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Abstract

Prediction markets which trade on contracts representing unknown future outcomes are
designed specifically to aggregate expert predictions via the market price. While there
are some existing machine learning interpretations for the market price and connections
to Bayesian updating under the equilibrium analysis of such markets, there is less of an
understanding of what the instantaneous price in sequentially traded markets means. In
this paper we show that the prices generated in sequentially traded prediction markets
are stochastic approximations to the price given by an equilibrium analysis. We do so by
showing the equilibrium price is a solution to a stochastic optimisation problem which is
solved by stochastic mirror descent (SMD) by a class of sequential pricing mechanisms. This
connection leads us to propose a scheme called “mini-trading” which introduces a parameter
related to the learning rate in SMD. We prove several properties of this scheme and show
that it can improve the stability of prices in sequentially traded prediction markets.

Keywords: Prediction Markets, Stochastic Optimisation, Belief Aggregation

1. Introduction

The main purposes of prediction markets are eliciting and aggregating beliefs over an un-
known future outcome. Traders with different beliefs trade on contracts whose payoff’s are
related to the unknown future outcome and the market prices of the contracts are considered
as the aggregated beliefs. While there are some existing machine learning interpretations
for the market price under classical market analysis techniques (i.e., via the Walrasian
equilibrium price), there is less of an understanding of what the instantaneous price in
sequentially traded markets means. The main purpose of this paper is to interpret the
instantaneous price of sequential markets as stochastically minimizing the same objective
as its Walrasian equilibrium, thus unifying the meaning of instantaneous and equilibrium
prices via an optimisation point of view for markets satisfying certain conditions.

While machine learning aggregation models (such as boosting) perform aggregations
over expert beliefs or machine learning models, prediction markets can be used to ap-
peal to the wisdom of the crowds (Surowiecki, 2004) and may also be used to aggregate
expert/model beliefs with human judgement. But unlike in machine learning algorithms
where expert beliefs are readily available for aggregation, traders in a prediction market may
have to be incentivized to participate in the market. Recently many connections between
prediction markets and machine learning have been shown based on the Walrasian equilib-
rium analysis. Also sequentially traded markets have been shown to be closely related to
follow-the-regularized-leader algorithms.
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Our work relates the prices of sequentially traded markets with SMD and interprets
its equilibrium as solving the same optimisation problem, thus establishing a connection
between sequential and equilibrium market prices.

1.1. Overview

The closest work to ours is by Frongillo et al. (2012) who first interpreted sequential mar-
kets as performing a SMD and established a connection between sequential markets and
equilibrium analysis using limiting conditions on sequential markets. Our interpretation of
sequential markets as SMD is a variation of their result for a more broader class of trades
and a more restrictive class of markets. We further show that the solution of the stochas-
tic optimisation problem is the equilibrium price of the market (Theorem 1 in Section 3),
thus establishing a connection between sequential markets and equilibrium without using
limiting conditions.

Section 4 introduces “mini-trading” as a mechanism for implementing the learning rate
parameter that is used for convergence in SMD. The idea behind “mini-trading” is to allow
repeated but small-scale trader interactions as opposed to single but large-scale interactions
in a sequential market. Then we show that “mini-trading” has desirable properties like more
stable prices (Theorem 2) and bounded worst-case loss.

2. Definitions, Notation, and Background

We will use the following notation and conventions throughout the paper. Given vectors
x, y ∈ RN , their inner product will be denoted 〈x, y〉 :=

∑N
n=1 xnyn and we use 1 :=

(1, . . . , 1) ∈ RN to denote the vector of all ones. The set {1, . . . , N} will be written as [N ]
and ∆N := {π ∈ [0, 1]N : 〈π,1〉 = 1} will denote the set of probability distributions over
[N ]. For X ⊆ RN and functions f : X → R, the convex conjugate of f will be denoted
f∗(y) := supx∈X{〈x, y〉 − f(x)}. If f is also differentiable on the interior of X then its

derivative at x ∈ RN will be written ∇f(x) :=
(
∂f
∂x1

(x), . . . , ∂f
∂xN

(x)
)

.

2.1. Contracts and Prices

We are interested in mechanisms for aggregating trader beliefs about a single future event
with N of possible outcomes (e.g., who will win an election or horse race) and will label
them 1, . . . , N . We will assume that the outcomes are mutually exclusive and complete
(i.e., exactly one of 1, . . . , N can occur). Prediction markets are markets where the “goods”
that are traded are N types of contract – one for each of the N outcomes – that pay $1 if
outcome n occurs and nothing otherwise.1

The main aim of the mechanisms we consider is to produce a probability π ∈ ∆N repre-
senting some “consensus belief” of the market about the future outcome. Such a mechanism
is loosely analogous to an ensemble for a multiclass class probability estimation problem in
the machine learning literature, where traders are playing the role of base predictors.

A common form of trading in markets is based on the assignment of prices to goods.
Since the goods we consider are the contracts on future events, we will use Π : RN → R to

1. For a more flexible framework with arbitrary payoff functions see (Abernethy et al., 2011).
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denote a pricing function that assigns a price Π(s) to each contract bundle s ∈ RN . Each
component sn represents the (possibly fractional) number of contracts bought for outcome
n ∈ [N ] with sn < 0 representing a sale of −sn contracts. We will use P to denote the set
of pricing functions.

2.1.1. Examples

A very simple form of pricing function is one that assigns a fixed price πn ∈ [0, 1] per unit
contract for outcome n. The price for a bundle s ∈ RN is then given by Ππ(s) := 〈π, s〉,
which we will call a fixed-price pricing function.

Another type of pricing function we will use when we consider sequential market making
in Secton 2.3.2 is a cost function-based pricing function2. We say a convex, differentiable
function C : RN → R is a cost function if ∇C(x) ∈ ∆N for all x. This condition ensures the
prices set by a cost function are probabilities and cannot be arbitraged (Abernethy et al.,
2011). We define a cost function-based pricing function by

ΠC,x(s) := C(x+ s)− C(x).

The function C can be interpreted as assigning a dollar value to every position and the de-
rived pricing function charges the difference between the value at position x (which denotes
the total number of contracts sold so far) and the value if the position was moved to x+ s.
The value of ∇C(x) can be seen as the price for buying an infinitesimally small bundle at
position x and is therefore called the instantaneous price at x.

One of the most well studied cost function-based pricing functions used in prediction
markets is the Logarithmic Market Scoring Rule (LMSR) (Hanson, 2007). This is defined

by the cost function C(x) = b log
(∑N

n=1 exp(xn/b)
)

where b > 0 is sometimes called the

liquidity parameter. The LMSR has instantaneous prices (∇C(x))n = Z−1 exp(xn/b) where

Z =
∑N

n=1 exp(xn/b).

2.2. Traders and Demand

A trader’s purchasing behaviour will be modelled through a demand operator d that reacts
to pricing functions. Formally, d : P → RN will return a contract bundle d(Π) ∈ RN when
given a pricing function Π ∈ P. The returned bundle represents the contracts the trader
wishes to buy when bundles are priced according to Π.

A common assumption about traders is that they are risk averse expected utility max-
imisers. That is, their demands are determined by their belief p ∈ ∆N , wealth W ∈ R,
and a concave3 utility function U : R → R which measures the value U(m) of $m to the
trader. Buying a bundle of s ∈ RN contracts reduces a trader’s wealth by $Π(s) but will
return $sn should outcome n occur. If the trader believes each outcome n will occur with
probability pn then her expected utility for owning the bundle s is En∼p [U(W −Π(s) + sn)].
We will say a trader is loss avoiding if, no matter which outcome obtains, the trader will
always have wealth that is lower bounded by some value (V ) that usually depends on

2. See Abernethy et al. (2011) for a detailed, axiomatic approach.
3. Traders with concave utility functions U are called risk averse since their utility for a guaranteed $ 1

2
(x+y)

is always larger than their expected utility for a coin toss resulting in $x or $y.
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their utility function. The set of allowable bundles for a loss avoiding trader is therefore
SW,p(Π) := {s ∈ RN : W −Π(s) + sn ≥ V ∀n ∈ [N ]}. A demand operator

dMEU(Π) := arg max
s∈SW,p(Π)

En∼p [U(W −Π(s) + sn)]

that returns the optimal expected loss avoiding contract bundle for a given pricing function
is called a maximum expected utility (MEU) demand operator. Because of their importance
in equilibrium analysis (discussed below), we will denote the set of MEU demand operators
for loss avoiding traders by DMEU.

2.2.1. Examples

One of the most common examples of MEU demand operators is for logarithmic utility
U log(m) := logm, which always requires wealth to be non-negative (m > 0). Log utility
based traders make (positive) demands dn(Ππ) = W.(pn/πn) (spending entire wealth W )
which also makes intuitive sense since demands are proportional to the belief/price ratio.

2.3. Markets

There are two broad classes of market mechanisms we consider: equilibrium markets and
sequential markets. In equilibrium markets, traders buy and sell contracts with each other
based on a fixed-price pricing function. If the price is such that all traders’ demands are
satisfied then the market is said to be in equilibrium and the price can be interpreted
as consensus belief about the outcome probabilities (Easley and Jarrow, 1983; Wolfers and
Zitzewitz, 2006). In sequential markets, traders interact sequentially with a “market maker”
that sets the contract prices and updates them after each interaction. Each price generated
by the market maker can also be viewed as a summary of the beliefs held by the traders
who have interacted with the market maker (Frongillo et al., 2012).

Since demand operators are a general way of describing trader behaviour, we model
market for both scenarios as a set M ⊂ D of demand operators. We further assume that
the demand operators for a market are drawn i.i.d. from some distribution4 σ over D and
refer to the distribution σ as a stochastic market.

As noted in the introduction, our main contributions concern the relationship between
these two types of market under the assumption of stochastically drawn demands: Theo-
rem 1 relates equilibrium prices to those obtained from sequential mechanisms acting upon
the same stochastic market while the “mini-trading” mechanism introduced in Section 4
can be seen as a implementation of stochastic mirror descent with properties (e.g., stability,
bounded loss) that make it desirable for finding equilibrium prices.

2.3.1. Equilibrium Market Mechanisms

Classically, the (Walrasian) equilibrium price for a market is a fixed price at which there
is no excess demand for any good (Varian, 2009). We define the equilibrium price for a
stochastic market σ to be the price π∗σ ∈ ∆N such that the expected demand of the market

4. We want to avoid delving into measure theoretic details so assume throughout that appropriate algebras
are defined and measurability conditions are met.
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in response to the fixed-price pricing function Ππ∗σ is equal to the total spendings of the
traders. Formally, the equilibrium price satisfies

Ed∼σ
[
d
(

Ππ∗σ
)]

= Ed∼σ
[
Ππ∗σ

(
d
(

Ππ∗σ
))]

.1 (1)

This is similar to the definition used by Storkey et al. (2012) where the expected demand
for any outcome equals the total wealth of the traders, assuming that traders spend their
entire wealth for trading. If instead traders spend $0, then we get Frongillo et al. (2012)’s
definition that the expected demand equals zero. Also if the expected demand for any
outcome equals any N ∈ R such that Ed∼σ

[
d
(
Ππ∗σ

)]
= N.1, then we have that the total

spendings also equal N , satisfying the equilibrium condition.

Ed∼σ
[
Ππ∗σ

(
d
(

Ππ∗σ
))]

= 〈π∗σ,Ed∼σ
[
d
(

Ππ∗σ
)]
〉 =

N∑
n=1

(π∗σ)n

(
Ed∼σ

[
dn

(
Ππ∗σ

)])
= N (2)

Equilibrium prices for a non-stochastic market with K traders with demands d1, . . . , dK can
be obtained via a distribution that puts mass 1/K over those K demands. The question
of the existence of equilibrium prices is complex but resolved. For our purposes it suffices
for trader utilities to be concave (Arrow and Debreu, 1954). As such, we will restrict our
attention to demand operators in DMEU – i.e., loss avoiding MEU demands – whenever
discussing equilibria.

Several recent papers have studied the equilibrium prices of prediction markets consist-
ing of so-called “artificial” traders with known utilities and beliefs derived from predictions
of machine learning algorithms. Storkey et al. (2012) and Storkey (2011) show that the
equilibrium prices of these artificial markets replicate well-known aggregations techniques
from machine learning: weighted-means used in boosting and random forests (derived from
log utilities); entropic means or α-mixtures (from iso-elastic utilities), weighted-medians
(linear utilities), product-model combinations such as log opinion pools or geometric means
(exponential negative decay utilities). They also obtain novel aggregations from markets
consisting of traders with differing utility functions that have connections to the minimi-
sation of divergence-based distances from the optimisation literature (Ben-Tal et al., 1989;
Amari, 2007). Barbu and Lay (2011) also use artificial prediction markets to obtain the
weighted-mean aggregation and implement kernel methods, logistic regressions. Beygelz-
imer et al. (2012) show connections to Bayesian model averaging and Bayesian weight
updates for Kelly bettors (log utility based traders) which Storkey et al. (2012) generalize
to the class of iso-elastic utility based traders.

2.3.2. Sequential Market Mechanisms

In a sequential market, demand operators are drawn i.i.d. from the stochastic market. At
step t, dt ∼ σ is presented to a market maker that offers a pricing function Πt, accepts the
bundle st = dt(Πt), and updates its pricing function to Πt+1 in preparation for the next step.
Formally, the updates are represented by sequential pricing mechanism Π(·|s1, . . . , sT ) ∈ P
that is a function from histories of bundle purchases s1, . . . , sT for any number of trades T
to pricing functions.
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A natural constraint on sequential pricing mechanisms is that it is path independent, that
is, Π(s+s′|s1, . . . , st) = Π(s|s1, . . . , st, s′)+Π(s′|s1, . . . , st) for all bundles s, s′ and histories
s1, . . . , st. Theorem 1 of Abernethy et al. (2011) shows that all path independent sequential
pricing mechanisms are necessarily the cost function-based pricing functions described in
Section 2.1.1. Specifically, ΠC,x0(s|s1, . . . , st) = C(xt + s)−C(xt) where xt = x0 +

∑t
i=1 s

i.
Sequential cost function-based market markets are known to have a bounded loss for

the market-maker (see Chen and Pennock (2007)) like regret analysis in online learning
algorithms. Chen and Vaughan (2010) show how such markets can be used to implement
follow-the-regularized-leader and achieve no-regret learning. Thus the role of the market-
maker becomes much like an algorithm for learning from expert advice. Abernethy et al.
(2011) notes further connections between the price update mechanisms in sequential markets
and weight update mechanisms in follow-the-regularized-leader algorithms.

For the purposes of our Theorem 1 in Section 3 and the “mini-trading” mechanism in
Section 4 we now introduce a pricing mechanism that is somewhere in between the cost
function-based and fixed-price mechanisms which we call a hybrid pricing mechanism and
denote by Π∇C,x

0
. Like the cost function-based mechanisms, this pricing mechanism sets

prices based on a cost function C and position x that is initialised to x0. Unlike the cost
function-based mechanism, however, the bundle prices are set by a fixed-price function
Π∇C(x). That is, Π∇C,x

0
(s|s1, . . . , st) := 〈∇C(xt), s〉 where xt = x0 +

∑t
i=1 s

i. We call this
a hybrid mechanism since it prices bundles using fixed prices derived from a cost function
but updates the price like the cost function-based mechanism.

3. Relating Equilibrium and Sequential Market Prices

In Theorem 1 below we show that, under certain conditions, the instantaneous prices of se-
quential markets are approximations of its Walrasian equilibrium, thus unifying the mean-
ing of instantaneous and equilibrium prices. We do this by interpreting the stochastic price
update mechanism of sequential cost function based markets as performing a stochastic
mirror descent (SMD) and showing that the direct solution to this optimisation problem is
the Walrasian equilibrium of the market.

This result can be seen as a refinement or variation of the two results by Frongillo et al.
(2012). In their Theorem 1, it was shown that the stationary distribution of the sequential
market making process was equal to the equilibrium price in the limit of infinite market
liquidity, and in their Theorem 2, it was shown that sequential cost function-based market
making was a stochastic mirror descent. Our result differs from their two as, although it
establishes the similar correspondence with SMD, it does so for a broader range of demand
operators and a more restrictive class of cost functions. Furthermore, our result establishes
a direct connection between sequential and equilibrium prices without needing to appeal to
infinite liquidity limits.

3.1. Background and Assumptions

Before stating the theorem, we first recall the form of stochastic mirror descent algorithms.
We then introduce our potential-based assumption on traders’ demands and a property of
cost function-based markets called liquidity insensitivity which makes it possible to interpret
the stochastic price update as a stochastic mirror descent.
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3.1.1. Stochastic Optimisation and Stochastic Mirror Descent

In stochastic optimisation problems there is some convex objective Φ : X → R to be
minimised that is only accessible through unbiased samples of its value and gradient. That
is, Φ(x) = Eω∼µ [Fω(x)] for some collection of convex functions Fω : X → R for which we
can compute the gradients ∇Fω(x) and distribution µ.

One very successful method for solving a problem of this type is stochastic mirror descent
(Nemirovski et al. (2009)). This algorithm starts with some initial point x0 ∈ X as a
candidate solution and iteratively improves it using samples of the objective function. Given
a learning rate η ∈ (0, 1] and a strictly convex regulariser R : X → R, the update step is

xt+1 = arg min
x∈X

{η〈x,∇Fω(xt)〉+DR(x;xt)} = ∇R∗(∇R(xt)− η.∇Fω(xt))

where, at each step, ω are drawn i.i.d. from µ. The first form of the update involving the
arg min has an intuitive interpretation as a trade off between taking a step in the steepest
descent direction and staying close to the previous solution, as measured by the Bregman
distance DR(p; q) = R(p) − R(q) − 〈∇R(q), (p − q)〉 generated by R. The other form of
the update step is derived using convex duality and is the one we show is equivalent to
sequential price updates.

3.1.2. Potential-Based Demands and Liquidity Insensitive Cost Functions

In order to relate the sequential price update mechanism to a stochastic mirror descent
algorithm, we assume that the demand operators d are linearly related to the negative of
the gradient of some convex function. To this end, we say a trader is potential-based if there
exist functions F : ∆N → RN and f : ∆N → R such that the trader’s demand operator d
satisfies

d(Ππ) = −∇F (π) + f(π).1 (3)

for any fixed-price pricing function Ππ. We will say a stochastic marketM is potential-based
if every trader that can be drawn from DM is potential-based.

As examples for this assumption, consider the MEU demands of some popular utility
functions presented in Table 1, where DKL(p; q) =

∑
n pn. ln(pn/qn) is the KL divergence

and DP
β (p; q) =

∑
n qn.(pn/qn)β−1

β(β−1) for β > 0 are the power divergences (Jose et al., 2008).
We note that the set of demand operators that are potential-based in our sense is

strictly larger than those considered by Frongillo et al. (2012). In particular, the exponential
negative decay utilities are not in the class they consider.

The other property we require is a constraint on the cost function that generates prices
for our hybrid mechanism. This constraint – called liquidity insensitivity – requires the
following: for all positions x ∈ RN and α ∈ R the cost function C satisfies C(x + α.1) =
C(x) + α. An immediate and important consequence of this property is that the prices
given by the C are invariant to purchases of equal quantities of all contracts. That is,
∇C(x + α.1) = ∇C(x) for all x ∈ RN and α ∈ R. This property has been studied in
the context of prediction markets by Othman et al. (2010) and recently given an axiomatic
characterisation by Li and Vaughan (2013).
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Utility MEU Demand Potential-based Representation

Log Utility : U(w) = ln(w) dn(Ππ) = W pn
πn

F d(π) = W.DKL(p;π), fd(π) = 0

Exp. Neg. Utility (r > 0):
U(w) = − exp(−r.w)

dn(Ππ) = 1
r ln(pn/πn) +

W + 1
r .DKL(π; p)

F d(π) = 1
rDKL(π; p), fd(π) = W + 1

r +
1
rDKL(π; p)

Iso-elastic Utility (β > 0):

U(w) = 1
β−1

(
w
β−1
β − 1

) dn(Ππ) = W
Z (pn/πn)

β
for

Z =
∑
n πn. (pn/πn)

β

F d(π) = W
Z β.D

P
β (p;π), fd(π) = 0

Table 1: Potential-based MEU demands for beliefs p ∈ ∆N , wealth W and prices π ∈ ∆N

3.2. Sequential Prices Approximate Equilibrium Prices

We can now state and prove our theorem. This result shows that under the assumption
of potential-based demands and liquidity insensitive cost functions, the sequential prices
generated by a hybrid pricing mechanism are approximating the solution of a stochastic
minimisation problem defined by the traders’ demands. Furthermore, the solution of the
problem is necessarily the equilibrium price for the stochastic market generating the demand
operators.

Theorem 1 Suppose σ is a potential-based stochastic market. Traders drawn from σ with
demand operators d1, . . . , dT interact with a hybrid sequential pricing mechanism Π∇C,x

0

generating sequences of positions xt = x0 +
∑t

i=1 s
i, prices πt = ∇C(xt), and bundles

st = dt(Ππt) for t = 1, . . . , T . Then,

1. The generated price sequence π1, . . . , πT is exactly the update sequence for a stochastic
mirror descent of the function Φ(π) := Ed∼σ

[
F d(π)

]
using regulariser R = C∗.

2. Any price π∗ minimising Φ(π) is an equilibrium price for the stochastic market σ.

Proof Since each d drawn from σ is potential-based by assumption, there exists convex
functions F d and functions fd such that d(Ππ) = −∇F d(π) + fd(π).1. Therefore,

πt+1 = ∇C(xt + st) = ∇C(xt + dt(Ππt)) = ∇C(xt −∇F dt(πt) + fd
t
(πt).1).

However, since C is liquidity insensitive we have that πt+1 = ∇C(xt − ∇F dt(πt)). As C
is differentiable and convex its dual R∗ is also and their derivatives satisfy ∇C = ∇R∗
and (∇C)−1 = ∇R (see, e.g., Boyd and Vandenberghe (2004)) and so xt = (∇C)−1(πt) =
∇R(πt). Thus,

πt+1 = ∇R∗(xt −∇F dt(πt)) = ∇R∗(∇R(πt)−∇F dt(πt))

which is precisely the stochastic mirror descent update with regulariser R, objective Φ(π) =
Ed∼σ

[
F d(π)

]
and step size η = 1, establishing the first part of the theorem.

For the second part of the theorem, consider the direct solution to the optimisation
problem: minπ Φ(π) = Ed∼σ[F d(π)] subject to π ∈ ∆N . The Lagrangian for this problem is
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L = Ed∼σ
[
F d(π)

]
+ λ(

∑N
n=1 πn − 1). The KKT conditions require a solution π∗ to satisfy

∇L(π∗) = 0. Because demands are potential-based, we have that ∇F d(π∗) = −d(Ππ∗) +
fd(π∗).1 and so

Ed∼σ
[
−d(Ππ∗) + fd(π∗).1

]
+ λ.1 = 0

and therefore Ed∼σ
[
d(Ππ∗)

]
= (λ+ Ed∼σ

[
fd(π∗)

]
).1.

This final expression is precisely the condition for the Walrasian equilibrium since the
total demands for each contract are equal. Thus the solution of the stochastic optimisation
problem is an equilibrium price for the market.

The correspondence between sequential hybrid pricing and stochastic mirror descent
established by the above theorem is not perfect since the price update mechanism has a
learning rate parameter η fixed to 1. In the next section, we introduce a market mechanism
designed to incorporate a learning rate parameter in a stochastic price update, thus im-
plementing a stochastic mirror descent model with a built-in learning rate parameter. For
small values of the learning rate parameter, we show that the hybrid pricing mechanism
closely approximates the traditional cost function-based mechanism.

4. Mini-trading

One difficulty with interpreting the instantaneous prices of a sequential market maker is the
high variability of prices that can occur when the market maker has low liquidity relative to
the wealth of the traders in the market. We propose a simple idea to combat this problem
and thereby help to make prediction prices more interpretable. Instead of allowing traders
to purchase large bundles of contracts, constrained only by their wealth, we modify the
market maker’s pricing function in a way that effectively limits how much a single trade
can move the market price. Given a parameter m ∈ (0, 1], we do so by simultaneously
scaling down each bundle purchased by m, scaling up the cost of purchasing it by 1

m , and
allowing traders to trade a factor of 1

m more times. That is, we allow repeated but small-
scale trader interactions as opposed to single but large-scale interactions. We first introduce
this mini-trading scheme for general pricing functions and then focus our attention on cost
function-based and hybrid pricing mechanisms. We show that this approach does in fact
improve price stability and relate its worst-case loss to the loss of the original pricing function
in the case of cost function-based markets.

Formally, given a pricing mechanism Π, its mini-trading version for m ∈ (0, 1] is the
function

Πm(s|s1, . . . , sT ) =
1

m
Π(ms|ms1, . . . ,msT ). (4)

In the case of mechanisms Ππ that use a fixed price π to define the bundle cost 〈π, s〉 we see
immediately that the mini-trade transformation does not affect the cost since 1

m〈π,ms〉 =
〈π, s〉 for all s, π and m. In particular, suppose Π = Π∇C,0 is a hybrid mechanism with
initial position 0. The mini-trade transformed version Πm will assign the same prices for
bundles as Π when the two mechanisms are at the some position x. However, it is important
to note that the positions of the two mechanisms after t steps will be xt =

∑n
i=1 s

i for the
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original mechanism and mxt for the mini-trade version. That is, the position is also scaled
by m.

To relate mini-trading to the optimisation perspective developed in the previous section,
we now consider the price update mechanism for a mini-trade transformed hybrid mecha-
nism. Letting xt =

∑t
i=1 s

i, the price at step t+1 is πt+1 = ∇C(mxt+1) = ∇C(mxt+mst).
However, since πt = ∇C(mxt) we have that mxt = (∇C)−1(πt) = ∇R(πt). By following
the rest of the argument in the proof of Theorem 1 we get

πt+1 = ∇R∗(∇R(πt)−m.∇F dt(πt))

which is precisely the stochastic mirror descent update with η = m and regulariser R = C∗.

4.1. Properties

We now discuss some more properties and advantages of mini-trading. After introducing
an appropriate definition of price stability, we show that the price stability in a mini-trade
mechanism is better than in the original mechanisms.

4.1.1. Price Stability

Given two pricing mechanisms Π and Π′, we will say that Π′ has better price stability than Π
if, whenever the mechanisms are at positions that offer the same price, the effect of updating
the mechanism will change the price less for Π′ than for Π. Formally, let S = (s1, . . . , st) and
R = (r1, . . . , rt

′
) be trade histories and s, r ∈ RN be bundles such that Π(s|S) = Π′(r|R).

Then Π′ has better price stability than Π if

|Π(s|S, s)−Π(s|S)| >
∣∣Π′(r|R, r)−Π′(r|R)

∣∣ . (5)

The following theorem shows that mini-trade transformations of hybrid pricing mecha-
nisms always improve price stability.

Theorem 2 Let Π∇C,0 be a hybrid pricing mechanism with initial price 0. Then mini-
trade transformed version Π∇C,0m with parameter has better price stability than Π∇C,x

0
for

all m ∈ (0, 1).

Proof For simplicity we will let Π := Π∇C,x
0

and Πm := Π∇C,x
0

m . First observe that to
meet the pre-condition for price stability – i.e., the two mechanisms to return identical costs
for the same bundle – we need to find histories S = (s1, . . . , st) and R = (r1, . . . , rt

′
) and

bundles s and r such that

Π(s|S) = Πm(r|R) ⇐⇒ 〈∇C(xS), s〉 = m−1〈∇C(m.xR),m.r〉

where xS =
∑t

i=1 s
i and xR =

∑t′

i=1 r
i. This is clearly satisfied by R = m−1.S and r = s

for any S and s. In this case, the pricing function presented by both mechanisms will be
〈π, ·〉 where π = ∇C(xS) = ∇C(m.xR).

Due to the convexity of C we know that∇C is monotonic – i.e., 〈∇C(x)−∇C(y), x−y〉 ≥
0 for all x, y. Therefore,

〈∇C(xS + s)−∇C(xS), s〉 ≥ 0 and 〈∇C(xS +m.s)−∇C(xS),m.s〉 ≥ 0 (6)
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and thus, Πm(r|R, r)−Πm(r|R) ≥ 0 and Π(s|S, s)−Π(s|S) ≥ 0 which means we can remove
the absolute value signs in the definition of price stability in (5).

Now consider

(Π(s|S, s)−Π(s|S))− (Πm(r|R, r)−Πm(r|R))

=(〈∇C(xS + s)−∇C(xS), s〉)− (〈m−1∇C(m.xR +m.r)−m−1∇C(m.xR),m.r〉)
=〈∇C(xS + s)−∇C(xS +m.r), s〉
=(1−m)−1〈∇C(xS + s)−∇C(xS +m.r), (1−m)s〉 ≥ 0

where the last inequality is once again due to the convexity of C and the last equality is
because ∇C(m.xR) = ∇C(xS). Since the quantities in the difference in top of that chain
are both positive by (6), we have established the result.

4.1.2. Worst-case Loss

So far our analysis has been based on price updates in sequential markets. Now we turn to
the profit/loss analysis in these markets. Typically, we assume that traders make demands
so as to maximise their expected profit or utility. So trader’s have an incentive to participate
in the market. But the automated market-maker who has the objective of eliciting and
aggregating trader’s beliefs, may end up bearing a loss in the market and this has been
viewed as a “price” that a market-maker has to pay in return for “learning” from the
trader’s beliefs. But when designing such a market, there might be a maximum price that
a market-maker is allowed to lose in return for “learning”.

In sequential markets with cost function-based pricing, the worst-case loss of the market-
maker is defined as,

max
n∈1,...,N

(xTn − x0
n)− ΣT

t=1C(xt)− C(xt−1)

For strictly convex cost functions, this worst case loss has been shown to be upper bounded
(Hanson, 2007; Chen and Pennock, 2007). For example, the LMSR cost function has worst-
case loss bounded by b. ln(N) if the market-maker set initial prices π0 as a uniform distri-
bution.

But in a market with hybrid pricing, the worst-case loss of the market-maker would be,

max
n∈1,...,N

(yTn − y0
n)− ΣT

t=1〈∇C(yt−1), (yt − yt−1)〉

(denoting the contract position by y since traders may react differently). Also by convexity
of the cost function, we have that C(x + s) − C(x) ≥ 〈∇C(x), s〉, which implies that the
sale of a bundle s using hybrid pricing (with prices fixed at ∇C(x)) yields less income to
the market-maker than selling the same bundle using cost function-based pricing. Thus we
have,

∀n, (yTn − y0
n)− ΣT

t=1C(yt)− C(yt−1) ≤ (yTn − y0
n)− ΣT

t=1〈∇C(yt−1), (yt − yt−1)〉

which suggests that the worst-case loss of a hybrid pricing mechanism is higher than the
worst-case loss of a cost function-based pricing mechanism.
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Due to the definition of the cost function-based pricing, for infinitesimal demands we
also have lims→0C(x+s)−C(x) = 〈∇C(x), s〉. This means for each demand st = yt−yt−1,
for the limit st → 0, the worst-case loss analysis for a market with hybrid pricing is the
same as in a market with cost function-based pricing.

∀n, lim
st→0

(yTn − y0
n)− ΣT

t=1〈∇C(yt−1), (yt − yt−1)〉 ≈ (yTn − y0
n)− ΣT

t=1C(yt)− C(yt−1)

In a mini-trade transformed hybrid mechanism, since the mechanism scales down the orig-
inal demand s to m.s, we have that limm→0m.s → 0. So we conclude that a mini-trade
transformed hybrid mechanism has worst-case loss similar to a cost function-based pricing
mechanism for the limit m→ 0.

4.2. Experimental results

Although our contribution in this paper is primarily a theoretical one, we briefly present a
simple experiment that demonstrates the convergence and price stability properties of mini-
trading. For this purpose we use log utility based traders d with wealths W d and beliefs pd

who make MEU demands for fixed prices as shown in Table 1. These traders participate, 1)
in an original market with the LMSR cost function with b = 1 and a hybrid pricing scheme,
2) in a mini-trade transformed market. We set initial prices as a uniform distribution by
setting initial positions to be 0. Using equilibrium analysis as in Theorem 1 we have that
the equilibrium price Ed∼D[W d.pd] (i.e., the wealth-weighted mean of the traders’ beliefs)
minimises f(π) = Ed∼D[W d.DKL(pd;π)] (see Storkey et al. (2012) and Amari (2007) for
direct derivations).

For the experiment we use a binary outcome market and 100 traders who participate
once each in the original market and 1/m times in the mini-trade market. For the mini-trade
market, we set m = 0.1. Traders’ beliefs pd are drawn from a normal distribution with mean
0.75 and standard deviation 0.2. All traders have unit wealth W d = 1 so the equilibrium
price is simply the mean belief. The instantaneous prices of the markets, averaged over
30 simulations for the same traders is given in Figure 1. For each simulation, the trading
order is determined by a random permutation order. From the price history, we see a better
convergence of instantaneous prices to the mean belief (equilibrium price) in mini-trades.
Since the price fluctuation is less in the mini-trade market, we also see that mini-trading
creates more stable prices.
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Figure 1: The price history of full-trade and mini-trade markets, averaged over 30 simula-
tions. The dashed line marks the equilibrium price and bars show standard deviation.

5. Conclusion and future work

In this paper we connect the instantaneous price updates in sequential markets and the
equilibrium price in equilibrium markets as solving the same optimisation problem. We
explore the convergence of instantaneous prices in sequential markets to the equilibrium
price via mini-trading, which has desirable properties of price stability and bounded loss
for the market-maker, thus mini-trading can used as a framework to produce aggregations
that are closer to the equilibrium price using the sequential market approach. As a result
of convergence, we suspect that mini-trading also generates profits that are closer to the
profits obatined from an equilibrium market. This is desirable because Beygelzimer et al.
(2012) and Storkey et al. (2012) interpret equilibrium wealth updates as Bayesian weight
updates in an online learning setup. Current experiments support this claim and we leave
this analysis as future work.

We have assumed that traders don’t adopt strategic behaviour (Chen et al., 2007; Dim-
itrov and Sami, 2008) given the opportunity for repeated trades in mini-trading, since each
trade only results in a “small-scale” impact on the market prices and trades occur in a
randomised order. We hope to prove this as future work.
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