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Abstract

The normalized maximum likelihood model achieves the minimax coding (log-loss) regret
for data of fixed sample size n. However, it is a batch strategy, i.e., it requires that n
be known in advance. Furthermore, it is computationally infeasible for most statistical
models, and several computationally feasible alternative strategies have been devised. We
characterize the achievability of asymptotic minimaxity by batch strategies (i.e., strategies
that depend on n) as well as online strategies (i.e., strategies independent of n). On one
hand, we conjecture that for a large class of models, no online strategy can be asymptotically
minimax. We prove that this holds under a slightly stronger definition of asymptotic
minimaxity. Our numerical experiments support the conjecture about non-achievability by
so called last-step minimax algorithms, which are independent of n. On the other hand, we
show that in the multinomial model, a Bayes mixture defined by the conjugate Dirichlet
prior with a simple dependency on n achieves asymptotic minimaxity for all sequences,
thus providing a simpler asymptotic minimax strategy compared to earlier work by Xie
and Barron. The numerical results also demonstrate superior finite-sample behavior by a
number of novel batch and online algorithms.

Keywords: on-line learning, prediction of individual sequences, asymptotic minimax re-
gret, Bayes mixture, last-step minimax algorithm

1. Introduction

The normalized maximum likelihood (NML) distribution is derived as the optimal solution
to the minimax problem which minimizes the worst-case regret in code-length (log-loss) of
data with fixed sample size n. Although a direct evaluation of the NML distribution involves
the computation of a sum over all possible data sets, taking exponential time, linear-time
algorithms have been developed for certain models such as multinomials (Kontkanen and
Myllymäki, 2007; Silander et al., 2010). However, the computation of the NML distribution
is still intractable for most models.
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Approximating the minimax solution by other easily implementable strategies has been
studied. Asymptotic minimaxity is a key feature of such strategies, where the worst-case
code-length converges to that of the NML as the sample size tends to infinity. For the multi-
nomial model, Xie and Barron (2000) showed that a Bayes procedure defined by a modified
Jeffreys prior, where additional mass is assigned to the boundaries of the parameter space,
can achieve asymptotic minimax optimality. An alternative technique to this procedure was
studied for a more general model class (Takeuchi and Barron, 1997).

In the context of online prediction of individual sequences, the focus has been on predic-
tion strategies which can be computed without knowing the sequence length n in advance.
We call such strategies online, while strategies that take advantage of the knowledge of
the sample size n are called batch. Online strategies are essential in processing large data
sets and especially streaming data where the knowledge of n is not available. Theoretical
properties of online strategies have intensively been studied in theories of online learning.
For online strategies, regret bounds of the form k lnn + O(1), where k is a constant, have
been obtained (Azoury and Warmuth, 2001; Cesa-Bianchi and Lugosi, 2001; Freund, 1996).
Furthermore, it was proved for the Bernoulli model and the exponential families with a
constrained parameter space that the minimax optimal regret is achieved, up to the O(1)
term, by the Bayesian strategy using the Jeffreys prior and the last-step minimax strategy
(a.k.a. the sequential normalized maximum likelihood) (Takimoto and Warmuth, 2000;
Kot lowski and Grünwald, 2011). That is, if the regret of the NML is asymptotically ex-
panded as k∗ lnn + c∗ + o(1) with constants k∗ and c∗, k = k∗ holds for these strategies.
The asymptotic minimax optimality examines if the optimal constant c∗ is also achieved
and the maximum regret matches that of the NML up to the o(1) term.

In this paper, we investigate achievability of asymptotic minimaxity by batch and online
strategies. We consider a slightly stronger asymptotic minimax property and prove that
under a generic condition on the model class, it cannot be achieved by any online strategy
(Thm. 1). We conjecture that a similar result also holds for the standard asymptotic
minimax notion. We also show that for the multinomial model, a sample-size-dependent
Bayes procedure defined by a simpler prior than the modified Jeffreys prior in Xie and
Barron (2000) achieves asymptotic minimaxity under the standard definition, as well as
approximately in our stronger sense (Thm. 4). Through numerical experiments (Sect. 4),
we demonstrate the achievability of asymptotic minimaxity for batch strategies. We also
investigate the behavior of a generalization of the last-step minimax algorithm, which we
call the k-last-step minimax algorithm and which is online. We demonstrate that while for
large k, its performance is very near asymptotic minimax, it fails to to achieve it exactly, in
line with our conjecture. Lastly, the numerical results demonstrate superior finite-sample
performance by our novel batch and online algorithms compared to existing approximate
minimax algorithms.

2. Normalized Maximum Likelihood and Asymptotic Minimaxity

Consider a sequence xn = (x1, · · · , xn) and a parametric model

p(xn|θ) =

n∏
i=1

p(xi|θ),
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where θ = (θ1, · · · , θd) is a d-dimensional parameter. We focus on the case where each xi is
one of a finite alphabet of symbols and the maximum likelihood estimator

θ̂(xn) = argmax
θ

ln p(xn|θ)

can be computed.
The optimal solution to the minimax problem,

min
p

max
xn

ln
p(xn|θ̂(xn))

p(xn)

is given by

p
(n)
NML(xn) =

p(xn|θ̂(xn))

Cn
,

where Cn =
∑

xn p(x
n|θ̂(xn)) and is called the normalized maximum likelihood (NML)

distribution (Shtarkov, 1987). The minimax regret is given by lnCn for all xn. We mention

that in addition to coding and prediction, the code length − ln p
(n)
NML(xn) has been used as a

model-selection criterion (Rissanen, 1996); see also Grünwald (2007); Silander et al. (2010)
and references therein.

Since the normalizing constant Cn is computationally intractable in most models, we
consider approximating the minimax optimal NML model by another model g(xn) and focus
on asymptotic minimax optimality of g, which is defined by

max
xn

ln
p(xn|θ̂(xn))

g(xn)
≤ lnCn + o(1), (1)

where o(1) is a term converging to zero as n→∞.
Under the following assumption, we can show (Thm. 1 below) that the model g must be

dependent on the sample size n to achieve the asymptotic minimax optimality in a slightly
stronger sense, as characterized in the theorem.

Assumption 1 Suppose that for ñ satisfying ñ→∞ and ñ
n → 0 as n→∞ (e.g. ñ =

√
n),

there exist a sequence xñ and a unique constant M > 0 such that

ln
p

(ñ)
NML(xñ)∑

xnñ+1
p

(n)
NML(xn)

→M (n→∞), (2)

where
∑

xnñ+1
=
∑

xñ+1
· · ·
∑

xn
denotes the marginalization over xñ+1, · · · , xn.

Assumption 1 means that the NML model changes over the sample size n, the amount
of which is characterized by M . The following theorem proves that under this assumption,
the asymptotic minimaxity is never achieved simultaneously for the sample sizes ñ and n
by an online strategy g that is independent of n.
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Theorem 1 If the model g is independent of the sample size n and satisfies
∑

xnñ+1
g(xn) =

g(xñ), then it never satisfies

lnCn −M + o(1) ≤ ln
p(xn|θ̂(xn))

g(xn)
≤ lnCn + o(1), (3)

for all xn and any M < M , where M is the constant appearing in Assumption 1 and o(1)
is a term converging to zero uniformly on xn as n→∞.

The proof is given in Appendix A.
Note that the condition in Eq. (3) is stronger than the usual asymptotic minimax op-

timality in Eq. (1), where only the right inequality in Eq. (3) is required. Intuitively, our
stronger notion of asymptotic minimaxity requires not only that for all sequences, the regret
of the model g is asymptotically at most the minimax value, but also that for no sequence,
the regret is asymptotically less than the minimax value by a margin characterized by M .
Note that non-asymptotically (without the o(1) terms), the corresponding strong and weak
minimax notions are equivalent since reducing the code length for one sequence (compared
to the NML model), necessarily increases the code length for at least one other sequence.

When we take g as a Bayes mixture,

g(xn) =

∫
p(xn|θ)q(θ)dθ,

∑
xnñ+1

g(xn) = g(xñ) holds if the prior distribution q(θ) does not depend on n. On the

contrary, if q(θ) depends on n, it is possible that the Bayes mixture achieves Eq. (3) for all xn.
In fact, for the multinomial model (with m categories), the Dirichlet prior Dir(αn, · · · , αn)
with αn = 1

2 −
ln 2
2

1
lnn provides an example of such a case as will be proven in Sect. 3.2.

Section 3.1 demonstrates that the sequence of all 1s (or all 2s, 3s, etc.) gives M = m−1
2 ln 2

in the multinomial model.

3. Asymptotic Minimaxity in Multinomial Model

Hereafter, we focus on the multinomial model with x ∈ {1, 2, · · · ,m},

p(x|θ) = θx,

m∑
j=1

θj = 1.

Although a linear-time (in n) algorithm has been obtained for computing the NML distribu-
tion of this model (Kontkanen and Myllymäki, 2007), we examine asymptotic minimaxity
of other strategies for this model whose theoretical properties have been studied in depth
(Xie and Barron, 2000).

For the multinomial model, the Dirichlet distribution is a conjugate prior, taking the
form

q(θ) =
Γ(mα)

Γ(α)m

m∏
j=1

θα−1
j ,
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where Γ(x) =
∫∞

0 tx−1e−tdt is the gamma function and α > 0 is a hyperparameter. The
Bayes mixture is obtained as follows,

pB,α(xn) =

∫ n∏
i=1

p(xi|θ)q(θ)dθ

=
Γ(mα)

Γ(α)m

∏m
j=1 Γ(nj + α)

Γ(n+mα)
, (4)

where nj is the number of js in xn. The minimax regret is asymptotically given by (Xie
and Barron, 2000)

lnCn =
m− 1

2
ln

n

2π
+ ln

Γ(1/2)m

Γ(m/2)
+ o(1). (5)

In the following two subsections, we evaluate the constant M of Assumption 1 and derive
an asymptotically minimax optimal hyperparameter α. We use the following lemma in this
section. The proof is in Appendix B.

Lemma 2 Let

f(x) = ln Γ

(
x+

1

2

)
− x lnx+ x− 1

2
lnπ.

Then for x ≥ 0,

0 ≤ f(x) <
ln 2

2
(6)

and limx→∞ f(x) = ln 2
2 .

3.1. Change of NML Model

Let lj be the number of js in xñ (0 ≤ lj ≤ ñ,
∑m

j=1 lj = ñ). It follows that

ln
p

(ñ)
NML(xñ)∑

xnñ+1
p

(n)
NML(xn)

= ln

∏m
j=1

(
lj
ñ

)lj∑
nj≥lj

(
n−ñ
nj−lj

)∏m
j=1

(nj
n

)nj + ln
Cn
Cñ

, (7)

where
(
n−ñ
nj−lj

)
≡
(

n−ñ
n1−l1,··· ,nm−lm

)
is the multinomial coefficient and

∑
nj≥lj denotes the

summation over njs satisfying n1 + · · · + nm = n and nj ≥ lj for j = 1, 2, · · · ,m. The
following lemma evaluates

Cn|xñ ≡
∑
nj≥lj

(
n− ñ
nj − lj

) m∏
j=1

(nj
n

)nj
in Eq. (7). The proof is in Appendix C.1

1. For the Fisher information matrix I(θ) whose ijth element is given by (I(θ))ij = −
∑
x p(x|θ)

∂2 ln p(x|θ)
∂θi∂θj

=

δi,j/θj , the constant C̃1/2 coincides with
∫ √
|I(θ)|

∏m
j=1 θ

ljdθ. This proves that the asymptotic expres-
sion of the regret of the conditional NML (Grünwald, 2007, Eq. (11.47), p.323) is valid for the multinomial
model with the full parameter set rather than the restricted parameter set discussed in Grünwald (2007).
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Lemma 3 Cn|xñ is asymptotically evaluated as

lnCn|xñ =
m− 1

2
ln

n

2π
+ ln C̃ 1

2
+ o(1), (8)

where C̃α is defined for α > 0 and {lj}mj=1 as

C̃α =

∏m
j=1 Γ(lj + α)

Γ(ñ+mα)
. (9)

Substituting Eq. (8) and Eq. (5) into Eq. (7), we have

ln
p

(ñ)
NML(xñ)

p
(n)
NML(xñ)

= −m− 1

2
ln

ñ

2π
+

m∑
j=1

lj ln
lj
ñ
− ln

∏m
j=1 Γ(lj + 1/2)

Γ(ñ+m/2)
+ o(1),

where p
(n)
NML(xñ) =

∑
xnñ+1

p
(n)
NML(xn). Applying Stirling’s formula to ln Γ(ñ+m/2) expresses

the right hand side as

m∑
j=1

{
lj ln lj − ln Γ

(
lj +

1

2

)
− lj +

1

2
ln 2π

}
+ o(1).

Taking l1 = ñ, lj = 0 for j = 2, · · · ,m, from Lemma 2, we have ln
p
(ñ)
NML(xñ)

p
(n)
NML(xñ)

= m−1
2 ln 2+o(1),

that is, Assumption 1 holds with M = (m− 1) ln 2/2.

3.2. Optimal Hyperparameter and its Asymptotic Minimaxity

We examine the asymptotic minimaxity of the Bayes mixture in Eq. (4). More specifically,
we investigate the minimax optimal hyperparameter

argmin
α

max
xn

ln
p(xn|θ̂(xn))

pB,α(xn)
(10)

and show that it is asymptotically approximated by

αn =
1

2
− ln 2

2

1

lnn
. (11)

We assume that the maximum regret is attained by both xn consisting of a single symbol
repeated n times as well as xn with a uniform number n/m of each symbol j.2 Let the
regrets of these two cases be equal,

Γ(α)m−1Γ(n+ α) = Γ(n/m+ α)mmn.

Taking logarithms, using Stirling’s formula and ignoring diminishing terms, we have

(m− 1)

(
α− 1

2

)
lnn− (m− 1) ln Γ(α)

−m
(
α− 1

2

)
lnm+ (m− 1)

ln 2π

2
= 0. (12)

2. This assumption is implied from the proof of Thm. 4 (see the note after the proof).
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This implies that the optimal α is asymptotically given by

αn '
1

2
− a

lnn
, (13)

for some constant a. Substituting this back into Eq. (12) and solving it for a, we obtain
Eq. (11).

We numerically calculated the optimal hyperparameter defined by Eq. (10) for the bino-
mial model (m = 2). Figure 1 shows the optimal α obtained numerically and its asymptotic
approximation in Eq. (11). We see that the optimal hyperparameter is well approximated
by αn in Eq. (11) for large n. Note here the slow convergence speed, O(1/ lnn) to the
asymptotic value, 1/2.
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Figure 1: Minimax optimal hyperparameter α for sample size n

The next theorem shows the asymptotic minimaxity of αn. It also shows that the lower
bound in Eq. (3) is almost attainable for the multinomial model. We will examine the regret
of αn numerically in Sect. 4.1.

Theorem 4 The Bayes mixture defined by the prior Dir(αn, · · · , αn) is asymptotically min-
imax and satisfies

lnCn −M + o(1) ≤ ln
p(xn|θ̂(xn))

pB,αn(xn)
≤ lnCn + o(1), (14)

for all xn, where M = (m− 1) ln 2/2.

The proof is given in Appendix D.
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4. Numerical Results

In this section, we numerically calculate the maximum regrets of several methods in the
binomial model (m = 2). The following two subsections respectively examine batch al-
gorithms based on Bayes mixtures with prior distributions dependent on n and last-step
minimax algorithms, which are online.

4.1. Optimal Conjugate Prior and Modified Jeffreys Prior

We calculated the maximum regrets of the Bayes mixtures in Eq. (4) with the hyperpa-
rameter optimized by the golden section search and with its asymptotic approximation in
Eq. (11). We also investigated the maximum regrets of Xie and Barron’s modified Jeffreys
prior which is proved to be asymptotically minimax (Xie and Barron, 2000). The modified
Jeffreys prior is defined by

q
(n)
MJ(θ) =

εn
2

{
δ

(
θ − 1

n

)
+ δ

(
θ − 1 +

1

n

)}
+ (1− εn)b1/2(θ),

where δ is the Dirac’s delta function and b1/2(θ) is the density function of the beta distribu-
tion with hyperparameters 1/2, Beta(1/2, 1/2), which is the Jeffreys prior for the Bernoulli
model. We set εn = n−1/8 as proposed in Xie and Barron (2000) and also optimized εn by
the golden section search so that the maximum regret

max
xn

ln
p(xn|θ̂(xn))∫
p(xn|θ)q(n)

MJ(θ)dθ

is minimized.
Figure 2(a) shows the maximum regrets of these Bayes mixtures: asymptotic and op-

timized Beta refer to mixtures with Beta priors (Sect. 3.2), and modified Jeffreys methods
refer to mixtures with a modified Jeffreys prior as discussed above. Also included for com-
parison is the maximum regret of the Jeffreys mixture (Krichevsky and Trofimov, 1981),
which is known not to be asymptotically minimax. To better show the differences, the
regret of the NML model, lnCn, is subtracted from the maximum regret of each model.

We see that the maximum regrets of these models, except the one based on Jeffreys prior,
decrease toward zero as n grows as implied by their asymptotic minimaxity. The modified
Jeffreys prior with the optimized weight performs best of these strategies for this range of
the sample size while that with the unoptimized weight performs much worse. Note here
that we have the explicit form of the asymptotically minimax hyperparameter in Eq. (11)
whereas the optimal weight for the modified Jeffreys prior is not known analytically. Note
also that unlike the NML, Bayes mixtures can be computed in a sequential manner with
respect to (x1, · · · , xn) even if the prior depends on n. The time complexity for online
prediction will be discussed in Sect. 4.3.

The differences in the maximum regrets under the binomial model in Fig. 2 are small
(less than 1 nat). However, they may be important even from a practical point of view.
For instance, it has been empirically observed that the slightest differences in the Dirichlet
hyperparameter can be significant in Bayesian network structure learning (Silander et al.,
2007). Furthermore, the differences are likely to be greater under multinomial (m > 2) and
other kind3s of models.
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(a) Batch algorithms
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Figure 2: Maximum regret for sample size n. The regret of the NML model, lnCn, is
subtracted from the maximum regret of each strategy. The first two algorithms
in each panel are from earlier work, while the remaining ones are novel.

In Fig. 3, we show the minimum regrets of the Bayes mixtures with the optimal hyper-
parameter and that with its asymptotic approximation αn to confirm the lower bound in
Eq. (14). As we proved in Thm. 4, the regret (minus lnCn) is greater than the lower bound,
−M = − ln 2/2. The minimum regrets of the modified Jeffreys mixtures (not shown) were
much smaller than the lower bound, − ln 2/2. This implies that the modified Jeffreys mix-
ture provides an example of an asymptotically minimax strategy but not in the sense of
Eq. (3).

4.2. Last-Step Minimax Algorithms

The last-step minimax algorithm is an online prediction algorithm that is equivalent to the
so called sequential normalized maximum likelihood method in the case of the multinomial
model (Rissanen and Roos, 2007; Takimoto and Warmuth, 2000). A straightforward gener-
alization, which we call the k-last-step minimax algorithm, normalizes p(xt|θ̂(xt)) over the
last k ≥ 1 steps to calculate the conditional distribution of xtt−k+1 = {xt−k+1, · · · , xt},

pkLS(xtt−k+1|xt−k) =
p(xt|θ̂(xt))

Lt,k
,

where Lt,k =
∑

xtt−k+1
p(xt|θ̂(xt)). Although this generalization was mentioned in Takimoto

and Warmuth (2000), it was left as an open problem to examine how k affects the regret of
the algorithm.

It is suggested from Thm. 1 that k-last-step minimax algorithm with k independent
of n is not asymptotically minimax (although the theorem does not rigorously exclude
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− ln2 2 ≈ − 0.347

−0.4

−0.3

−0.2

−0.1

0.0

101 102 103 104 105 106 107 108

sample size

m
in

im
um

 r
eg

re
t (

m
in

us
 N

M
L)

Jeffreys prior

asymptotic Beta

optimized Beta

Figure 3: Minimum regret (minus lnCn) for sample size n.

that possibility because of the left inequality in Eq. (3)). We numerically calculated the
regret of the k-last-step minimax algorithm with k = 1, 10, 100 and 1000 for the sequence
xn = 1010101010 · · · since it is infeasible to evaluate the maximum regret for large n.
The regret for this particular sequence provides a lower bound for the maximum regret.
Figure 2(b) shows the regret as a function of n together with the maximum regret of the
Jeffreys mixture. The theoretical asymptotic regret for the Jeffreys mixture is ln 2

2 ≈ 0.34
(Krichevsky and Trofimov, 1981), and the asymptotic bound for the 1-last-step minimax
algorithm is slightly better, 1

2

(
1− ln π

2

)
≈ 0.27 (Takimoto and Warmuth, 2000). We can

see that although the regret decreases as k grows, it still increases as n grows and does not
converge to that of the NML (zero in the figure).

4.3. Computational Complexity

Although the NML distribution of the multinomial model is computed in linear time in
n (Kontkanen and Myllymäki, 2007), the algorithm only provides the total code-length
(or probability) of any complete sequence xn. For prediction purposes in online learning

scenarios, NML requires to compute the predictive probabilities p
(n)
NML(xt|xt−1) by summing

over all continuations of xt. Computing all the predictive probabilities up to n takes the
time complexity of O(mn). For all the other algorithms except NML, the complexity is
O(n). More specifically, for Bayes mixtures, the complexity is O(mn) and for k-laststep
minimax algorithms, the complexity is O(mkn).
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5. Discussion & Conclusion

In this paper, we proved that the knowledge of the sample size n is required for a strategy
to be asymptotically minimax in the sense of Eq. (3). Bartlett et al. (2013) proved, as a
corollary to their main result, that NML is sample-size dependent in the general exponential
family. We have not observed any asymptotically minimax strategy independent of n. This
suggests that the lower bound in Eq. (3) may be removed from the condition and the
asymptotic minimaxity in the usual sense may be characterized by the dependency on n;
in other words, no online strategy can be asymptotically minimax.

For the multinomial model, Thm. 4 shows that a simple dependency on n is sufficient
to provide an accurate approximation. In practice, our numerical experiments suggest the
superiority of a number of novel algorithms, whose performance is very near that of the
NML, both of the batch (Fig. 2(a)) as well as online (Fig. 2(b)) type.

The Dirichlet prior Dir(α, · · · , α) has yielded related estimators for the multinomial
model. The uniform prior, α = 1, yields the Laplace estimator and the Jeffreys prior, α =
0.5, yields the Krichevsky-Trofimov estimator (Krichevsky and Trofimov, 1981). Krichevsky
(1998) showed that α = 0.50922 · · · is optimal when the goal is to minimize the worst-case
expected redundancy in predicting the (n + 1)st symbol after a sequence of n symbols.
Komaki (2012) studied a similar one-step ahead prediction where the boundary of the
parameter space is treated in a certain way and obtained another prior, α = 1 +

√
6.

Tjalkens et al. (1993) and Hutter (2013) propose estimators whose regrets have the leading
term m̃−1

2 lnn, where m̃ is the number of different symbols that appear in xn. These
estimators are obtained by the prior depending on m̃ and n and are designed for the case
of a large alphabet size where n � m cannot be expected. For a fixed n, however, the
NML minimizes the worst-case regret over all possible sequences. The minimax optimal
estimator among the Dirichlet-multinomial model is approximated by αn = 1

2−
ln 2

2 lnn , which
is asymptotically optimal up to o(1) terms as was proved in Sect. 3.2.

Future directions include verifying our conjecture about non-achievability of minimax
regret by online strategies, developing approximation schemes of the NML distribution for
more complex models, and their applications in prediction, data compression, and model
selection.
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Appendix A. Proof of Theorem 1

Proof Under Assumption 1, we suppose Eq. (3) holds for all sufficiently large n and derive
contradiction. The inequalities in Eq. (3) are equivalent to

−M + o(1) ≤ ln
p

(n)
NML(xn)

g(xn)
≤ o(1).

This implies that

g(xñ) =
∑
xnñ+1

g(xn) =
∑
xnñ+1

p
(n)
NML(xn)e

− ln
p
(n)
NML

(xn)

g(xn)

≤ eM+o(1)
∑
xnñ+1

p
(n)
NML(xn) (15)

for all xñ. Then we have

max
xñ

ln
p

(ñ)
NML(xñ)

g(xñ)
= max

xñ

ln
p

(ñ)
NML(xñ)∑

xnñ+1
p

(n)
NML(xn)

+ ln

∑
xnñ+1

p
(n)
NML(xn)

g(xñ)


≥ max

xñ

ln
p

(ñ)
NML(xñ)∑

xnñ+1
p

(n)
NML(xn)

−M + o(1)

≥ ε+ o(1),

where ε = M −M > 0. The first inequality follows from Eq. (15) and the second inequality

follows from Assumption 1, which implies maxxñ ln
p
(ñ)
NML(xñ)∑

xn
ñ+1

p
(n)
NML(xn)

≥M + o(1). The above

inequality contradicts the asymptotic minimax optimality in Eq. (3) with n replaced by ñ.

Appendix B. Proof of Lemma 2

Proof The function f is non-decreasing since f ′(x) = ψ(x+ 1/2)− lnx ≥ 0 where ψ(x) =
(ln Γ(x))′ is the psi function (Merkle, 1998). limx→∞ f(x) = ln 2

2 is derived from Stirling’s
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formula,

ln Γ(x) =

(
x− 1

2

)
lnx− x+

1

2
ln(2π) +O

(
1

x

)
.

It immediately follows from f(0) = 0 and this limit that 0 ≤ f(x) < ln 2
2 for x ≥ 0.

Appendix C. Proof of Lemma 3

Proof In order to prove Lemma 3, we modify and extend Xie and Barron’s proof in
Xie and Barron (2000) for the asymptotic evaluation of lnCn = ln

∑
xn p(x

n|θ̂(xn)) given

by Eq. (5) to that of lnCn|xñ = ln
∑

xnñ+1
p(xn|θ̂(xn)), which is conditioned on the first ñ

samples, xñ. More specifically, we will prove the following inequalities. Here, pB,w denotes
the Bayes mixture defined by the prior w(θ), pB,1/2 and pB,αn are those with the Dirichlet

priors, Dir(1/2, · · · , 1/2) (Jeffreys mixture) and Dir(αn, · · · , αn) where αn = 1
2 −

ln 2
2

1
lnn

respectively.

m− 1

2
ln

n

2π
+ C̃ 1

2
+ o(1) ≤

∑
xnñ+1

pB,1/2(xnñ+1|xñ) ln
p(xn|θ̂(xn))

pB,1/2(xnñ+1|xñ)
(16)

≤ max
w

∑
xnñ+1

pB,w(xnñ+1|xñ) ln
p(xn|θ̂(xn))

pB,w(xnñ+1|xñ)

= max
w

min
p

∑
xnñ+1

pB,w(xnñ+1|xñ) ln
p(xn|θ̂(xn))

p(xnñ+1|xñ)

≤ min
p

max
xnñ+1

ln
p(xn|θ̂(xn))

p(xnñ+1|xñ)

= ln
∑
xnñ+1

p(xn|θ̂(xn)) = lnCn|xñ

≤ max
xnñ+1

ln
p(xn|θ̂(xn))

pB,αn(xnñ+1|xñ)

≤ m− 1

2
ln

n

2π
+ C̃ 1

2
+ o(1), (17)

where the first equality follows from Gibbs’ inequality, and the second equality as well as
the second to last inequality follow from the minimax optimality of NML (Shtarkov, 1987).
Let us move on to the proof of inequalities (16) and (17). The rest of the inequalities
follow from the definitions and from the fact that maximin is no greater than minimax. To

derive both inequalities, we evaluate ln p(xn|θ̂(xn))
pB,α(xnñ+1|xñ)

for the Bayes mixture with the prior
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Dir(α, · · · , α) asymptotically. It follows that

ln
p(xn|θ̂(xn))

pB,α(xnñ+1|xñ)
= ln

∏m
j=1

(nj
n

)nj
Γ(ñ+mα)
Γ(n+mα)

∏m
j=1

Γ(nj+α)
Γ(lj+α)

=
m∑
j=1

nj lnnj − n lnn−
m∑
j=1

ln Γ(nj + α) + ln Γ(n+mα) + ln C̃α

=
m∑
j=1

{
nj lnnj − nj − ln Γ(nj + α) +

1

2
ln(2π)

}

+

(
mα− 1

2

)
lnn− (m− 1)

1

2
ln(2π) + ln C̃α + o(1), (18)

where C̃α is defined in Eq. (9) and we applied Stirling’s formula to ln Γ(n+mα).
Substituting α = 1/2 into Eq. (18), we have

ln
p(xn|θ̂(xn))

pB,1/2(xnñ+1|xñ)
=

m∑
j=1

(
cnj +

ln 2

2

)
+
m− 1

2
ln

n

2π
+ ln C̃1/2 + o(1),

where

ck = k ln k − k − ln Γ(k + 1/2) +
1

2
lnπ, (19)

for k ≥ 0. Since from Lemma 2, − ln 2
2 < ck,

ln
p(xn|θ̂(xn))

pB,1/2(xnñ+1|xñ)
>
m− 1

2
ln

n

2π
+ ln C̃1/2 + o(1),

holds for all xn, which proves the inequality (16).
Substituting α = αn = 1

2 −
ln 2
2

1
lnn into Eq. (18), we have

ln
p(xn|θ̂(xn))

pB,αn(xnñ+1|xñ)
=

m∑
j=1

{
nj lnnj − nj − ln Γ(nj + αn) +

1

2
lnπ

}
+
m− 1

2
ln

n

2π
+ ln C̃1/2 + o(1).

Assuming that the first l njs (j = 1, · · · , l) are finite and the rest are large (tend to infinity
as n→∞) and applying Stirling’s formula to ln Γ(nj + αn) (j = l + 1, · · · ,m), we have

ln
p(xn|θ̂(xn))

pB,αn(xnñ+1|xñ)
=

l∑
j=1

cnj +

m∑
j=l+1

dnj +
m− 1

2
ln

n

2π
+ ln C̃1/2 + o(1), (20)

where ck is defined in Eq. (19) and

dk =
ln 2

2

(
ln k

lnn
− 1

)
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for 1 < k ≤ n. Since ck ≤ 0 follows from Lemma 2 and dk ≤ 0, we obtain

ln
p(xn|θ̂(xn))

pB,αn(xnñ+1|xñ)
≤ m− 1

2
ln

n

2π
+ ln C̃1/2 + o(1), (21)

for all xn, which proves the inequality (17).

Appendix D. Proof of Theorem 4

Proof The proof of Lemma 3 itself applies to the case where ñ = 0 and lj = 0 for

j = 1, · · · ,m as well. Since, in this case, C̃1/2 = ln Γ(1/2)m

Γ(m/2) , Eq. (21) in the proof gives the

right inequality in Eq. (14).
Furthermore, in Eq. (20), we have

l∑
j=1

cnj +

m∑
j=l+1

dnj > −(m− 1)
ln 2

2
+ o(1). (22)

This is because, from Lemma 2 and definition, cnj , dnj > − ln 2
2 and for at least one of j, nj is

in the order of n since
∑n

j=1 nj = n, which means that dnj = o(1) for some j. Substituting
Eq. (22) into Eq. (20), we obtain the left inequality in Eq. (14) with M = (m− 1) ln 2/2.

In Eq. (20), cnj = 0 holds only for nj = 0 and dnj = o(1) holds only when nj is of the
order of n, say, n/m. This means that the maximum regret is obtained at the boundary
nj = 0 or around nj ' n/m.
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