooth continuum of plots; as an interesting discovery, the difference in
results between close-by A values is small at the recall-emphasizing end (A near 1; green
plot border) but at the precision-emphasizing end (A near 0; dark plot border) differences
are larger, indicating that the trade-off parameter A is not linear w.r.t. the actual trade-off
between precision and recall, thus care must be taken to set the A when the analyst wants
a tradeoff mostly emphasizing precision. Thus our meta-visualization revealed insights into
roles of the hyperparameters that would have been hard to find in a non-data-driven way,
and would have been hard to see from one plot or an unorganized set of plots.

4.3. Case Study: Differences between Nonlinear Embedding Methods

We apply our meta-visualization method to visualize similarities between results of sev-
eral state of the art linear and nonlinear dimensionality reduction methods on two data
sets. Results of numerous NLDR methods, arranged by a meta-visualization, allow a more
comprehensive understanding of a data set than the result of one NLDR method; such re-
sults can also yield insights into relationships of the NLDR methods themselves. An NLDR
method implicitly chooses what aspect of data to show, based on their cost function or algo-
rithm; what aspect each NLDR method will show can be hard to see from the mathematical
formulation of the method; moreover, relationships between NLDR methods can be hard
to analyze in a non-data-driven manner as the mathematical approaches vary greatly from
generative models to spectral approaches to distance preservation criteria and others. For
example, a developer of a new NLDR method might be interested to use meta-visualization
to analyze how similar results of the new method are to results of established methods.
We use two data sets: a simple three-dimensional benchmark data set “S-curve” (points
distributed along an S-shaped sheet) and the real-world Olivetti face data set. We create
plots of the data sets with 19 methods: Curvilinear Distance Analysis (CDA), Diffusion
Maps (Lafon and Lee, 2006), Laplacian Eigenmap (LE) Factor Analysis, Gaussian Pro-
cess Latent Variable Model (GPLVM; Lawrence, 2004), Locally Linear Embedding (LLE),
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Hessian LLE (HLLE), Maximum Variance Unfolding (MVU), Landmark MVU (LMVU),
Metric Multidimensional Scaling (MDS), Sammon’s Mapping (Sammon), Principal Com-
ponent Analysis (PCA), Kernel PCA, Probabilistic PCA (ProbPCA), Stochastic Proxim-
ity Embedding (SPE; Agrafiotis, 2003) Stochastic Neighbor Embedding (SNE), Symmetric
SNE (s-SNE; van der Maaten and Hinton, 2008), t-distributed SNE (t-SNE), Neighbor Re-
trieval Visualizer (NeRV; Venna et al., 2010). See Venna et al. (2010) for descriptions and
references of CDA, LE, LLE, HLLE, MVU, LMVU, MDS, SNE, and t-SNE.

To simulate a realistic situation where the analyst does not spend equal amounts of
time optimizing every visualization, we optimized parameters of CDA, Laplacian Eigenmap,
LLE, HLLE, MVU, LMVU, and NeRV to maximize a F-measure of smoothed rank-based
precision and recall within each visualization as described in Venna et al. (2010). For
the other methods we used implementations in a recent software package® with default
parameters. To avoid sensitivity to initialization, each method is performed several times.

S-curve benchmark data set. Figure 3 (left) shows the result of meta-visualization
of the S-curve benchmark data. Notably, among the 19 methods there seem to be several
alternative ways to arrange the data: PCA, GPLVM, MDS, and Diffusion Maps have each
found an essentially linear projection of the S-curve along its major two directions, and
are arranged close together. ProbPCA is similar but has rotated the data. LLE and
HLLE are related methods and are shown close-by; they have unfolded the S-curve in a
slightly more nonlinear fashion. Sammon’s mapping, SPE and CDA are shown close-by,
they have unfolded the data non-linearly except for some remaining curled parts near the
ends of the S. NeRV and MVU, shown near to each other, have both found a clean-looking
unfolding of the S-curve manifold. SNE and t-SNE are two methods from the same family
and are shown close-by; they have unfolded the manifold at the expense of some twisting
and tearing. Kernel PCA, LMVU and Laplacian Eigenmap have all found a U-shaped
curve based visualization. An outlier is s-SNE which has yielded a curious ball shaped
arrangement. The meta-visualization arrangement has thus revealed prominent groups of
typical NLDR results, which are related to underlying theoretical similarities of the methods.

Olivetti faces data set. Figure 3 (right) shows the result of meta-visualization of
the Olivetti faces data. Among the 19 methods there are again several alternative ways
to arrange the data, but whereas on the S-curve several methods found essentially the
same embedding, on this more complicated data there are more differences visible between
methods. ProbPCA, Factor Analysis, and GPLVM have again found a similar embedding,
and NeRV is also similar to them, but MDS now differs from them with slightly less outliers
and is instead close to Sammon’s mapping. On this more difficult high-dimensional face data
data t-SNE finds a clearly different embedding than normal SNE, which is intuitive since the
use of the t-distribution in t-SNE was specifically designed to help with embedding of higher-
dimensional data sets; t-SNE is here close to CDA, and SPE is an intermediate method
between the CDA /t-SNE type result, the Sammon’s mapping type result, and the essentially
linear result seen e.g. in PCA. MVU and LLE have found embeddings with prominent outlier
clusters, and Laplacian Eigenmap again finds a somewhat U-shaped arrangement. Here
Diffusion Maps, Kernel PCA, and HLLE all yield very scattered embeddings with strong
outliers. SNE and s-SNE both yield spherical arrangements but closer inspection reveals

3. Matlab toolbox for dimensionality reduction 0.8.1b, Laurens van der Maaten 2013
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Figure 3: Left: Meta-visualization of linear and nonlinear dimensionality reduction algo-
rithms operating on the s-curve data set. The red-green-blue color components
of each data point shows the original three-dimensional coordinates of the point.
Border colors of the plots simply indicate the different NLDR methods. Right:
Meta-visualization of the dimensionality reduction algorithms operating on the
Olivetti face data set. Data points are colored according to the identity of the
person. Border colors of plots again indicate the different NLDR methods.

that the arrangements are dissimilar, in particular s-SNE has a more regular arrangement
of the points. Overall, the meta-visualization again yielded a helpful arrangement of plots,
which revealed interesting behavior of the NLDR methods.

4.4. Meta-Visualization of a gene expression experiment collection

We use meta-visualization to analyze a collection of human gene expression experiments
from the ArrayExpress database H. Parkinson et al. (2009), containing d = 105 “healthy-vs-
disease” comparison experiments. Labels “cancer”, “cancer-related”, “malaria”, “ HIV?”,
“cardiomyopathy”, or “other” are available for the experiments. Our interest is how differ-
ences between experiments (diseases) are visible in activity of different sets of gene pathways.

As preprocessing we build on the work of Caldas et al. (2009), who used gene set
enrichment analysis (GSEA) to measure, for each experiment, activities of w = 385 known
gene pathways, from the manually compiled C2-CP collection in the Molecular Signatures
Database. They then trained a data-driven topic model on pathway activities; the topics
are activity profiles of simultaneously active pathways across the experiments. We take the
t = 50 topics modeled by Caldas et al. (2009), and consider for each topic the subset of
most active pathways as a feature set for the experiment collection. These t = 50 pathway
subsets represent different aspects of biological activity across the experiments; we use each
pathway subset to plot the experiment collection, and use meta-visualization to analyze how
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differences between diseases are visible in different pathway subsets. Caldas et al. (2009)
had visualized experiments only as a single plot of overall topic activities, not by detailed
activities within pathway subsets; our meta-visualization complements their work.

In detail, let Y be the d x w matrix of pathway activities (for d experiments and w
pathways), where each element y;; is the activity (size of the leading edge gene subset) of
pathway j in experiment i. Let Z be a t X w matrix inferred from Y by a topic model,
representing t topics active across the experiments (when topic models are applied in text
data Z is the “topic-to-word matrix”): here each element z,,; is the inferred activity of
pathway j in topic m, and z" is the vector of activities of all pathways in topic m.

From each topic m we create a feature set for the experiment collection, representing
the pathways active in the topic. To do so, we weight Y by the weights in z™, yielding a
weighted feature matrix X (M) of size d x Sm Where each element is xg;n) = Y;jZm;. For each
topic we take the most active pathways, by taking the weighted features corresponding to
sm largest elements of z™. For each topic the number of features s,, is chosen by power to
discriminate diseases; the highest leave-one-out accuracy of k-nearest neighbor classification
was first determined over k and s,,, and the minimal s,, reaching that accuracy was chosen.

For each topic m we plot the experiments as a linear discriminant analysis projection of
X (™) Each plot shows how much the pathways in the topic can discriminate the diseases
in the collection. We then use meta- visualization to study how discriminative power varies
across pathway subsets. Figure 4 (right) shows the result. Within each mini-plot, experi-
ments are shown as dots colored by the disease annotation: cancer (cyan), cancer-related
(blue), malaria (green), HIV (black), cardiomyopathy (red), and other (gray).

The meta-visualization finds groups of topics (pathway subsets) with similar discrimina-
tive power, which show different biological aspects of the experiment collection. We point
out main groups. In group A, cancer-related, cancer, and malaria are discriminated. Car-
diomyopathy is partly mixed with cancer and others. In group B, malaria is discriminated.
Cancer-related and cancer have little overlap. Cardiomyopathy is mixed with cancer. Four
plots below the group are similar to the group but also discriminate cardiomyopathy. In
group C, most classes are heavily mixed, but cancer and cardiomyopathy have trails that
spread out from the central mix. Group D is similar to group C, but with less overlap
between cancer-related and cancer. In group E, cardiomyopathy and cancer-related are
mostly separated, and cancer-related is mixed with cancer. Malaria is not discriminated
well in most visualizations of the group. Cancer is heavily mixed with others. In group
F, cardiomyopathy and cancer are well separated; cancer-related and cancer are some-
what separated but cancer has heavy overlap with other. The differences of discriminative
ability shown in the meta-visualization can be analyzed together with what pathways are
active in each group of plots; see Caldas et al. (2009) for annotations of pathways used
in the topics. As examples, by the grouping in group A, pathways related to Apoptosis,
Glutathione Metabolism and Signaling Pathways have similar discriminability for cancer,
cancer-related and malaria experiments. Group C, involving pathways on GPCRS, Ad-
hesion, and EHEC/EPEC, cannot separate diseases. Some biologically related topics had
different abilities to discriminate diseases, potentially indicating their discriminative power
comes from effects not shared among the topics, which can be analyzed in follow-up studies.

In summary, meta-visualization yielded insight into how differences between diseases in
the collection are visible across subsets of gene expression pathways.
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Figure 4: Left: Meta-visualization of the influence of the precision-recall tradeoff hyperpa-
rameter A on the NeRV method. 20 visualizations are shown for the Olivetti faces
data, created by NeRV with different values A € [0,0.04,...,0.96]. Intensity of
green color = value of A. The meta-visualization arranges the plots as a contin-
uum where changes between successive A values are larger at the precision end.
Mini-plots show the face visualizations; for simplicity faces are shown as dots
colored by identity of the person. Right: Meta-visualization of a gene expression
experiment collection from ArrayExpress; each mini-plot is a discriminative plot
where disease experiments are separated based on activity in a subset of gene
pathways (different pathway subset in each plot). Points within a plot are ex-
periments, colored according to disease annotations. Ellipses and capital letters
indicate groups discussed in Section 4.4. The meta-visualization varies smoothly
with respect to hyperparameters, results at http://ow.1ly/oyb2P.

5. Conclusions and Discussion

We introduced a machine learning approach to meta-visualization; we arrange scatter plots
onto a meta-visualization display so that similar plots are close-by. We contributed (1)
an information retrieval based nonlinear dimensionality reduction (NLDR) formalization
of the meta-visualization task; (2) a data-driven divergence measure between plots; (3) an
information retrieval based NLDR method that arranges plots onto a meta-visualization.

Our distance measure and NLDR method were both derived from an information re-
trieval task. The similarity of visualizations (scatter plots) was defined by information
retrieval costs in an information retrieval task of the analyst, retrieval of neighbor points
from the plots. Plots are similar if, for each query point, they yield similar retrieved neigh-
bors around the point. The dissimilarity between each pair of plots is quantified as the total
cost of missing neighbors of one plot when retrieving them from the other plot, which was
generalized to a rigorous divergence measure for probabilistic neighborhoods.
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The meta-visualization is then optimized to arrange similar plots close-by, by minimizing
a divergence between meta-level neighborhoods of the plots and corresponding neighbor-
hoods of their locations on the meta-visualization, with additional costs measuring over-
lap of plots. This optimization has a rigorous interpretation as optimization of a meta-
visualization information retrieval task, where the analyst retrieves similar plots from the
meta-visualization.

In experiments the method yielded promising results in many tasks: finding visualiza-
tions that are equivalent despite using separate features; analyzing behavior of a NLDR
method with respect to its hyperparameters; analyzing relationships of a large number of
state of the art NLDR methods; and analyzing relationships of gene pathway subsets in a
collection of gene expression studies over several disease types.
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