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Abstract

Co-training is a famous semi-supervised learning paradigm exploiting unlabeled data with
two views. Most previous theoretical analyses on co-training are based on the assumption
that each of the views is sufficient to correctly predict the label. However, this assumption
can hardly be met in real applications due to feature corruption or various feature noise. In
this paper, we present the theoretical analysis on co-training when neither view is sufficient.
We define the diversity between the two views with respect to the confidence of prediction
and prove that if the two views have large diversity, co-training is able to improve the
learning performance by exploiting unlabeled data even with insufficient views. We also
discuss the relationship between view insufficiency and diversity, and give some implications
for understanding of the difference between co-training and co-regularization.

Keywords: Co-training, insufficient views

1. Introduction

During the past decade, many researchers have shown great interest in semi-supervised
learning (Chapelle et al., 2006; Zhu, 2007), which deals with methods for automatically
exploiting unlabeled data to improve learning performance, and developed a variety of
semi-supervised learning algorithms, e.g., S3VMs, graph-based methods and disagreement-
based methods. Co-training (Blum and Mitchell, 1998) is a representative paradigm of
disagreement-based methods (Zhou and Li, 2010), which trains two classifiers separately on
two views and allows them to label some unlabeled instances for each other. The two views
are two disjoint sets of features. For example, the web page classification task has two views,
i.e., the text appearing on the page and the anchor text attached to hyper-links pointing to
this page (Blum and Mitchell, 1998). It has been found useful in many applications such as
natural language processing (Hwa et al., 2003; Steedman et al., 2003) and image retrieval
(Wang and Zhou, 2008; Zhou et al., 2006).

Several theoretical analyses on co-training have been studied. In the seminal work on
co-training of Blum and Mitchell (1998), they proved that when the two sufficient and
redundant views are conditionally independent, co-training can boost the performance of
weak classifiers to arbitrarily high by using unlabeled data. Dasgupta et al. (2002) showed
that when the conditional independence assumption holds the generalization error of co-
training is upper-bounded by the disagreement between the two classifiers. To relax the
conditional independence assumption, Abney (2002) found that weak dependence can also
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lead to the success of co-training. After that, Balcan et al. (2005) proposed ε-expansion and
proved that if the classifier in each view is never “confident but wrong”, the ε-expansion
assumption can guarantee the success of co-training. Wang and Zhou (2007) showed that
if the two classifiers have large diversity, co-training style algorithms can also succeed in
improving the learning performance. It is worthy mentioning that all above theoretical
analyses on co-training are based on the assumption that each of the views can provide
sufficient information to correctly predict the label, which means that the optimal classifier
in each view can correctly classify all examples. However, in many real applications, due to
feature corruption or various feature noise, neither view can provide sufficient information
to correctly predict the label, i.e., there exist some examples

(
〈x1, x2〉, y

)
, on which the

posterior probability P (y=+1|xv) or P (y=−1|xv) (v = 1, 2) is not equal to 1 due to the
insufficient information provided by xv for predicting the label1. For these examples, the
optimal classifier may not correctly predict their labels because of the view insufficiency.

In semi-supervised learning, there is another method called co-regularization (Brefeld
et al., 2006; Farquhar et al., 2006; Sindhwani et al., 2005), which exploits two-view un-
labeled data, sometimes also known as regularized co-training (Balcan and Blum, 2010).
Co-regularization directly minimizes the error rate on labeled data and the disagreement
over unlabeled data with the intuition that the optimal classifiers in the two views are
compatible with each other. It is worthy noting that co-training exploits unlabeled data
with two views very differently from co-regularization. In detail, co-training uses initial
labeled data to learn two weak hypotheses and allows them to label confident instances for
each other; while co-regularization directly minimizes the error rate on labeled data and
the disagreement over unlabeled data and no pseudo-labels are assigned to unlabeled in-
stances. Balcan and Blum (2010) defined the compatibility of a pair of hypotheses 〈f1, f2〉
with distribution DX as 1−P〈x1,x2〉∈DX (f1(x1)6=f2(x2)) and provided a framework with the
notion of compatibility to interpret co-regularization. Co-regularization allows for views
with partial insufficiency, but it assumes that the two views provide almost the same in-
formation. Unfortunately, in real applications each view may be corrupted by different
kind of noise, it is unreasonable to assume that the two views provide almost the same
information. The two optimal classifiers in the two views may mistakenly classify different
examples due to the different information sources, which causes the two optimal classifiers
are no longer compatible with each other. When the two views are corrupted by different
noise processes or provide diverse information, the performance of co-regularization will be
adversatively influenced since it strongly encourages the agreement between the two views.
Actually, Sridharan and Kakade (2008) presented an information theoretic framework for
co-regularization which showed that the excess error between the output hypothesis of co-
regularization and the optimal classifier is punished by the term

√
εinfo, where εinfo < 1

measures the different information provided by the two views. This implies that it is hard
for co-regularization to find the ε-approximation of the optimal classifier when the two views
are insufficient and provide diverse information for predicting the label. In Section 2 we
will show this theoretically.

In this paper, we present the theoretical analysis on co-training with insufficient views
which is much more challenging but practical, especially when the two views provide diverse

1. Here x1 and x2 denote the two views of an example, see Section 2 for formal definition.
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information. We give the definition on the insufficiency of the view and indicate that co-
training might suffer from two limitations, i.e., label noise and sampling bias, when each view
is insufficient. We also make definition on the diversity between two views with respect to
the confidence of prediction and prove that if the two views have large diversity, co-training
suffers little from the two limitations and could succeed in outputting the approximation of
the optimal classifier by exploiting unlabeled data even with insufficient views. The rest of
this paper is organized as follows. After stating some preliminaries in Section 2, we present
our theoretical analysis in Section 3 and finish with conclusions in Section 4.

2. Insufficiency of the View

In two-view setting, an instance is described with two different disjoint sets of features and
each set of features is called as one view. Suppose we have the instance space X = X1×X2,
where X1 and X2 correspond to the two different views of the instance space, respectively.
Let Y = {−1, 1} denote the label space, D denote the unknown underlying distribution over
X ×Y and DX denote the unknown underlying marginal distribution over X . In this paper,
we focus on the situation where each of the views cannot provide sufficient information
to correctly predict the label, i.e., there exist some examples

(
〈x1, x2〉, y

)
on which either

P (y = +1|xv) 6= 1 or P (y = −1|xv) 6= 1 (v = 1, 2), where x1 ∈ X1, x2 ∈ X2 and y ∈ Y.
Let L ∪ U denote the data set, where L =

{(
〈x1

1, x
1
2〉, y1

)
, · · · ,

(
〈xl1, xl2〉, yl

)}
⊂ X × Y is

the labeled data set i.i.d. sampled from D and U =
{
〈xl+1

1 , xl+1
2 〉, · · · , 〈x

l+u
1 , xl+u2 〉

}
⊂ X is

the unlabeled data set i.i.d. sampled from DX . For an example
(
〈x1, x2〉, y

)
, let ϕv(xv)=

P (y=+1|xv). If ϕv(xv)= 1
2 , it implies that the features of xv provide no helpful information

to correctly predict its label y; while if ϕv(xv) is 1 or 0, it implies that the features of xv
provide sufficient information to correctly predict its label y. It is easy to understand that
|2ϕv(xv)− 1| is a measurement of the information provided by xv for predicting its label y.
Now we give the definition on the insufficiency of the view.

Definition 1 (Insufficiency) Let D denote the unknown underlying distribution over X×
Y. For (x, y) ∈ X × Y, ϕ(x) = P (y = +1|x). The insufficiency Υ(X ,Y,D) on the learning
task with respect to the example space X × Y and distribution D is defined as

Υ(X ,Y,D) = 1−
∫
x∈DX

|2ϕ(x)− 1|P (x)dx

Υ(X ,Y,D) ∈ [0, 1] measures the insufficiency of view X for correctly learning Y over dis-
tribution D. When |2ϕ(x)− 1| = 1 for all examples, the insufficiency Υ(X ,Y,D) = 0, i.e.,
view X provides sufficient information to correctly classify all examples; while ϕ(x) = 1

2
for all examples, the insufficiency Υ(X ,Y,D) = 1, i.e., view X provides no information
to correctly classify any example. With Definition 1, we let Υv=Υ(Xv,Y,D) denote the
insufficiency of view Xv.

Let Hv: Xv → [−1,+1] denote the hypothesis class for learning with view Xv (v =
1, 2) and dv denote the finite VC-dimension of hypothesis class Hv. The classification rule
induced by a hypothesis hv ∈ Hv on an instance x = 〈x1, x2〉 is sign(hv(xv)). The error
rate of a hypothesis hv with distribution D is R(hv) = P(x1,x2,y)∈D(y 6= sign(hv(xv))) and
let R(Sv) = maxhv∈Sv R(hv) for Sv ⊆ Hv. Let cv(xv) = 2ϕv(xv)−1, sign(cv(xv)) = +1 if
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ϕv(xv) ≥ 1
2 and sign(cv(xv)) =−1 otherwise, cv(xv)∈ [−1,+1]. Suppose cv belongs to Hv,

and it is well-known (Devroye et al., 1996) that c1 and c2 are the optimal Bayes classifiers
in the two views, respectively. Let ηv=R(cv) denote the error rate of the optimal classifier
cv, we have the following Proposition 2.

Proposition 2 Υv=2ηv. (v = 1, 2)

Proof Given an example (〈x1, x2〉, y),

P
(
sign

(
cv(xv)

)
6= y|xv

)
= 1− P

(
sign

(
cv(xv)

)
= 1, y = 1|xv

)
− P

(
sign

(
cv(xv)

)
= −1, y = −1|xv

)
= 1− I

{
sign

(
cv(xv)

)
= 1
}
P
(
y = 1|xv

)
− I
{
sign

(
cv(xv)

)
= −1

}
P
(
y = −1|xv

)
= 1− I

{
ϕv(xv) > 1/2

}
ϕv(xv)− I

{
ϕv(xv) ≤ 1/2

}(
1− ϕv(xv)

)
So we get

ηv = E
(

1− I
{
ϕv(xv) > 1/2

}
ϕv(xv)− I

{
ϕv(xv) ≤ 1/2

}(
1− ϕv(xv)

))
= E

(
1/2−

∣∣ϕv(xv)− 1/2
∣∣)

=
1

2
Υv

Proposition 2 states that when the view is insufficient, the optimal classifier will mis-
takenly classify some examples. The larger the insufficiency, the worse the performance of
the optimal classifier.

When the two views X1 and X2 are insufficient, they probably provide different informa-
tion for predicting the label Y due to different information sources. Sridharan and Kakade
(2008) used the conditional mutual information I(A :B|C) to measure how much know-
ing A reduces the uncertainty of B conditioned on already knowing C, they assumed that
I(Y :Xv|X3−v) ≤ εinfo (v = 1, 2) holds for some small εinfo > 0, and provided an information
theoretic framework for co-regularization which minimizes the following co-regularized loss
for the pair (h1, h2) (hv ∈ Hv).

Lossco(h1, h2) =
1

2

(
R̂L(h1) + R̂L(h2)

)
+ λ1‖h1‖+ λ2‖h2‖+ λ3D̂U (h1, h2)

R̂L is the empirical risk with respect to the labeled data set L and D̂U is the empirical
disagreement with respect to the unlabeled data set U . Note that I(Y :Xv|X3−v) ≤ εinfo
means that if we already knew view Xv then there is little more information that we could
get from view X3−v about Y, i.e., the two views provide almost the same information.
However, the two views generally provide diverse information due to different information
sources, i.e., I(Y :Xv|X3−v)>εinfo. We call the two views satisfying I(Y :Xv|X3−v) ≤ εinfo
as similar views and call the two views satisfying I(Y : Xv|X3−v)> εinfo as diverse views.
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For diverse views, there exist some instances x = 〈x1, x2〉 on which P (y=+1|x1) is different
from P (y = +1|x2), since x1 and x2 come from different sources to represent x. Thus, c1

is not perfectly compatible with c2 and let the following D(c1, c2) denote the difference
between c1 and c2.

D(c1, c2) = Px∈DX

(
sign(c1(x1)) 6= sign(c2(x2))

)
Now we give the following Proposition 3 to show that co-regularization may never output

the approximations of the optimal classifiers.

Proposition 3 Suppose ‖hv‖ = 1 for hv ∈ Hv, (v = 1, 2). Let HLv ⊂ Hv denote the hy-
potheses minimizing the empirical risk on the labeled data set L and (g1, g2) = arg minhv∈HLv D(h1, h2).
If |U | is sufficiently large, Lossco(g1, g2) is no larger than Lossco(c1, c2).

Proof Considering that R̂L(gv)= R̂L(cv) and that D̂U

(
g1, g2

)
≤D̂U

(
c1, c2

)
holds for suffi-

cient large |U |, it is easy to get Proposition 3 proved.

Let us try to give an intuitive explanation to Proposition 3. Proposition 3 states that
when the two views provide diverse information, co-regularization prefers to output the pair
of hypotheses which simply minimizes the disagreement on the unlabeled data set rather
than the optimal classifiers. Its performance will be adversatively influenced by the diverse
information between the two views, especially when the unlabeled data set is very large
while the labeled data set is small. In the rest part of the paper, we will study what
co-training could do when it meets with insufficient views, especially when the two views
provide diverse information.

3. Main Result

3.1. Limitations of Co-Training with Insufficient Views

Co-training trains two classifiers with initial labeled examples from the two views X1 and
X2, respectively, and allows one of them to label some unlabeled instances to enlarge the
training set for the other. The classifier in view Xv is updated with examples labeled by
the other classifier in view X3−v (v = 1, 2). These examples with pseudo-labels may contain
label noise and the following Proposition 4 shows that if the label noise is caused by some
other classifier, we may not be able to achieve the optimal classifier.

Proposition 4 Let Q be an instance set sampled i.i.d from DX , for x = 〈x1, x2〉 ∈ Q, its
pseudo-label ŷ is assigned according to some classifier f (f may not be in H1 or H2). Let
hQv ∈ Hv be the hypothesis minimizing the empirical risk on Q with the pseudo-labels in
view Xv and

hmin
v = arg min

hv∈Hv
Px∈DX

(
sign(hv(xv)) 6= sign(f(x))

)
.

For ε ∈ (0, 1
2) and δ ∈ (0, 1), if |Q| = O(

dv ln 1
δ

ε2
), the following bound holds with probability

1− δ.

Px∈DX

(
sign(hQv (xv)) 6= sign(hmin

v (xv))
)
< ε
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Proof For x=〈x1, x2〉∈Q, its pseudo-label ŷ is assigned according to some classifier f and

hmin
v = arg min

hv∈Hv
Px∈DX

(
sign(hv(xv)) 6= sign(f(x))

)
,

so hmin
v has the minimum expected empirical risk on Q. According to standard PAC-theory,

if |Q| = O
(dv ln 1

δ
ε2

)
, the following bound

Px∈DX

(
sign(hQv (xv)) 6= sign(hmin

v (xv))
)
< ε

holds with probability 1− δ.

Proposition 4 states the possibility that when the training data has label noise introduced
by some classifier f , the output hypothesis minimizing the empirical risk might be drawn
away from the optimal classifier cv to hmin

v . Considering that co-training allows one of the
classifiers to label some instances for the other, so there exists the possibility that label
noise prohibits co-training from outputting the optimal classifier. We call label noise as one
of the limitations of co-training with insufficient views.

Sometimes, when the two views satisfy some strong assumption, label noise may not
prohibit co-training from outputting the optimal classifier. We give the following Lemma 5
to show this.

Lemma 5 Suppose the two views are conditionally independent given the class label and we
can train two weak classifiers h0

1 and h0
2 whose error rates are less than η < 1

2 with initial
labeled examples in the two views, respectively. Let the classifier in view Xv (v = 1, 2) only
uses the examples labeled by the other classifier in view X3−v as the retraining data, and
excludes the examples labeled by itself and the initial labeled examples. Let Qv denote the
training data for view Xv and hQvv denote the hypothesis minimizing the empirical risk on

Qv. For ε∈(0, 1
2) and δ∈(0, 1), if |Qv| = O

( dv ln 1
δ

ε2(1−2η)2

)
, then R

(
hQvv

)
≤ R(cv) + ε holds with

probability 1− δ.

Proof For
(
〈x1, x2〉, ŷ

)
∈ Q1, its pseudo-label is assigned by h0

2. For h1 ∈ H1, with the
assumption that the two views are conditionally independent given the class label we get

P
(
sign(h1(x1)) 6= ŷ

)
=
(
1−R(h2

0)
)
R(h1) +R(h0

2)
(
1−R(h1)

)
= R(h1)

(
1− 2R(h0

2)
)

+R(h0
2).

It is easy to find that c1 has the minimum expected empirical risk on Q1. If |Q1| =

O
( dv ln 1

δ
ε2(1−2η)2

)
, with Hoeffding’s inequality we get R

(
hQ1

1

)
≤ R(c1) + ε with probability 1− δ.

Similarly, we get R
(
hQ2

2

)
≤ R(c2) + ε with probability 1− δ.

However, the conditional independence assumption is overly strong to satisfy in real ap-
plications and Abney (2002) theoretically showed how unreasonably strong this assumption
is. In order to reduce label noise in the examples with pseudo-labels, one usually lets one
classifier label its confident instances for the other. Although this method can reduce label
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noise, it would cause another problem that the training data in each view is not an i.i.d.
sample from the marginal distribution DX . If the training data is not an i.i.d. sample, we
may not be able to achieve the optimal classifier even if there is no label noise. We give the
following Proposition 6 to show this.

Proposition 6 Let Rv=
{

(〈x1, x2〉, y) ∈ X ×Y : sign(cv(xv)) 6= y
}

. Obviously, Rv is a set
of examples without label noise, and the optimal classifier cv has the maximum empirical
risk on Rv.

Proof For any example
(
〈x1, x2〉, y

)
∈ Rv, y is its underground label, so Rv is a set of

examples without label noise. Since sign(cv(xv)) 6= y, so the optimal classifier cv mistakenly
classifies xv. Thus, cv has the maximum empirical risk on Rv.

Proposition 6 states the possibility that when there is sampling bias in the training data,
we might not achieve the optimal classifier cv even if there is no label noise in the training
data. We call sampling bias as another limitation of co-training with insufficient views,
which is caused by attempting to reduce label noise. It is worthy mentioning that when
both views are sufficient, the optimal classifiers always have 0 empirical risk on any training
data without label noise. Sampling bias will never make the optimal classifier perform worse
than any non-optimal classifier on the noiseless training data, but might slow down the rate
of convergence to the optimal classifier.

3.2. Learning Approximation of Optimal Classifier without Sampling Bias

Usually, co-training allows one of the classifiers to label its confident instances for the other
and the process is described in Algorithm 1. When the confidence of the prediction on an
instance is no less than some preset threshold, we use the predicted label as its pseudo-
label and add it into the training set. However, if there is no prior knowledge about the
relationship between hypothesis class and unlabeled data, it is hard to guarantee that select-
ing confident instances to label could reduce the label noise. In margin-based algorithms,
margin could be used to measure the prediction quality. Intuitively, it is likely that sim-
ilar hypotheses tend to have similar margin output, i.e., two hypotheses with small error
difference should have small margin difference. With this intuition, we give the following
Definition 7.

Definition 7 (Margin Lipschitz) Let Hv (v = 1, 2) denote the hypothesis class, for
x = 〈x1, x2〉 and hv ∈ Hv, there exists some constant CL

v to satisfy |hv(xv) − cv(xv)| ≤
CL
v (R(hv)−R(cv)).

Definition 7 states that the label predicted by weak classifiers with large margin is likely
to be the same as the label predicted by the optimal classifier. Thus, the confident instances
would help find the optimal classifier. To quantify the amount of the confident instances,
we give the following Definition 8.

Definition 8 (Diversity) Let F ⊆ H1 and G ⊆ H2,

µ(γ1, γ2,F ,G) =P
{
x = 〈x1, x2〉 ∈ U : ∃f ∈ F , g ∈ G s.t. |f(x1)| ≥ γ1 or |g(x2)| ≥ γ2

}
.
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Algorithm 1 Margin-based co-training

1: Input: Labeled data set L, unlabeled data set U , σ0 = L
2: for i = 0, 1, 2, . . . do
3: Get Hiv ⊆ Hv by minimizing the empirical risk on σi with respect to view Xv and set

Ti = ∅
4: for x = 〈x1, x2〉 ∈ U do
5: for h1 ∈ Hi1, h2 ∈ Hi2 do
6: if |h1(x1)| ≥ γ1 then
7: Ti = Ti ∪ (x, sign(h1(x1))) and delete x from U
8: break
9: end if

10: if |h2(x2)| ≥ γ2 then
11: Ti = Ti ∪ (x, sign(h2(x2))) and delete x from U
12: break
13: end if
14: end for
15: end for
16: if Ti = ∅ then
17: return
18: end if
19: σi+1 = σi ∪ Ti
20: end for
21: Output: HC1 = Hi1 and HC2 = Hi2

We define µ(γ1, γ2,F ,G)∈ [0, 1] as the diversity between the two views with respect to
margins γ1 and γ2, which quantifies the amount of confident instances. When µ is large, the
two views could help each other strongly by providing many confident instances; while when
µ is small, the two views only help each other little since there are few confident instances.
For similar views, an instance which is labeled with small margin by one view may also be
labeled with small margin by the other view, since the two views provide almost the same
information for predicting the label; while for diverse views, an instance which is labeled
with small margin by one view may be labeled with large margin by the other view, since
the two views provide diverse information for predicting the label. Intuitively, diverse views
would have large diversity. In the extreme case where the diversity µ is 1, we have the
following Theorem 9.

Theorem 9 Suppose the hypothesis class Hv (v = 1, 2) satisfies Definition 7, let HLv ⊆ Hv
denote the hypotheses minimizing the empirical risk on initial labeled data set L, Rv =

maxhv∈HLv R(hv) and γv = CL
v (Rv − ηv). For ε∈(0, 1

2) and δ∈(0, 1), if |U | = O(
dv ln 1

δ
ε2

) and

µ(γ1, γ2,HL1 ,HL2 ) = 1, with probability 1− δ the output HC1 and HC2 in Algorithm 1 satisfy

R(HCv ) ≤ η1+η2+D(c1,c2)
2 + ε.

Proof Since µ(γ1, γ2,HL1 ,HL2 ) = 1, after 1 round all unlabeled instances in U are as-
signed with pseudo-labels and added into the data set σ1. Then classifier set H1

v is got by
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minimizing the empirical risk on σ1 with view Xv. For x = 〈x1, x2〉, ŷ denote its pseudo-
label. If |hv(xv)| ≥ γv =CL

v (Rv − ηv), with Definition 7 we know that hv and cv make the
same prediction on xv. So for any example

(
〈x1, x2〉, ŷ

)
∈ σ1, either ŷ = sign

(
c1(x1)

)
or

ŷ = sign
(
c2(x2)

)
holds. Here we consider the worst case that

ŷ =

{
y if sign

(
c1(x1)

)
= sign

(
c2(x2)

)
= y

−y otherwise
.

Let hcomv denote the hypothesis that sign
(
hcomv (xv)

)
= y if sign

(
c1(x1)

)
= sign

(
c2(x2)

)
= y,

and sign
(
hcomv (xv)

)
= −y otherwise. It is easy to find that hcomv is consistent with the ex-

amples in σ1 for the worst case and R(hcomv ) = η1+η2+D(c1,c2)
2 . R(hcomv ) is larger than

R(cv), so learning a classifier with error rate no larger than R(hcomv ) + ε is no harder than
learning a classifier with error rate no larger than R(cv) + ε. Now we regard hcomv as the
optimal classifier in Hv and neglect the probability mass on the hypothesis whose error
rate is less than R(hcomv ). Since the classifiers in HCv minimize the empirical risk on train-

ing data σ1 which is an i.i.d sample with size of |L| + |U | and |U | = O
(dv ln 1

δ
ε2

)
, we get

maxhv∈HCv R(hv) ≤ R(hcomv ) + ε with probability 1− δ.

Theorem 9 states that if the diversity with margins γ1 and γ2 between the two views
is 1, i.e., every unlabeled instance in U could be labeled with large margin by one of the
two views, co-training could output the near-good hypothesis set HC1 and HC2 . Sometimes
the pseudo-label which is the same as the prediction of the optimal classifier in view Xv is
not good for achieving the optimal classifier in view X3−v, since there exists the difference
D(c1, c2) between the two optimal classifiers in the two views. Thus, the hypothesis in HCv
is not very close to the optimal classifier cv.

3.3. Learning ε-Approximation of Optimal Classifier without Sampling Bias

To achieve good approximations of the optimal classifier, some prior knowledge about the
optimal classifier needs to be known, which is shown as follows.

Assumption 1 (Information Assumption) For
(
〈x1, x2〉, y

)
∈ X × Y, if view Xv pro-

vides much information about it, i.e., |P (y = +1|xv)− 1
2 | ≥ γ

′
v/2, then the optimal classifier

cv in view Xv classifies it correctly, i.e., sign(cv(xv)) = y.

Assumption 1 states that for an example if one view can provide much information
about it, it will be correctly classified by the optimal classifier in this view. Thus, we give
the following Theorem 10.

Theorem 10 Suppose the hypothesis class Hv (v = 1, 2) satisfies Definition 7, let HLv ⊆
Hv denote the hypotheses minimizing the empirical risk on initial labeled data L, Rv =
maxhv∈HLv R(hv) and γv = CL

v (Rv − ηv) + γ
′
v. For ε∈ (0, 1

2) and δ∈ (0, 1), if Assumption 1

holds, |U | = O(
dv ln 1

δ
ε2

) and µ(γ1, γ2,HL1 ,HL2 ) = 1, with probability 1− δ the output HC1 and
HC2 in Algorithm 1 satisfy R(HCv ) ≤ ηv + ε.
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Proof For x = 〈x1, x2〉, ŷ denote its pseudo-label. If |hv(xv)| ≥ γv = CL
v (Rv−ηv)+γ

′
v, with

Definition 7 we know that hv and cv make the same prediction on xv and |cv(xv)| ≥ γ
′
v. So we

get
∣∣P (y = +1|xv)− 1

2

∣∣ ≥ γ′
v/2. Then with Assumption 1 we know that ŷ = sign

(
hv(xv)

)
=

sign
(
cv(xv)

)
= y. So we get that the pseudo-label of any example in σ1 is the same as its

underground label. Since µ(γ1, γ2,HL1 ,HL2 ) = 1, we know that all unlabeled instances in U
are assigned with underground labels and added into σ1. So σ1 is an i.i.d sample with size

of |L| + |U |. Considering that |U | = O
(dv ln 1

δ
ε2

)
, we get maxhv∈HCv R(hv) ≤ R(cv) + ε with

probability 1− δ.

Theorem 10 states that if the diversity with larger margins γ1 and γ2 between HL1 and
HL2 trained on initial labeled data L is 1, co-training could output the ε-approximation of
the optimal classifier.

3.4. Learning ε-Approximation of Optimal Classifier with Sampling Bias

However, in real applications µ(γ1, γ2,HL1 ,HL2 ) may be smaller than 1, i.e., not all unlabeled
instances could be classified with large margin by weak hypotheses trained on initial labeled
data L. With Definition 7 we know that the threshold γv (v = 1, 2) which guarantees the
quality of confident instances is related with the error rate of weak hypotheses. An intuitive
way to get more confident instances to augment the training data is updating the weak
hypotheses with newly labeled confident instances and adaptively decreasing the threshold
of margin, which is shown in Algorithm 2. When µ(γ1, γ2,HL1 ,HL2 ) is smaller than 1, it
will make co-training suffer from the limitation of sampling bias, since the training data in
each view might not be an i.i.d sample from the marginal distribution DX . Now we give the
following definition to approximately bound the difference between two training samples.

Definition 11 (Approximate KL Divergence) Let Ω be a large example set i.i.d sam-
pled from the unknown distribution D and Λ ⊆ Ω be a set of examples, define the following
DAKL(Λ ‖ Ω) as an approximate KL divergence from the distribution generating Λ to dis-
tribution D.

DAKL(Λ ‖ Ω) =
∑
xj∈Ω

P
(
I{xj ∈ Λ}

)
ln
P (I{xj ∈ Λ})
P (I{xj ∈ Ω})

=
∑
xj∈Λ

1

|Λ|
ln

1/|Λ|
1/|Ω|

+ 0

= ln
|Ω|
|Λ|

Let us interpret Definition 11 intuitively. Ω is a large example set i.i.d sampled from the
unknown distribution D, so we use the uniform distribution over Ω as an approximation
of D. In this way we use the uniform distribution over Λ as an approximation of the
distribution generating Λ and define DAKL(Λ ‖ Ω) as an approximate KL divergence from
the distribution generating Λ to distribution D. With Proposition 6 we know that sampling
bias might make co-training suffer, we give the following assumption to bound the influence
of sampling bias.
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Algorithm 2 Adaptive margin-based co-training

1: Input: Labeled data L, unlabeled data U , σ0 = L, n= |L| + |U |, m0 = |L| and γ0
v =

CL
v (Rv − ηv) + γ

′
v

2: for i = 0, 1, 2, . . . do
3: Get Hiv ⊆ Hv by minimizing the empirical risk on σi with respect to view Xv and set

Ti = ∅
4: for x = 〈x1, x2〉 ∈ U do
5: for h1 ∈ Hi1, h2 ∈ Hi2 do
6: if |h1(x1)| ≥ γi1 then
7: Ti = Ti ∪ (x, sign(h1(x1))) and delete x from U
8: break
9: end if

10: if |h2(x2)| ≥ γi2 then
11: Ti = Ti ∪ (x, sign(h2(x2))) and delete x from U
12: break
13: end if
14: end for
15: end for
16: if i = 0 and |T0| > 3

√
n2m0 −m0 then

17: γ1
v = γ0

v − CL
v (Rv − ηv)(1− n

√
m0

(m0+|T0|)3/2 ), σ1 = σ0 ∪ T0, m1 = m0 + |T0|
18: end if
19: if |T0| ≤ 3

√
n2m0 −m0 or Ti = ∅ then

20: return
21: end if
22: if i ≥ 1 then
23: γi+1

v = γ0
v − CL

v (Rv − ηv)(1− n
√
m0

(mi+|Ti|)3/2 ), σi+1 = σi ∪ Ti, mi+1 = mi + |Ti|
24: end if
25: end for
26: Output: HC1 = Hi1 and HC2 = Hi2

Assumption 2 (Sampling Bias Assumption) Let Ω be a large example set i.i.d sampled
from the unknown distribution D and Λ ⊆ Ω be a set of examples. Let fΛ denote the
hypothesis minimizing the empirical risk on Λ, R∗ be the error rate of the optimal classifier
and R

′
be the upper bound on the error rate of the hypothesis minimizing the empirical risk

on an i.i.d. sample with size of |Λ| from distribution D, then R(fΛ) − R∗ ≤ (R
′ − R∗) ·

exp
(
DAKL(Λ ‖ Ω)

)
.

Assumption 2 states that the error difference between the classifier trained with biased
sample and the optimal classifier can be upper-bounded by that between the classifier
trained with unbiased sample and the optimal classifier times an exponential function of
the approximate KL divergence. If Λ is a large part of Ω, DAKL(Λ‖Ω) is close to 0 and fΛ

suffers little from sampling bias.
Let Ω be an i.i.d sample size of m, it is well-known (Anthony and Bartlett, 1999) that

there exists an universal constant C such that for δ ∈ (0, 1) we have R(hv) − R(cv) ≤
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√
C
m(dv + ln(1

δ )) with probability 1−δ for any hv minimizing the empirical risk on sample

Ω. Generally, there may exist more than one hypothesis which have the same empirical
risk. Let HΩ

v denote the set of hypotheses which have the same minimum empirical risk

on sample Ω, it is reasonable to assume that maxhv∈HΩ
v
R(hv) − R(cv)=

√
C
m

(
dv + ln(1

δ )
)
,

which means the PAC-bound is tight and the maximum error rate of the hypotheses which
minimize the empirical risk on sample Ω is proportional to 1√

m
. We are now ready to

give the theorem on co-training with insufficient views when there is sampling bias in the
training data.

Theorem 12 Suppose the hypothesis class Hv (v = 1, 2) satisfies Definition 7, let σi denote
the training data in the i-th round of Algorithm 2, Hiv ⊆Hv denote the set of hypotheses
minimizing the empirical risk on the training data σi, n= |L|+|U | and Rv=maxh0

v∈H0
v
R(h0

v).

For ε∈(0, 1
2) and δ∈(0, 1), if Assumptions 1 and 2 hold, |U |=O(

dv ln 1
δ

ε2
), µ(γ0

1 , γ
0
2 ,H0

1,H0
2)>

3
√
n2|L|−|L|
n−|L| and |Ti| > 0 for i ≥ 1 until |σi|= n, with probability 1 − δ the output HC1 and

HC2 in Algorithm 2 satisfy R(HCv ) ≤ ηv + ε.

Proof Since L is an i.i.d sample and m0 = |L|, for the hypothesis set Hriv minimizing
the empirical risk on an i.i.d sample with size of mi = |σi|, with the assumption that the
maximum error rate of the hypotheses minimizing the empirical risk on the i.i.d sample Ω
is proportional to 1√

|Ω|
we have

max
h
ri
v ∈H

ri
v

R(hriv )−R(cv) =

√
m0√
mi

(
max
h0
v∈H0

v

R(h0
v)−R(cv)

)
=

√
m0√
mi

(Rv − ηv).

If γ0
v = CL

v (Rv − ηv) + γ
′
v, with the proof in Theorem 10 we know that the pseudo-label of

any example in σ1 is the same as the underground label. Since L∪U is a large i.i.d sample
from the marginal distribution DX , so with Assumption 2 we get

max
h1
v∈H1

v

R(h1
v)−R(cv) ≤

√
m0√
m1

(Rv − ηv) · exp
(

ln
n

m1

)
.

For h1
v ∈ H1

v, if

|h1
v(xv)| ≥ γ1

v = γ0
v − CL

v (Rv − ηv)
(
1−

n
√
m0

m1
√
m1

)
,

with Definition 7 we get |cv(xv)| ≥ γ
′
v and sign

(
h1
v(xv)

)
= sign

(
cv(xv)

)
. With Assumption

1 we know sign
(
cv(xv)

)
= y. Thus, the pseudo-label of any example in σ2 is the same as

the underground label. Similarly, for hiv ∈ Hiv, if

|hiv(xv)| ≥ γiv = γ0
v − CL

v (Rv − ηv)
(
1−

n
√
m0

mi
√
mi

)
,

we get sign
(
hiv(xv)

)
= y. If Ti 6= ∅ until |σi| = |L|+ |U |, all instances in U are labeled with

underground labels. So σi is an i.i.d sample with size of |L|+ |U |. Since |U | = O
(dv ln 1

δ
ε2

)
, we
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get maxhv∈HCv R(hv) ≤ ηv + ε with probability 1− δ. If we want γ1
v < γ0

v , 1− n
√
m0

m1
√
m1

must

be larger than 0, i.e., m1 >
3
√
n2m0. It implies that m0 + µ(γ0

1 , γ
0
2 ,H0

1,H0
2)|U | > 3

√
n2m0,

so we get µ(γ0
1 , γ

0
2 ,H0

1,H0
2) >

3
√
n2|L|−|L|
n−|L| .

Theorem 12 states that if the diversity with margins γ0
1 and γ0

2 between H0
1 and H0

2

trained on initial labeled set L is large (H0
1=HL1 , H0

2=HL2 ), i.e., µ(γ0
1 , γ

0
2 ,H0

1,H0
2)>

3
√
n2|L|−|L|
n−|L| ,

co-training could improve the performance of weak hypotheses by exploiting unlabeled data
until the diversity between the two views becomes 0. This result tells that the diversity
between the two views plays an important role in co-training with insufficient views, which
is consistent with the theoretical analysis on co-training with sufficient views in Wang and
Zhou (2007).

3.5. Insufficiency vs. Diversity

In this section we study what influence the view insufficiency will bring to the learning
process. Since we could not know the distribution and the posterior probability ϕv(xv)
(v = 1, 2) of the example space in advance, it is difficult to analyze the general case. We
focus on the famous Tsybakov condition case (Tsybakov, 2004) that for some finite C0

v > 0,
k > 0 and 0 < t ≤ 1/2,

P〈x1,x2〉∈DX

(
|ϕv(xv)−1/2| ≤ t

)
≤C0

v t
k,

where small k implies large view insufficiency Υ, and give a heuristic analysis to illuminate
the relationship between view insufficiency and diversity. Considering the worst case of
Tsybakov condition for the fixed parameter k, i.e., P〈x1,x2〉∈DX

(∣∣ϕv(xv)−1/2
∣∣≤ t) = C0

v t
k,

we get P〈x1,x2〉∈DX

(
|2ϕv(xv)−1|>γ

)
= 1−C0

v (γ2 )k for 0 < γ ≤ 1.
∣∣2ϕv(xv)−1

∣∣ is the output
margin of the optimal classifier cv, following Definition 7 with the intuition that similar
hypotheses tend to have similar margin output, the magnitude of the instances with margin
larger than γ in view Xv is probably α

(
1−C0

v (γ2 )k
)

for some parameter α. Define µ1(γ1,F)
and µ2(γ2,G) as follows,

µ1(γ1,F)=P
{
x = 〈x1, x2〉 ∈ U : ∃f ∈F s.t. |f(x1)| ≥ γ1

}
µ2(γ2,G)=P

{
x = 〈x1, x2〉 ∈ U : ∃g ∈ G s.t. |g(x2)| ≥ γ2

}
and let ν(γ1, γ2,F ,G) denote the probability mass on the instances which are labeled with
large margin just by one view. µv ≈ α(1 − C0

v (γv2 )k) quantifies the amount of instances
labeled with large margin by view Xv and ν can be thought of as a measurement of the
different information provided by the two views. It is not difficult to find that the diversity
µ can be expressed as µ = µ1+µ2+ν

2 . It implies that when ν is fixed, if the view insufficiency
increases, the diversity between the two views decreases. For understanding the magnitude
of the diversity between the two views better, we give the following example. There often
have adequate unlabeled instances in real semi-supervised applications, suppose we have
n=|L|+|U |=1000 and L=12, similar to the empirical study on co-training in the paper of

Blum and Mitchell (1998), the diversity
3
√
n2|L|−|L|
n−|L| at the first step in Theorem 12 should

be 22%. With respect to µ=(µ1+µ2+ν)/2, for diverse views (ν is large), weak hypotheses
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in each view predicting about 18% (even less) of the unlabeled instances with large margin
might be enough to guarantee the 22% diversity, which is common in real applications.

3.6. Assumption Relaxation and Discussions

Our result is based on a little bit strong Margin Lipschitz assumption, which is caused by
the fact that the learning task with insufficient views for semi-supervised learning is very dif-
ficult. As Ben-David et al. (2008) showed, without assumption on the relationship between
hypothesis class and unlabeled data distribution, unlabeled data has limited usefulness.
In this section we try to give a heuristic analysis for the case where the Margin Lipschitz
assumption is relaxed. Instead, we give the following Probabilistic Margin assumption: for
1
2 ≤ γv ≤ 1 (v = 1, 2),

P〈x1,x2〉∈DX

{
xv : |hv(xv)| ≥ γv ∧ sign(hv(xv)) 6= y

}
≤ φ(γv).

Here φ : [1
2 , 1] → [0, 1] is a monotonically decreasing function, e.g., φ(γ)=β ln( 1

γ ) for some
parameter β. Probabilistic Margin assumption allows for small label noise in the examples
labeled with large margin. Considering the worst case of the influence of label noise, i.e.,
the examples with noisy labels are completely inconsistent with the optimal classifiers, it
can be found that when the two views have large diversity, co-training could output the
hypotheses whose error rate are close to ηv+β ln( 1

γv
), which could be smaller than the error

rate of the classifier trained only on the small initial labeled data set L for some large γv.
This shows that co-training could improve the learning performance by exploiting unlabeled
data even with insufficient views.

In our result, the margin threshold γv=CL
v (Rv−ηv)+γ

′
v depends on several parameters.

Generally, the optimal classifier would make mistakes only when the instances are close to
the boundary, i.e., P (y=+1|x) is close to 1/2. So γ

′
v is close to 0. (Rv−ηv) depends on the

number of initial labeled data L and is proportional to 1√
|L|

. So when |L|≈4(CL
v )2C

(
dv +

ln(1
δ )
)
, CL

v (Rv−ηv) is close to 1/2. Thus, γv can be close to 1/2. In traditional co-training
style algorithms, it often allows one classifier to label its most confident instance for the
other in each round. Using this method can avoid setting the margin threshold, but might
bring large sampling bias into the training data.

Ando and Zhang (2007) proposed a two-view model using unlabeled data to learn effec-
tive feature representations in the two views and then finding the optimum predictor as a
linear combination of the features constructed from unlabeled data, which is different from
co-training in the way of exploiting unlabeled data. Moreover, this two-view model is based
on the assumption that the two views are conditionally independent given the class label,
which is overly strong to satisfy in real applications.

4. Conclusions

We present the theoretical analysis on co-training with insufficient views in this paper, espe-
cially when the two views provide diverse information. We indicate that co-training might
suffer from two limitations, i.e., label noise and sampling bias, when each view is insuffi-
cient. We also define the diversity between the two views with respect to the confidence of
prediction and prove that when the two views have large diversity, co-training suffers little
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from the two limitations and could succeed in outputting the approximation of the optimal
classifier by exploiting unlabeled data even with insufficient views. Our result shows that
the diversity between the two views is very important for co-training. It is possible to
develop new algorithms based on the theoretical result.

This paper might contribute to understanding of the difference between co-regularization
and co-training. For similar views, Sridharan and Kakade (2008) presented a framework
for co-regularization; for diverse views, we show that co-regularization may fail while co-
training which iteratively utilizes the confident information in one view to help the other is
a good learning strategy. In this paper, we focus on the case where the information provided
by each view is insufficient. Sometimes in real applications the views may be incomplete,
i.e., the features of some examples are not available. It would be interesting to extend our
work to co-training with incomplete views.
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