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Abstract

We present locally-linear learning machines (L3M) for multi-class classification. We formulate a
global convex risk function to jointly learn linear feature space partitions and region-specific linear
classifiers. L3M’s features such as: (1) discriminative power similar to Kernel SVMs and Adaboost;
(2) tight control on generalization error; (3) low training time cost due to on-line training; (4) low
test-time costs due to local linearity; are all potentially well-suited for “big-data” applications. We
derive tight convex surrogates for the empirical risk function associated with space partitioning
classifiers. These empirical risk functions are non-convex since they involve products of indicator
functions. We obtain a global convex surrogate by first embedding empirical risk loss as an extremal
point of an optimization problem and then convexifying this resulting problem. Using the proposed
convex formulation, we demonstrate improvement in classification performance, test and training
time relative to common discriminative learning methods on challenging multiclass data sets.

1. Introduction

Figure 1: Left: L3M architecture. Right: Decision regions on
the banana data set for local linear classification, Ad-
aBoost using stumps as weak learners, GDI decision
tree, and Gaussian RBF SVM.

We present a convex parameteriza-
tion for learning locally linear deci-
sion boundaries for multi-class classi-
fication. The proposed classifier par-
titions the features space into local re-
gions, and within each region applies
an independent classifier, as shown
in Fig. 1, and we refer to them as
space partitioning classifiers (SPC).
Our approach jointly learns both fea-
ture space partitions and independent
classifiers in each partition by opti-
mizing a globally convex risk func-
tion. A typical output of L3M is il-
lustrated in Fig. 1. Although the
proposed method admits local kernel-
ization (i.e, locally non-linear bound-
aries), practically, locally linear boundaries are desirable.
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Locally Linear Learning Machine(L3M): Fig. 1 depicts some of the practical advantages
of L3Ms that make them suitable for “big-data” applications. L3Ms are flexible and have good
discriminative power–similar to other powerful methods such as Adaboost and Kernel-SVMs–since
for many real-world datasets, class boundaries are well-behaved and approximable by a few locally
linear functions & partitions. L3Ms have low VC dimension and have predictable generalization
performance. L3M’s have low training time cost in contrast to Adaboost & Kernel-SVMs. Indeed,
on account of local-linearity and convex parameterization they can be trained on-line using stochas-
tic gradient descent algorithms and are guaranteed to converge. Finally, L3Ms have low test-time
computational cost in contrast to Kernel-SVMs which typically require large number of support
vectors for many real-world datasets.

We derive a tight convex surrogate for the empirical risk function associated with SPCs. To
motivate the problem consider the simple case of binary classification using 2-region local-linear
learning (a setup well suited for XORs). The empirical risk function can be written as:

R(G, f1, f2) =

n
∑

i=1

[1G(xi)<01yif1(xi)≤0 + 1G(xi)≥01yif2(xi)≤0

]

. (1)

where, (x1, y1) , . . . , (xn, yn), are labeled training set examples with xi ∈ Rd and yi ∈ {−1, 1} for
i = 1, . . . , n, G(·) ∈ {−1, 1}, the partitioning map and f1(·) and f2(·), the classifiers associated
with the two regions. The function G(x) partitions the feature space into two regions, and in
each region, a local classifier, f1(x) or f2(x), predicts a label for the observation. The goal is
to learn G(x), f1(x), f2(x) jointly that minimizes the empirical loss. Such product of indicator
functions have been considered before and whose origins can be traced to Perceptron Decision Trees
Bennett et al. (2000), in particular the work of Bennett & Mangasarian Bennett and Mangasarian
(1993). In their work they proposed to bound each indicator function with hinge-loss. The resulting
objective, leads to a bilinear optimization problem, which is known to be NP-complete Megiddo;
Blum and Rivest (1992), and so they propose branch & bound algorithms in this context. More
recently, Wang & Saligrama Wang and Saligrama (2012) proposed a heuristic method based on
alternative minimization (AM) for solving Eq. 1 but their AM method lacks convergence guarantees.
The issue is that while the product of indicators can be convexified, for instance,1G(x)<01f(x)y<0 ≤ max(1−G(x) − f(x)y, 0),

this does not turn out to be useful as it evidently dilutes the separation between partitioning
function, G(x) and classifier function f1(x), f2(x). To address this point we obtain a global convex
surrogate by first embedding empirical risk loss as an extremal point of an optimization problem.
The key aspect of this embedding is that the resulting optimization problem is composed of single
indicator functions and so can be tightly convexified using hinge-losses. We can generalize this
approach to derive convex parameterizations not only for losses composed of product of multiple
indicator loss functions (cascade classifiers) but also multi-region partitioning functions. Using the
proposed convex formulation, we demonstrate improvement in classification performance, test and
training time relative to common discriminative learning methods on challenging multiclass data
sets.
Issues with Convex Losses: Naive convexification of SPCs induces classifier symmetry, which
leads to fundamental problems. To demonstrate this, consider the two classifiers shown in Fig. 2.
Both classifiers induce the same decision boundaries and empirical error over the training set, and
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Figure 2: Two classifiers that induce identical decision boundaries. This symmetry of solutions is a funda-
mental obstacle for convex relaxations of the empirical error.

both classifiers minimize the empirical error. Unfortunately, minimizing any convex relaxation of
the empirical loss, will yield a single global classifier instead of either of these optimal classifiers:

Proposition 1.1 For any convex relaxation of (1), the solution f1 = f2 and G = 0 is globally

optimal.

Proof Consider the solution f1 = f∗
1 , f2 = f∗

2 , and G = G∗ that minimizes the empirical error.
The solution f1 = f∗

2 , f2 = f∗
1 , and G = −G∗ will induce the same decision boundaries and identical

loss. For any convex relaxation of the empirical risk, by the definition of convexity, the solution

f1 =
f∗

1
+f∗

2

2 , f2 =
f∗

1
+f∗

2

2 , and G = 0 will at least match the loss of these solutions.

While the convex relaxation of the solution yields a single global classifier, this is not the optimal
solution with respect to the indicator loss function, such as the case in Fig. 2. The symmetry of the
loss function around the point G = 0 presents a fundamental limitation for all convex relaxations.
Similar issues have previously been raised when convexifying latent variable models, as noted by
Guo and Schuurmans Guo and Schuurmans (2008). A simple way to overcoming this issue is to
break the symmetry. Specifically, we can remove the solutions G < G∗ from the set of feasible
solutions to the optimization problem by imposing a constraint. In particular, we accomplish this
by choosing a random point, xk, and constraining G(xk) ≥ β, which immediately removes the
symmetric part of solution.

1.1. Related Work

Apart from the closely related work of Bennett and Mangasarian (1993); Wang and Saligrama
(2012) described above, our approach is also loosely related to mixture of experts framework
Lima et al. (2007); svm. The mixture of experts framework hybridizes generative and discrimi-
native approaches by replacing the partitioning classifier, G, with a ”latent” probability distribu-
tion. Alternating minimization is used, switching between learning the parameters of the ”latent”
distribution and training local classifiers using standard learning methods.

The SPC architecture appears to resemble decision trees L. Breiman and Stone (1984) and in
particular decision trees with multivariate splits Brodley and Utgoff (1995). Nevertheless, to the
best of our knowledge multivariate splitting techniques have focused on either optimizing a heuristic,
such as split purity or entropy, or greedily attempting to discriminate the data at each stage without
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Figure 3: Left: 2-region L3M architecture. Right: L3m decision boundaries for two synthetic 2-
dimensional examples.

regard to proceeding splits. Furthermore, the entropy or purity heuristics employed by decision
trees are often difficult to optimize, limiting each decision to single feature splits which can be
optimized by brute force search. In contrast, our approach directly minimizes a surrogate on the
global empirical risk. Another crucial difference is that L3M is a single level multi-partition split
that directly assigns the observation to a local classifier. In contrast decision trees are generally
constructed using binary splits with relatively large depth.

Approximating decision boundaries with piecewise simple functions has also been proposed in
generative learning schemes, such as Mixture Discriminant Analysis (MDA), proposed by Hastie
et al. Hastie and Tibshirani (1996), where each class is modeled as by mixture of Gaussian distri-
butions. Additional piecewise linear techniques have been proposed in the past Dekel and Shamir;
Dai et al. (2006); Toussaint and Vijayakumar (2005), however these approaches do not learn deci-
sion boundaries based on minimizing global empirical risk.

2. Convex Parametrization for Binary Partitioning & Binary Classification

To build intuition we first consider the 2-region binary L3M described by the empirical loss in
Eq. 1. The classification output F (x) as shown in Fig. 3 associated with this empirical loss can be
expressed as a function of the partitioning and local classifiers:

F (x) = 1G(x)<0f1(x) + 1G(x)≥0f2(x). (2)

The function G(x) partitions the feature space into two regions, and in each region, a local classifier,
f1(x) or f2(x), predicts a label for the observation.

We recast the empirical risk as an optimization problem over introduced variables, transforming
the problem from a fundamentally difficult bilinear optimization problem to a convex optimization
problem. To accomplish this, we first make the following observation:

Proposition 2.1 The product of indicators can be expressed as a minimization:1a<01b<0 = min
λ∈[0,1]

λ1a<0 + (1− λ)1b<0

.This observation allows the product of indicators to be separated into a linear combination of
indicators. One natural approach is to replace the products of indicators in Eqn. 1 with this
transformation, transforming the empirical error to:

R(G, f1, f2) =
n
∑

i=1

min
λ1,λ2∈[0,1]

[

λ11G(xi)<0 + (1− λ1)1yif1(xi)≤0 + λ21G(xi)≥0 + (1− λ2)1yif2(xi)≤0

]

.
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While replacing the indicator functions with upper-bounding surrogates yields a tighter surrogate
function on the empirical error than previously proposed bilinear surrogates Bennett and Mangasarian
(1993), the problem is still a bilinear optimization problem whose global optimum is computation-
ally intractable to find. Instead, we make one more basic observation that allows us to convert the
problem from a bilinear optimization problem to a convex optimization problem:

Proposition 2.2 The empirical error can be expressed by the event of a correctly classified obser-

vation: 1F (xi)6=yi = 1− 1F (xi)=yi

. Using these observations, we reformulate the empirical error by expressing the empirical error
with respect to the event of a correctly classified observation:

Theorem 2.3 The empirical risk (1) can equivalently be expressed:

R(G, f1, f2) =
n
∑

i=1

max
[1G(xi)≥0 + 1yif2(xi)≤0,1yif1(xi)≤0 + 1G(xi)<0

]

− 1. (3)

Proof From Proposition 2.2, we express the empirical error with respect to the event of a correct
classification:

R(G, f1, f2) =

n
∑

i=1

[

1− 1G(xi)<01yif1(xi)>0 − 1G(xi)≥01yif2(xi)>0

]

From Proposition 2.1, we convert the empirical risk to a minimization over two introduced variables,
λ1 and λ2:

R(G, f1, f2) =

n
∑

i=1

[

1− min
λ1∈[0,1],λ2∈[0,1]

(

λ11G(xi)<0 + (1− λ1)1yif1(xi)>0 + λ21G(xi)≥0 + (1− λ2)1yif2(xi)>0

)]

=
n
∑

i=1

max
λ1∈[0,1],λ2∈[0,1]

[

1− λ11G(xi)<0 − (1− λ1)1yif1(xi)>0 − λ21G(xi)≥0 − (1 − λ2)1yif2(xi)>0

]

.

By definition, 1z<0 = 1− 1z≥0, so we substitute for the indicator functions:

R(G, f1, f2) =

n
∑

i=1

max
λ1∈[0,1],λ2∈[0,1]

[

λ11G(xi)≥0 + (1− λ1)1yif1(xi)≤0 + λ21G(xi)<0 + (1− λ2)1yif2(xi)≤0 − 1
]

.

The optimal values of λ1 and λ2 may not be unique. However, given that 1G(xi)≥0 = 1− 1G(xi)<0,
one optimal solution always lies on the line λ1 = 1− λ2. We substitute λ = λ1 and λ = 1− λ2:

R(g, f1, f2) =

n
∑

i=1

max
λ∈[0,1]

[

λ1G(xi)≥0 + (1− λ)1yif1(xi)≤0 + (1− λ)1G(xi)<0 + λ1yif2(xi)≤0 − 1
]

.

The variable λ acts as a maximization function and can be removed, yielding the expression in (3).

Convex Surrogate: A key advantage of the empirical risk as formulated in Eqn. 3 is that
convexity is preserved when replacing the indicator functions with convex surrogate functions,
whereas introducing convex surrogate functions in the empirical risk proposed in (1) does not
generally yield a convex objective. From the empirical risk as formulated in Eqn. 3, we construct
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a convex, upper-bounding surrogate function by replacing the indicator functions with hinge losses:

R̂(G, f1, f2) =
n
∑

i=1

max
[

(1− yif1(xi))+ + (1 −G(xi))+, (1 +G(xi))+ + (1− yif2(xi))+

]

− 1, (4)

where the hinge loss is defined (1 − z)+ = max (1− z, 0). This relaxation of the empirical risk is
not only convex, but additionally is the tightest convex relaxation as stated below. Proof appears
in supplementary section.

Proposition 2.4 For a function of the form max
[1a≥0 + 1b≤0,1c≤0 + 1d≤0

]

− 1, the tightest upper-

bounding convex surrogate is given by max
[

(1 + a)+ + (1− b)+ , (1− c)+ + (1− d)+

]

− 1.

The final optimization problem, including the linear constraint arising from Prop. 1.1 and a
regularization term to maximize margins, can be formulated:

min
G,f1,f2,G(xk)≥β

n
∑

i=1

max
[

(1−yif1(xi))++(1−G(xi))+, (1+G(xi))++(1−yif2(xi))+

]

+λ
(

‖f1‖22 + ‖f2‖22
)

(5)

where xk is a randomly chosen test observation and λ > 0 and β > 1 are user chosen parameters
that minimize the empirical training error.

Fig. 3 shows the decision boundaries on two synthetic 2-dimensional examples on the right.
On the top right of Fig. 3, data is generated from four symmetric Gaussian distributions, with
means at (−1,−1), (−1, 1), (1,−1), (1, 1), with data generated from Gaussians centered at (1, 1)
and (−1,−1) having positive labels and data centered at (1,−1) and (−1, 1) having negative labels.
On the bottom right, the data is drawn from 4 symmetric Gaussians with means on the x-axis at
(0, 0), (1, 0), (2, 0), (3, 0) and alternating positive and negative labels associated with each Gaussian.
As seen in Fig. 3, the proposed convex formulation correctly learns both a partitioning and and
local classification functions, resulting in perfect classification of the training sets.

Qualitative Behavior of Indicator & Convex Risks:
To examine the behavior of the reformulated loss and convex relaxation, we consider two cases. In
the first case, we assume that the partitioning function G is fixed and examine the effect of local
classifiers f1 and f2 on the loss. In the second case we examine the opposite situation, where the
local classifiers f1 and f2 are fixed and observe the behavior of G on the loss.

In the first case where G is fixed, 1yif1(xi)≤0 + 1G(xi)<0 − 1 ≥ 1G(xi)≥0 + 1yif2(xi)≤0 − 1, so the
empirical error simplifies to 1yif1(xi)≤0. The empirical risk on the observation xi has the desired
behavior, as it is independent of f2(xi), with a value of 1 if f1(xi) 6= yi and a value of 0 if f1(xi) = yi.

In the second case where the local classifiers are fixed, 1yjf1(xj)≤0 + 1G(xj)<0 − 1 ≥ 1G(xj)≥0 +1yjf2(xj)≤0 − 1, so the loss can be simplified to 1G(xj)<0. This can be viewed as a pseudo-label for
the classifier G on observation xj , with a “correct” label of G(xj) = 1, such that the observation
xj is partitioned into the second region and correctly classified by f2, and an “incorrect” label of
G(xj) = −1, where the observation is partitioned into the first region and incorrectly classified by
f1. In this manner, the pseudo-label partitions training examples into the regions where the local
classifier correctly estimates the label, as described in Wang and Saligrama (2012).

Similarly, we examine the same cases for the convex loss function in Eqn. 5. For the first case,
where the partitioning function is fixed G(xi) = −1, the objective of (5) is independent of f2(xi)
unless the hinge loss of yif2(xi) is larger than the partitioning margin and the hinge loss of yif1(xi).
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In the case where the local classifier margins are roughly the same magnitude, |f1(xi)| ≈ |f2(xi)|,
the surrogate loss function is independent of f2(xi), that is not dependent on the classifier in the
region the observation is not assigned.

Alternatively, consider the second case with fixed local classifiers such that for an observation
xj, yjf1(xj) = 1 and yjf2(xj) = −1. For the observation xj , the classifier G minimizes the loss
function is G(xj) = −1, that is observation xj is partitioned into region 1, with the loss equalling
1. In the event that G(xj) = 1, the observation is partitioned into region 2, where a mistake is
made, resulting in a loss equalling 3. As in the indicator case, the optimal solution of the convex
loss function is to partition observations into the region where the local classifier makes a correct
classification.

L3M Summary: We summarize some of unique features of L3M below.
Global Minimum: The global minimum of the objective function can be efficiently found using exist-
ing convex optimization tools. This allows for reliable and repeatable performance compared to find-
ing a local minimum of the non-convex formulations as done in past work Bennett and Mangasarian
(1993); Wang and Saligrama (2012).
Outlier Robustness: The proposed surrogate function is more robust to outliers, as the margins of
the partitioning and classifying functions add as compared to the multiplicative behavior exhibited
by the bilinear loss formulation Bennett and Mangasarian (1993). As a result, outlier observations
far away from both the partitioning boundary and the local classification boundary have a signifi-
cantly smaller effect on the empirical risk minimization problem.
Learning with Big Data: Since the empirical risk formulation is convex, established approaches to
optimizing over large training sets can be applied. In particular, the convex formulation can be
trained directly using stochastic gradient descent techniques, allowing training using streaming ob-
servations and batch processing approaches that still converge to a global minimum Shalev-Shwartz
(2012); Zinkevich (2003). We demonstrate the ability to train in an online fashion in Section 5.

3. L3M for Multiple Regions and Multiclass Data

Multiple Regions: A natural extension of the 2-region L3M is to partition the feature space into
multiple (r > 2) regions using the structure shown in Fig. 1. In this structure, G is a multiclass
partitioning function that partitions the space into r regions, with the associated local classifiers,
f1, . . . , fr, applied independently in each region.

The key observations from the 2-region case can be applied to the case of multiple regions,
allowing the empirical risk to be reformulated as a maximization over sums of indicator functions:

Theorem 3.1 For a classifier of the form shown in Fig. 1, the empirical risk can be expressed:

R(G, f1, . . . , fr) =

n
∑

i=1

max
k∈{1,...,r}

[1fk(xi)6=yi + 1G(xi)=k − 1
]

. (6)

Replacing the indicator functions with upper-bounding convex surrogates yields a globally convex,

upper-bounding surrogate function on the empirical risk.

The proof of Thm. 3.1 follows closely from the proof of Thm. 2.3 and is included in the supple-
mentary material.

As in the case of 2 regions, the empirical loss proposed in Thm. 3.1 is a maximization over
sums of indicator functions, and as a result, preserves convexity of the global objective when the
indicator functions are replaced with convex surrogate functions. In the case of more than 2
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regions, the partitioning function G(x) can be viewed as a multiclass classification function, with
an appropriate convex upper-bounding surrogate function required for the function 1G(xi)=k. To
handle this multiclass problem, we define the partitioning function as a one-vs-all maximum margin
approach, with the partitioning function defined G(x) = argmaxk∈{1,...,r} gk(x). While multiple
alternative multiclass coding schemes and surrogate functions are valid, such as the multicategory
SVM Lee et al. (2004) or simplex SVM Mroueh et al. (2012) approaches, for technical simplicity
we implement the one-vs-all scheme in constructing L3M’s with multiple regions.

For a partitioning function of this form, we upper bound the indicator function 1G(xi)=k ≤
φ(G, k, xi), where the function φ(G, k, xi) is defined:

φ(G, k, xi) = max

[

(1 + gk(xi))+ ,max
j 6=k

(1− gj(xi))+

]

. (7)

This is equal to the maximum hinge-loss over the one-vs-all classifiers. For this surrogate function,
the only case where φ(G, k, xi) is equal to zero is the case where the k

th classifier has a large negative
margin (gk(xi) < −1) and all other classifiers have a large positive margin (gj(xi) > 1, ∀j 6= k).

Using the surrogate function φ, we construct an upper-bounding convex function for the em-
pirical risk:

R(G, f1, . . . , fr) =
n
∑

i=1

max
k∈{1,...,r}

[

(1− yifk(xi))+ + φ(G, k, xi)− 1
]

. (8)

This surrogate function is convex and can in fact be expressed as a maximization of a linear
function over a set of linear inequality constraints. In practice, quadratic regularization constraints
are added on the functions f1, . . . , fr based on the maximum margin principle. Note that the result
from Prop. 2.4 can be generalized to the multiclass case using tight multiclass convex surrogates
such as the simplex coding SVM Mroueh et al. (2012).

The symmetry issue noted in Prop. 1.1 arises in the case of multiple regions. To overcome
this issue, we assign r − 1 randomly selected observations to different regions and enforce positive
margins for these points within these regions. Comparing the empirical error between multiple
random assignments allows for verification of poorly selected constraints. In practice, few random
assignments are necessary to find a suitable solution as r is small (see Experimental section for
more details).

Multiclass Classification: The convex formulations proposed in Eqns. (4) and (8) can also
be naturally extended to multiclass data. In practice, we use the same maximum margin one-vs-all
scheme as used in the partitioning function to define the functions f1, . . . , fr. In order to upper
bound the indicator function, the binary hinge losses in Eqns. (4) and (8) associated with the
local classifiers is replace with a multiclass hinge loss similar to the one proposed in Eqn. (7). As
in the multi-region partitioning case, multiple alternative multiclass coding schemes and surrogate
functions can be substituted in place of the proposed one-vs-all scheme.

4. Properties of L3M

Generalization Error: One important consideration in constructing L3M’s is choosing the pa-
rameter r, which dictates the number of linear functions used to approximate the decision boundary.
Increasing the number of partitioned regions (r) allows for the empirical error to be made small by
using many local linear classifiers. Conversely, the variance error introduced by complex classifiers
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can be controlled by limiting the number of partitioned regions. In this sense, the parameter r can
be viewed as a tradeoff parameter between bias and variance error, with behavior in the binary
case characterized by the VC-dimension:

Theorem 4.1 The VC-dimension of a local linear classifier with r regions can be bounded:

2(
(r − 1)2 + 2

2
) log

(

e(
(r − 1)2 + 2

2
)

)

(d+ 1).

The proof of this theorem is based on decomposing the classifier into a boolean function of binary
classifiers Sontag (1998) (see Supplementary for details).

The VC-dimension of L3M’s grows linearly with dimension and polynomially with the number
of partitions. In practice, few regions (r << d) are necessary to sufficiently reduce empirical
error, implying that complex non-linear boundaries are often well approximated with piecewise
linear functions. Additionally, the VC-dimension yields a direct approach to finding the number of
partitions by choosing the parameter r to minimize a high-probability bound on the generalization
error.

Test Time Computational Efficiency: Test time computational efficiency is a major ad-
vantage of L3M. In the case of binary labels, the cost of predicting a test label scales linearly with
the dimension of the data, as label estimation requires O(dr + d) computations, where d is the
dimension of the data and r is the number of regions.

Significant test time computational savings occur in the multiclass setting as label predictions
can be accomplished in O(dr+ dc) computations, where c is the number of classes. In comparison,
prediction using a one-vs-all kernel SVM scales O(dsc), where s is the sparsity of each one-vs-
all SVM. Similarly, in the case of one-vs-all AdaBoost, prediction requires O(Nc) computations,
where N is the number of weak learners, which is typically significantly larger than d. Of note,
the computational cost of partitioning the space (O(dr)) scales independently of the number of
classes, whereas approximating the decision boundary more accurately in the standard one-vs-all
approach scales linearly with respect to the number of classes. Experimental results validate that
L3M’s allow accurate approximations of highly complex decision boundaries while still maintaining
low computational cost.
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5. Online Training of L3M’s

Algorithm 1 Online Update

Input: Observation and label, xt, yt, current partitioning classifier, α, and local classifiers β1, β2

Output: Updated partitioning classifier, α, updated local classifiers β1, β2
1. Find active region

rt =











1 if log(1 + eα
T xt) + log(1 + e−ytβ

T
1
xt) >

log(1 + e−αT xt) + log(1 + e−ytβ
T
2
xt)

2 otherwise

2. Calculate the subgradient for the partitioning classification functions:

5α =







−xt

1+e−αT xt
if r = 1

xt

1+eα
T xt

if r = 2
, 5 β1 =







−ytxt

1+e
ytβ

T
1

xt
if r = 1

0 if r = 2
, 5 β2 =







0 if r = 1
−ytxt

1+e
ytβ

T
2

xt
if r = 2

3. Return updated functions:

α = α− 5α√
t
, β1 = β1 −

5β1√
t
, β2 = β2 −

5β2√
t

Figure 4: Left: Synthetic gaussian XOR data. Right:
Average training error over the entire
training set vs. observed training obser-
vations.

To demonstrate online training of
L3M’s, we upper bound the indicator
losses in (3) using logistic loss func-
tions. The logistic loss function is an
ideal choice when training local lin-
ear classifiers using streaming data,
as it is smooth continuously differen-
tiable while asymptotically approxi-
mating the tightest convex surrogate
functions (hinge losses as shown in
Lee et al. (2004)). Although hinge
losses produce a tighter convex sur-
rogate, we find that training in an
online setting converges noticeably
faster when using smooth loss func-
tions. Starting with a random set of
functions, we use a stochastic subgra-
dient descent algorithm shown in Alg.
1 to find the local linear classifier that minimizes the objective function Zinkevich (2003). Using a
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descent rate of t
−1

2 , the average regret between the stochastic subgradient descent solution and the
global optimal solution has been shown to approach zero Zinkevich (2003).

Figure 5: Left: Partitioned regions learned via on-
line training. Right: Decision boundaries
learned by online training.

Performance of this online algo-
rithm is shown on a synthetic dataset
in Fig. 4. The synthetic dataset,
shown in Fig. 4, was generated from
a mixture of Gaussians, with a single
gaussian distribution centered in each
quadrant and labels corresponding to
each Gaussian equal to the XOR of
the mean coordinates. A randomly
initialized local linear classifier is up-
dated by randomly generated training
examples. The average training error
on the entire training dataset is shown
on the right of Fig. 4. On the Gaus-
sian XOR data set, the local linear
classifier converges at an extremely
fast rate, with convergence approxi-
mately after 200 updates.

6. Experimental Results

6.1. Multiclass Classification Performance

Experimental results are reported in Table 2 for seven benchmark datasets from the Statlog Project
Michie et al. (1994) and UCI repository Frank and Asuncion (2010)1. These datasets have been
previously experimented on to demonstrate multiclass performance Wang and Saligrama (2012);
Mroueh et al. (2012); Hsu and Lin (2002).

Dataset Dimension Classes Training Set Test Set

Banana 2 2 400 4900
DNA 180 3 2000 1186

Landsat 36 7 4435 2000
Vowel 10 11 528 462

Optdigit 64 10 3823 1797
Pendigit 16 10 7494 3498

Image Seg. 19 7 210 2100

Table 1: Multiclass dataset properties. Benchmark training and test splits are used.

The L3M’s were constrained to 6 regions (r = 6) for all examples, and for each dataset, a sweep
was performed over the parameters λ ∈

[

102, 103, 104, 105, 106
]

and β ∈
[

102, 103, 104, 105, 106
]

,

1. Note that confidence intervals are not possible with the results, as the predefined training and test splits were
used. Although fixed training and test splits are used, test set error bounds Langford (2006) show that with high
probability the difference between true error and empirical error is small.
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with 30 random sets of constraints tested for each parameter pair. The resulting quadratic pro-
gram was solved using the CVX convex optimization package CVX Research (2012). The pair of
parameters and linear constraints producing the smallest empirical error on the training set were
used to select the final classifier. Indeed it is easy to show using basic probability that if there
exists a good partition with similar number of data points in each region then for a 6 region split
about 30 random initializations ensures with 95% confidence that we get the right one.

For comparison, we implemented a variety of non-linear supervised learning methods. A one-
vs-all AdaBoost classifier using stumps as weak learners was constructed, with weak learners added
until the training error rate ceased to improve Freund and Schapire (1997) . The AdaBoost training
error was generally small, with four of the six datasets having zero training error, and the remaining
datasets having training errors bounded by 3%, implying that weak learnability issues do not
arise on these datasets when using stumps. Decision trees were trained using the Gini Diversity
Index (GDI) as a splitting criteria, with optimal pruning performed and a minimum of 5 training
examples in each leaf of the tree L. Breiman and Stone (1984). MDA, a generative local linear
approach, was trained using 6 Gaussian clusters to represent each class, producing a decision
boundary of equal complexity to L3M Hastie and Tibshirani (1996). A Gaussian RBF SVM was
trained for each dataset, using the heuristic of setting σ equal to the median of the pairwise distances
between distinct points, and the regularization parameter chosen using 4-fold cross-validation over a
logarithmic sweep λ ∈

[

10−3, 104
]

. The resulting error rates are comparable to previously reported
error rates Mroueh et al. (2012).

Table 2: Multiclass learning algorithm test errors on Statlog and UCI datasets using benchmark training
and test sets.

Algorithm Banana DNA Landsat Vowel Optdigit Pendigit Image Segmentation
One vs All Linear SVM 39.55% 7.08% 17.90% 59.09% 7.63% 10.92% 8.24%
One vs All RBF SVM 11.86% 5.48% 9.70% 37.23% 2.34% 1.86% 11.30%
One vs All AdaBoost 32.98% 8.35% 16.10% 69.70% 12.24% 11.29% 10.38%

GDI Tree 14.33% 9.36% 14.45% 56.93% 14.58% 8.78% 9.71%
MDA 20.45% 12.14% 36.45% 67.32% 9.79% 7.75% 15.43%
L3M 11.84% 5.31% 17.50% 40.69% 7.12% 10.52% 10.76%

As shown in Table 2, L3M generally outperforms AdaBoost, MDA, and GDI decision trees and
is only moderately outperformed by Gaussian RBF SVM. While Gaussian RBF SVM generally
outperforms L3M, L3M has multiple computational advantages over RBF SVM. Computationally,
the quadratic program for L3M scales in the same fashion as a standard linear SVM. Additionally,
L3M’s can be learned using streaming training data without the need to store the full set of training
data in memory, whereas the RBF kernel cannot even be formed without storing the entire training
set. Finally, during test time, the computational cost of evaluating a L3M is extremely small,
whereas evaluating the the Gaussian RBF kernel can be computationally expensive, especially in
the case of multiclass data.

6.2. Test Time Cost Comparison

An important aspect of handling large sets of data is computational cost for predicting labels. To
compare the test time computational cost, error rates were computed for classifiers of varying test
time computational cost, as shown in Fig. 6.
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Figure 6: Test error vs. number of test time computations. The range of test time computational costs
for L3M is limited even for complex decision boundaries due to linear scaling with respect to
number of regions. We attribute V-shaped curve for Vowel dataset to overtraining. Left: Image
Segmentation data, Middle: Banana data, and Right: Vowel data.

For comparison, we compare performance with one vs. all AdaBoost, and one vs. all RBF
kernel ν-SVM Schölkopf et al. (2000). To construct AdaBoost classifiers under different test time
computation constraints, the number of stumps used to construct each binary classifier were limited.
To control the test time cost of the kernel ν-SVM, the parameter ν was varied to construct classifiers
with varying support sizes. ν-SVM was chosen due to the ability to the direct trade-off between
empirical error and classifier sparsity through the parameter ν. In general, non-additive kernel
SVM’s perform poorly when limited to small test time costs, as observed by the instability of low
test time cost ν-SVM. This is due to the highly sparse kernel classifiers constructed, which change
dramatically when individual support vectors are added. Also, note that in the Image Segmentation
data, ν-SVM cannot be driven sparse enough to produce an output apart from a constant label.
L3M’s were constructed in the same manner as in the multiclass experimental results, with test
time cost controlled by varying the number of partitioned regions r ∈ {2, . . . , 16}. Due to the slow
growth of test time cost, a significantly smaller range of test time costs are possible with L3M,
as the cost scales linearly with r and independently of the number of classes. In the case of the
Image Segmentation dataset, L3M appears to overtrain even for extremely low computational costs
(r > 6), as the test error increases whereas the training error did not increase when adding more
regions.

For a fixed test time computational cost, L3M outperforms both AdaBoost and kernel ν-SVM
by a sizable margin. L3M offers performance comparable or better than significantly more compu-
tationally expensive approaches. Furthermore, of these methods, L3M is the only approach that
can naturally be trained in an online fashion, providing computational savings both in training and
test time compared to alternative approaches.
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Appendix A. Proof of Theorem 2.4

As previously shown in [17], the tightest convex surrogate for the indicator function is the hinge
loss in the sense that any convex upper-bounding function can be lower bounded by a scaled
indicator function. Given that taking sums and maxima preserves tightness of convexity, replacing
the indicators in the function:

max
[1a≥0 + 1b≤0,1c≤0 + 1d≤0

]

− 1

with hinge losses produces the tightest convex surrogate in the previously described sense.
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Appendix B. Proof of Theorem 3.1

As in the 2 region case, the empirical risk can be formulated with respect to the event of correct
classification:

R(G, f1, . . . , fr) =

n
∑

i=1

[

1−
r

∑

k=1

1G(xi)=k1fk(xi)=yi

]

.

As in the two region case, the product of indicators can be expressed as a maximum of the two
indicators:

R(G, f1, . . . , fr) =

n
∑

i=1

max
λ1

i ,...,λ
r
i∈[0,1]

[

1−
r

∑

k=1

[

λk
i 1G(xi)=k + (1− λk

i )1fk(xi)=yi

]

]

=
n
∑

i=1

[

max
λ1

i ,...,λ
r
i∈[0,1]

r
∑

k=1

(

λk
i 1G(xi)6=k + (1− λk

i )1fk(xi)6=yi

)

− (r − 1)

]

.

The variables λ1
i , . . . , λ

r
i do not necessarily have unique solutions, however there always exists an

optimal solution such that λ1
i + λ2

i + . . . + λr
i = r − 1. By enforcing this constraint, the variables

λ1
i , . . . , λ

r
i can be removed:

R(G, f1, . . . , fr) =
n
∑

i=1

max
k∈{1...,r}



1fk(xi)6=yi +
∑

j 6=k

1G(xi)6=j − (r − 1)



 .

Note that the term
∑

j 6=k 1G(xi)6=k−(r−1) can be replaced with the equivalent expression 1G(xi)=k−
1, yielding the empirical risk as expressed in (6).

Appendix C. Proof of Theorem 4.1

The L3M is composed of the partitioning classifier, G, and the local classifiers, f1, f2, . . . , fr. The

maximummargin rejection classifier G can be viewed as a boolean function of (r−1)2

2 linear functions,
and each of the local classifiers is a linear function. Therefore, the output of the L3M can be viewed

as a boolean function of (r−1)2

2 + 1 functions, each with a VC-dimension of d + 1, where d is the
observation dimension. From Lemma 2 of [19], the VC-dimension of the L3M can be bounded:

V C (F ) ≤ 2(
(r − 1)2

2
+ 1) log(e(

(r − 1)2

2
+ 1))(d + 1). (9)
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