JMLR: Workshop and Conference Proceedings 29:483-497, 2013 ACML 2013

EPMC: Every Visit Preference Monte Carlo
for Reinforcement Learning

Christian Wirth CWIRTHQKE.TU-DARMSTADT.DE
TU Darmstadt, Germany
Johannes Fiirnkranz FUERNKRANZQKE.TU-DARMSTADT.DE

TU Darmstadt, Germany

Abstract

Reinforcement learning algorithms are usually hard to use for non expert users. It is
required to consider several aspects like the definition of state-, action- and reward-space as
well as the algorithms hyperparameters. Preference based approaches try to address these
problems by omitting the requirement for exact rewards, replacing them with preferences
over solutions. Some algorithms have been proposed within this framework, but they are
usually requiring parameterized policies which is again a hinderance for their application.
Monte Carlo based approaches do not have this restriction and are also model free. Hence,
we present a new preference-based reinforcement learning algorithm, utilizing Monte Carlo
estimates. The main idea is to estimate the relative Q-value of two actions for the same state
within a every-visit framework. This means, preferences are used to estimate the @Q)-value
of state-action pairs within a trajectory, based on the feedback concerning the complete
trajectory. The algorithm is evaluated on three common benchmark problems, namely
mountain car, inverted pendulum and acrobot, showing its advantage over a closely related
algorithm which is also using estimates for intermediate states, but based on a probability
theorem. In comparison to SARSA(A), EPMC converges somewhat slower, but computes
policies that are almost as good or better.

Keywords: Preference Learning, Reinforcement Learning, Monte Carlo, Every Visit

1. Introduction

Preference-based reinforcement learning (PBRL) is concerned with algorithms that do not
assume the availability of a reward signal, but only preferences about policies, trajectories,
states or actions. This means a numeric scale for the feedback is not required. Especially
for problems with unreliable rewards, like medical treatment experiments with arbitrary
penalties for the death of a patient (Zhao et al., 2009), this is a significant advantage.
Preference-based approaches also do not assume intermediate feedback after each state tran-
sition. This means PBRL algorithms in general can be deemed simpler to use than classic
reinforcement learning approaches, due to the simplified feedback. Additionally, preference
learning comes with the promise of solving problems which can not be represented with
a single, numeric reward in the future. Admitting incomparability as preference predicate
would enable learning from structures, not representable by a single objective.

Currently, there are two main driving directions within the PBRL community (Wirth &
Fiirnkranz, 2013). On the one hand, several approaches search within the policy space using
a preference relation over policies that is either directly given or inferred from preferences
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between trajectories, states, or actions (Akrour et al., 2011; Wilson et al., 2012). This
results in a ranking of policies which can be used for creating an improved policy by utilizing
evolutionary strategies or Bayesian approaches. The major drawback is that all of the above-
mentioned approaches require parameterizable policies. This can be a severe problem for
applying these algorithms to real-world problems, especially for non-expert users. On the
other hand, value-based approaches assume that the preference feedback is based on some
kind of stationary utility or reward function, enabling the computation of a utility value
for each state-action pair. This setting is quite similar to inverse reinforcement learning
(Abbeel and Ng, 2004; Abbeel & Ng, 2010), but with the main difference that the agent
may also observe preferences between suboptimal policies. This scenario can be tackled
with Monte Carlo techniques. The advantages of this approch are that it is model-free and
that there is no need for parameterizable policies.

We build upon the work of Fiirnkranz et al. (2012) who introduced a first Monte Carlo-
based approach to this problem, but this algorithm is not capable of updating multiple
states with a single preference statement. Each preference feedback is only used for a single
state-action-action comparison. The Every Visit Preference Monte Carlo (EPMC) algo-
rithm presented here utilizes a relative Q-function, defining the expected gain of picking an
action a compared to another action a’. This function can be estimated for subtrajectories,
enabling the reuse of preferences for updating intermediate states. Most closely related
to our approach is the work of Wirth and Fiirnkranz (2013), who proposed an algorithm
utilizing multiple state updates, which uses a probability theorem instead of an relative
Q-function.

Section 2 presents the definition of the underlying Markov process, information about
the used preferences and some required assumptions for the new algorithm. The problems of
preference-only feedback for every-visit Monte Carlo methods and how they are tackled, is
the topic of section 3. The resulting EPMC algorithm is presented in sec. 4. This algorithm
has been evaluated in the mountain car, inverted pendulum and acrobot domains, as defined
in sec. 5. Section 6 shows that EPMC is greatly outperforming the algorithm of Wirth
and Firnkranz (2013). In a comparison with SARSA()), it achieved policies nearly as
good or better but with slower convergence rates for two out of the three domains, while
using the same amount of sampled trajectories. Before concluding the paper (sec. 9), some
information about related and future work is presented (sec. 7 & 8).

2. Preliminaries

2.1. Markov Decision Process without Rewards (MDP\R)

An (finite-state) MDP\R, as introduced by Abbeel and Ng (2004), is defined by a quadruple
(S,A,6,7v). Given are a set of states S = {s;}, actions A = {a;}, and a probabilistic state
transition function 6 : S x A x S — [0,1] such that Y _,d(s,a,s’) = 1 for all (s,a) €
S x A. A(s) denotes the set of actions that are possible in state s, i.e., A(s) = {a €
AlY ocgd(s,a,8") > 0}. v € [0,1) is a discount factor. A reward function r(s,a) is
assumed to exist, but not known.

We can therefore make use of the (optimal) state-action function Q*(s,a) and state value
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function V*(s), as defined by Sutton and Barto (1998):

Q*(s,a) = Z(S(s, a,s')(r(s,a) +~v max Q*(s',a’))

a€A(s)

Vi(s) Q"(s,a) W

$) = max s,a
acA(s) ’

So C S defines the set of valid start states. Only states within this collection can be used
to initialize the MDP\R. Additionally, there exists a set St C S s.t. Vs € S¥; A(s) = 0.
This is the set of absorbing or terminal states where no action is possible. In most domains,
these are states where the task has been accomplished or where it is impossible to reach
an acceptable solution. 7 : S x A — [0, 1] denotes a policy by defining the probability of
selecting action a in state s where }_ /¢ 4.5 7(s, a)=1.

2.2. Preferences

We assume that the agent receives feedback in the form of trajectory preferences T; >
T;. A trajectory is an collection of state-action pairs, commonly represented by T' =
(50,a0,51,02, ..., 5n_1,a" "1, 5,),50 € So,8, € SF. This is an ordered list with the pos-
sibility (si,a;) = (s4,a;),% # j and |T'| as the amount of state-action pairs in this list. The
preference 7T; = T} indicates that trajectory T; is deemed more useful. This means, the
(decayed) sum of rewards encountered by the preferred trajectory can be assumed to be
higher than for the dominated one. The value of a trajectory T' can now be defined as

IT|-1

V(T)= > 'r(se,a) (2)
t=0

which allows to intepret a trajectory preference as
Ti - Tj < V(T) > V(Tj) < V(L) = V(Tj) - zi (3)

where z; ; is the relative improvement of T; over 7). The predicate T; = T} is equivalent to
zij > 1forr:SxA— RT. Feedback in the form of T; < Tj is used as Tj > T; = xj; > 1,
meaning a preferences defines the relations where x > 1 is valid. When required, differences
to a reward space r : S x A — R~ are described within the according sections. Here, the
difference is T; = T; = x;; < 1. It should be noted, that comparable trajectories always
start in the same state sy € Sy because in several domains, it is not possible to determine
a preference for trajectories not fulfilling this requirement. E.g. consider minimizing the
driving distance to a certain city. If starting from to different positions, it is possible that
one route is making a larger detour, but it seems to be preferred because it is shorter in
total.

2.3. Assumptions

The algorithm presented here is subject to two assumptions. First, we assume a reward
distribution with low variance, i.e., (2) can be approximated as

7|

V(T) =) o rr (4)
t=0
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where 77 is the (unkown) mean of all values r(s,a), (s,a) € T, with T as a trajectory of
any length. Of course, all tasks that can be reduced to finding the shortest or longest
trajectory through the state space fulfill this requirement. They can be described by a fixed
step penalty or reward. Additionally, terminal only reward problems are also having low
variance. In fact, a large amount of real world tasks does fit into this framework:

e Game Playing - Each move has a reward of 0 with a terminal reward depending on
the outcome of the game.

e Planning - Every step of the plan is penalized with all states fulfilling the task as
terminal states. This results in the shortest, successful plan having the highest reward.

e Navigation - A uniform time discretization for the state space enables the usage of a
fixed step penalty.

Additionally, the (unknown) rewards are assumed to be either all positive (r : S x A — RT)
or all negative (r : S x A — R™). This results in x;; € RT. This way, it is possible to
assume that a higher x; ; value is always preferable for the positive case (or a lower one in
the negative case), because it results in a higher reward. As long as the reward space is
finite, it is always possible to fulfill this requirement by adding or subtracting a constant
factor to the rewards.

3. The Monte Carlo Every Visit Method

Monte Carlo methods can be used to determine Q*(s, a) by applying policy iteration algo-
rithms. This is achieved by iteratively calculating an approximation Q;(s,a) of the average
return following (s,a) based on all samples collected after ¢ iterations. The return is the
sum of decayed rewards Z‘Qo_l Yir(se, ar), (se,a;) € T. The resulting @ function is then
used to determine the policy 7;4+1, which is optimal according to Q;(s,a). Typically, policy
iteration converges towards Q*(s, a), if it is always possible to sample all state-action pairs.
Another aspect concerns the sampling method used. In all cases, a random state out of Sy
is picked, following 7 (s, a) afterwards till a state s € S* is reached. The every-visit method
considered here (see algorithm 1) uses the average of returns following every occurrence of
(s,a) in a trajectory, as opposed to first-visit methods that only average over the first oc-
currences of each state-action pair. This means after sampling a trajectory T for the current
iteration, the return following each encountered (s, a) is collected and averaged to update
Q(s,a). These Q-values are then used to determine the next sampling policy. Note that
the arg max, Q(s,a) policy is a pure exploitation policy, but exploration can be included
by utilizing an e-greedy strategy or comparable approaches.

As mentioned in section 2.2, r(s, a) is unknown and we only get feedback in the form of
xij > 1s.t. V(T;) = V(Tj) - x; j, which results in several problems. At first, our feedback
is limited to information about x;;, which can not be used to calculate V(T;) or V(T})
without knowledge about the value of either of these. Secondly, the exact value of z; ;
is also unknown. Additionally, we only have a (relative) reward sum sample concerning
initial state-action pairs (so,ag) due to V(T') = Z?;()l yir(se, ar), (st,ar) € T, meaning we
do not have any information about other timesteps. But we also need information about
(st,at),t # 0 for applying every-visit methods. This means, an approximation for V(Tf) =
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input : initial policy mp, start states Sy, iteration limit m
output: improved policy m,,

Returns(s,a) = 0

Q(s,a) < arbitrary

for i =0 to m do

59 = RANDOM(.Sp)

T = sAMPLEPOLICY(sg, 7;) \\applies 7; till s, € ST is reached

for t =0 to |T| do
Returns(s, a;) < Returns(s;, a;) U lef:'t_l Vet (g, ag)
Q(st, ar) < CREATEAVERAGES(Returns(s, a;)) \\average return sum

end

forall the s € S do

| mit1(s) = argmax, Q(s,a)
end

end

Algorithm 1: Every visit Monte Carlo Policy Iteration

V(Tj_') cyig st Ty =TT | T #0,T) = T;.T;, ]Tj_'\ # 0 is required. T'= T7.T" denotes
that T is a concatenation of two partial trajectories 77 and T". x;; and y; ; are comparable,
but x; ; always concerns the complete trajectories T; and T}.

In short, our problems are

1. V(T;) and V(7)) are unknown.
2. the exact value of z; ; is unknown.
3. yij st V(T = V(T]ﬂ) - yi; is unknown.

This section explains the problems in detail as well as the applied solutions.

3.1. A relative Q-function

Without a specific reward sum as feedback, it is not possible to estimate Q(s,a) directly.
According to section 2.2, we can assume feedback z;; > 1s.t. V(T3) = V(T}) - x; .
V(T;) is the decayed sum of rewards following the first state-action pair (sp,a) of tra-
jectory T; which is a sample for Q(sp,a) according to the Monte Carlo policy iteration
framework. (With V(T;) as sample for (sp,a’)) Hence we can also define Q(sg,a) =
Q(s0,d") i, (s0,a) € T;, (so,a") € Tj, so € So. Therefore, it is possible to only store a value
Qre1(80,a,a’) as relative @ value for a comparison of Q(sg,a) and Q(sp,a’) We are using
Qrel(50,a,a’) s.t. Q(s0,a) = Q(s0,a’) + Qrel(s, a,a’) - Q(s0,a’) with Qre1(s0,a,a") = z; ;7 — 1,
as shown in the following equation.
Q(s0,a) = Q(s0,0d) - x;
< Q(SO)Q) = Q(SO7 a/) + Q(SO,G/) : (J:Z,] - 1)
& Q(50,a") + Qral(5,a,0") - Q(s0,0") = Q(s0,a') (5)
+ Q(s0,d) - (35— 1)
& Q(s0,a,0 )rel = x5 — 1
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This form was chosen to gain a ) function that is symmetric due to only storing the additive
(or subtractive) part of the relative value.

This training information is also used to determine the inverse @ in the form of Q¢ (s0, @', a)
s.t. Q(s0,d) = Q(so,a) + Qrel(s0,d’,a) - Q(sp,a). By inserting Q(sp,a) = Q(so,a’) +
Qrel(sﬂvaa a,) ’ Q(‘SOaa/) into Q(Sﬂaa/) = Q(S(]aa) + Qrel(80>a/7a) ’ Q(507a) and utilizing
Q(s0,a) = Q(so,d’) - z;j, we have determined the computation required for reusing the
inverse, as described by (6).

Q(s0,d") = Q(s0,a) + Qre1(s0,a’,a) - Q(s0,a)
& — Qral(s0,d,a) - Q(so,a) + Q(s0,a’) = Q(so, a)
& — Qral(s0,d,a) - Q(s0,a) + Q(s0,a’) = Q(so, a’)

+ Qrel(50,a,a) - Q(s0,a') (6)

Q(
& Qualon, ) = Qualsn,a ) - (- 4200 >

< Qrel(s()aa/aa) = Qrel(307a7a/) : <_ ! )

Li,j

Both, Qre(s0,a,a’) and Qe(so,d’,a), are stored separately. An alternative would be
to store x; ; instead of Qrel(s0,a’,a), but this way we can directly aggregate the samples,
because Qyel(S0,a’, a) is directly known.

3.2. Handling inexact values

According to (5), we require the value z; ; as learning information for our relative @) func-
tion. Due to our limited feedback in the form of x;; > 1, we cannot determine the
exact value. Therefore, we are purposely underestimating z;; (as Z;;), meaning that
Q(so,a) > Q(so,d’) - T;; < Q(s0,a) = Q(so,a’) - (x5 + kij),ki; ERT forr: S x A—RF.
This way, we can simply set Z; ; = 1 for describing "at least slightly better”. This also
means x; j = Z;; + ki j and Qyel(s0,a,a’) = Qrel(SQ, a,d’) + ki ; in terms of the estimated
value Q. Inserting this into (6) yields

1
Qrel(307 aly a) = Qrel(s()a a, a/) T
Li,j
- 1
<:>Q 180,a’,a = Q 180,&,0/ +l€‘,' e 7
oo, o', 0) = (@ua(s0,0,0) 4 Kig) -~ (7
1
&0, 7/7 =(zi; —1+k ;) ———
@re(s0, @, @) = (735 = 1+ ki) Tij + ki

We have to consider that (6) is not applicable anymore, because the true values Qe and z; ;

. . =~ €T 71
are unknown. We use the inverse estimate Q.el(S0,a,a") = Qrel(S0,a,a’) - —w_}_ = -k,
%) 5]

which is an overestimate. We can now see that this estimate is in fact an overestimate by
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proving the relation to the correct estimate (7).

Cmy— L w1tk

rij i+ kij
& —(zi; — D(wig + ki) =2 —(2i; — 1+ ki) - @i (8)
& —ai® — @k ai ki > —xi 4 i — 27k
< ki; >0

Of course, (8) is always true because of k;; € R*. For determining the best approxi-
mation Qrel(s, a,a’), we can now average the directly determined underestimates and the
overestimates derived from Q.(s,d’, a).

Using r : S x A — R, this becomes an average over directly determined overestimates
and derived underestimates, due to x; ; = T; ; — kj ;.

3.3. Estimating subsections

According to the every-visit Monte Carlo method, we do not only want to update Q(sg,a),
but also intermediate state-action pairs. Thus, we require an estimate for y; ; s.t. V(Tf) =
V(TJ'T) -y; ;- This is the relative value of the latter part of each trajectory from a predefined
split point. 77 denotes the mean of rewards in the trajectory with rtA as the deviation of
the reward r(sy,a;) = 7p + rf*. Considering (2) and the low variance assumption (Section
2.3), yields

|T|—1 |T|—-1
V(T)= Y A'r(sa) =Y A (Fr+17)

t=0 t=0

- (9)

~ E t, =
~ ’y . T’T
t=0

This is a geometric series and therefore equivalent to V(T) ~ FTl_lw‘_Tle. Additionally, we
define the relative difference d = %

V() = V(Tj) - xi;

o 1_,)/\Ti|+1 g 1_,Y|Tj|+1 o (10)
Ti 1 _ ’7 Tj 1 _ ,y 1,]

V(T) = V(T}) - vij

11— ,.Ydi|Ti|+1 11— ,.Ydj|Tj\+1 (11)
= rn T o R, " Yij

1—7 1—7
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By expanding (11) and inserting (10) we can determine the value of y; ; relative to the
known value z; ;.

1- ,ydi\Ti|+1 o 1— ,ydj\Tj|+1 N
TTiﬁ Ty ﬁ "Yi,j
1 — ~dilTil+1 | _ AT+
=TT il il
11— 1—7
11— ,Ydj\Tj|+1 11— ,Y\Tz‘|+1
Ty 1—~ 1~ “Yij "
1 — AdilTilH1 4 IT51+1 (12)
<:> e, ) . ..
" 1—7x 1—7 i
1= /-ydj‘le—'—l 1— ’V‘TiHl
~7"Tj 1_7 1_7 'yz,j
1 — ~dilTil+1y (1 — AIT51+1
(1—~ )=~ >%%j%ym

(1 — AT (1 — 4ITil1)

(12) defines the relative difference for intermediate states, which can be used to update the
relative @Q-Function, as described in section 3.1. It should be noted, this estimate is only
calculated for states occurring in both trajectories. Different states cannot be compared
without some kind of distance or similarity function, introducing new requirements for the
state space definition.

Of course, according to section 3.2, we must assume Z; j+k; j to be the true reward factor,
(1%l Til+ 1) (14751
(1_Fyrij\Tj\+l)(1_,y\Ti|+1)'
we know y; j & 2;; - (Zi; + Kij) > zij - i j which means z; j - Z; ; is an underestimation of
the true value. We are omitting y;; < 1forr: Sx A= RV (y;; >1forr:SxA—R7),
as this would be in fact a training information contradicting the current preference, but it
is probably an estimation error.

hence y; ; = zj - (Zij + kij) with z = But again, due to k;; € RT,

4. The Every Visit Preference Monte Carlo Algorithm (EPMC)

We have now the means to define a every-visit Monte Carlo policy iteration algorithm for
preference feedback. A fixed amount of trajectories is sampled in each iteration, according
to an e-greedy strategy (Sutton and Barto, 1998) After determining the preferences for all
trajectory pairs of the current iteration, the relative Q-values Qyei(So,a,a’) are computed
(section 3.1 & 3.2). Of course, these values are in fact only Monte Carlo estimates and
averaged to determine the true approximation, that is used to update the ) function. This
is also performed for intermediate states, after calculating the estimate as described in
sec. 3.3. The @Q-function is updated with a common learning rate dependent increase in
the form of Qe i41(8,a,a") = (1 — @)Qre1 i(s,a,a") + a@?e"l(s,a, a’) with Qfeil(s, a,a’) as the
approximation gained after ¢ iterations. The resulting optimal policy is defined by (13).

1 ifa=arg MAaX,e A(s) m

7 (s,a) = : A(Z): ) Qrei(s,a,a’) (13)
a’'€A(s),a#a’

0 else
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Of course, the maximum can only be assumed to be the best action if r : Sx A — R™. In this
1

case of 7 : S x A — R~ where small values are preferable, we store Q.e(s0,a,a’) = 75— 1
instead of #; ; — 1, because this allows us to reuse the maximum as optimal policy and does
not affect the outcome due to the absolute value not being relevant.

A pseudo-code of the resulting algorithm is shown as algorithm 2. The initial policy g is
the random policy. In each iteration, n trajectories are sampled with the e-greedy strategy.
These trajectories are compared in a pairwise manner to determine @ preferences.
All possible Qq-value estimates are then calculated and averaged for updating the policy,

subject to the learning rate .

input : initial policy mp, start states Sy, iteration limit m
sample limit n, random probability €, learning rate «
output: improved policy m,,

g-updates = ()
for i =0 to m do
S0 = RANDOM(Sy), trajs = (), prefs = (), q-averages = ()
for 0 to n do
| trajs < trajs U e-GREEDYROLLOUT(sg, 7, €)
end
prefs <~ DETERMINEPREFERENCES(trajs)
g-updates < g-updates U CREATEESTIMATES (trajs,prefs)
g-averages <— CREATEAVERAGES(q-updates)
mi+1 = UPDATEPOLICY (7;, q-averages, )
end

Algorithm 2: EPMC

5. Experimental Setup

For evaluating our algorithm, we picked three common benchmark problems: mountain car
and acrobot with r : § x A — R~ as well as inverted pendulum for r : S x A — R*.
The parametrization from Sutton and Barto (1998) was used for the first two problems
and Wirth and Furnkranz (2013) for the inverted pendulum, but with a 20% transition
noise for all three domains. The mountain car setup is additionally subject to random
start states. We use a tabular state representation based on a discretization of each state
variable into 10 bins. In each trial, we performed m = 50 policy iterations using n = 10
trajectories in each iteration. For the inverted pendulum m was lowered to 20, due to the
faster convergence rates on this problem. The horizon is always 500. « was set to 0.99 with
€ and « set to the best values found by a 10 x 10 uniform grid search. In general, all results
presented are averages over 100 consecutive trials. Besides of the application of EPMC with
the mentioned binary preference (EPMC Binary), we also evaluated the loss compared to
the true rewards by not using the underestimate ; ; as described in sec. 3.2, but the true
value x; j (EPMC True). As the value of z; ; is in practice unknown, these result may serve
as an upper bound on the achievable performance.
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Because of the close relation to the algorithm defined by Wirth and Fiirnkranz (2013),
we also preformed the mentioned experiments with an implementation of this algorithm as
baseline comparison (Baseline). The parameters n and « are also determined by a 10 x 10
uniform grid search. For convenience, the approach is described in the following section 5.1.

We also compared the algorithm to SARSA () with an e-greedy sampling strategy, be-
cause it is arguably the most common algorithm for solving reinforcement learning problems.
Its hyperparameters A, a and € are determined by a 10 x 10 x 10 grid search. The amount of
trajectory samples is identical to the preference based setups, which already results in much
more valuable feedback. A numeric value enables a comparison to all other trajectories, not
only to the n samples of the current iteration, as performed by EPMC. This means EPMC

is utilizing @ -m = 2250 preferences (900 for inverted pendulum, respectively) while the

real-valued feedback obtained by SARSA()) could be used to compute % = 112250
preferences (19900 respectively). But due to the completely different method, we decided
to use the amount of sampled trajectories n - m as fixed dimension for the comparison.

5.1. The Wirth and Fiirnkranz (2013) algorithm

This algorithm also uses every-visit Monte Carlo estimates, but the relative difference is
not stored in terms of a Q-function, but as probability of an action being preferred over
another one. This probability is calculated based on the number n of states occurring in
both compared trajectories T7 and T3

n+1

Pr(a = d'|s,T; = Tj) = 5,

(14)

where (s,a) € T; and (s,d’) € Tj.

The idea behind this estimate is, if it is possible to assume that only action choices
in these overlapping states are relevant for the (relative) outcome, then the outcome is
related to the ratio of preferred actions chosen. These samples are aggregated and used to
determine the probability of an action being the most preferable one, as described by (15).

1
P = . 15
r(als) Pr(a>1—a’|5) k=) (15)
a’'€A(s),a’#a

This value is deemed comparable to the reward of a classic MDP. By modifying the EXP3
exploration/exploitation strategy (Audibert and Bubeck, 2009) accordingly results in (16)
as action selection probability for sampling new trajectories. n € (0, 1] is a user settable
parameter.

3 Pr™ (als) - ~

9s,ai = mlsep:i Gsai = tz:;gs,a,t

EXP3(S, a)i+1 =

n _ < n eXp(%és,a,i) (16)
ZIRE IV TU ST e

beA(s)
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This strategy is only applied to the first trajectory sampled in each policy iteration step
and for all states overlapping with a trajectory already seen in this evaluation step. All
other actions are selected according to a approximate best policy

1 if a = argmax, (Pr(s|d

0 else.

This enables the assumption, that only overlapping states are relevant for the (relative)
outcome due to all other action choices already being optimal.

6. Results

All configurations are analyzed with respect to two different metrics, the quality of the
policy after the last iteration (Policy) and the learning curve (LC). The quality value is the
amount of steps required to reach the goal. In the case of mountain car, this is an average
over 100 randomly sampled start states. The learning curve metric is the sum of the quality
of the policy after each iteration, meaning a higher value correlates with faster convergence.
The values for mountain car and acrobot are negative, because here each step is penalized,
as opposed to the step reward case for the inverted pendulum experiments.

6.1. Performance

In the inverted pendulum domain (Table 1), EPMC outperforms the baseline algorithm by a
sizeable margin for both metrics. It results in policies comparable to the SARSA () results,
but has a somewhat slower convergence. Table 2 shows the results for the acrobot domain.

Configuration Policy LC Configuration Policy LC
Baseline 345.64 | 45287.8 Baseline -300.32 | -186714.8
Sarsa 474.63 | 91012.7 Sarsa -210.25 | -134223.2
EPMC Binary | 469.845 | 74314.2 EPMC Binary | -192.16 | -138587.0
EPMC True 478.865 | 77420.9 EPMC True -189.41 | -135526.7
Table 1: Results for inverted pendulum Table 2: Results for acrobot

Here, the baseline algorithm and SARSA()) are not able to reach a policy as good as the
one found by EPMC. The improvement over the baseline is again very substantial, but this
time the convergence rate is close to the one achieved by SARSA()). In the mountain car

Configuration | Policy LC
Baseline -68.64 | -57598.5
Sarsa -56.24 | -39796.4

EPMC Binary | -60.94 | -50677.1
EPMC True -59.97 | -51997.1

Table 3: Results for mountain car

domain (Table 3), EPMC also outperforms the baseline algorithm by a large margin but it
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could not reach the performance of SARSA()\) for these experiments. Still the difference
is comparably small, especially in terms of the final policy. In summary, we observe that
the performance of the preference-based algorithms is quite close to the performance of
SARSA()), but with a somewhat slower convergence rate. This is not surprising because
SARSA()) is able to use the numerical values of the rewards, while the other algorithms
only make use of the order relation between the rewards, which is induced by the observed
preferences. As expected, EPMC' True, which makes use of an oracle for the correct relative
adjustment, outperforms the binary preference version, but the differences are quite small,
which indicates that the loss due to the estimation error (Section 3.2) is small.

6.2. Convergence

In the following, we show the convergence graphs of the best configuration found for all
experiments, excluding the baseline algorithm. In the pendulum domain (Figure 1), we can
clearly see the the stated convergence advantage of SARSA. The slight improvements of
the EPMC true over EPMC binary are also visible.  Figure 2 shows the results for the
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Figure 1: Convergence in the inverted pendulum domain
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Figure 2: Convergence in the acrobot domain

acrobot domain. The graph also confirms the performance results. All three algorithms
show similar behavior with only a minor advantage for SARSA. Finally, the mountain car
graph (Figure 3) is similar to Figure 1 (inverted pendulum). All algorithms show continuous
convergence to the optimum, but SARSA is again converging faster, especially for the first

trajectories.
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Figure 3: Convergence in the mountain car domain

7. Future Work

Of course, the most important next step is relaxing the variance condition, because this
is the most restrictive limitation that has to be considered. We also hope to eliminate
the required distinction between a positive and a negative reward space, which would not
only make the application of the algorithm easier but would also enable a broader range
of domains where the algorithm can be applied. We also expect to be able to increase
the performance by the use of better sampling strategies, a topic closely related to active
learning (Settles, 2009).

We also aim at applying this algorithm to problems that can not be described by a single
objective, requiring the addition of concepts like Pareto optimality. This would enable the
application to problems that are not solvable with quantitative methods.

8. Related Work

As mentioned, this paper is comparable to the work of Wirth and Fiirnkranz (2013). This
algorithm uses a probability theorem, instead of the suggested preference estimate.

The work of Fiirnkranz et al. (2012) is also related. They also identify action preferences,
but do not reuse trajectories for creating learning information for intermediate state-action
pairs, meaning the preference feedback is used less efficient. Additionally, the problem
is cast as a pairwise label ranking problem with the state features as attributes and the
action as class labels. This enables a generalization to unseen states by training a learning
algorithm like multilayer perceptrons for predicting a ranking of the actions in each state.

Akrour et al. (2012) use an evolutionary strategy (ES) for creating new policies within
a parameterized policy space. FEach trajectory is evaluated by the amount of occurring
sensori-motor-state (SMS) cluster. An SMS is a vector of all sensor and actuator values of
the underlying robotics system. The utility of a trajectory is defined as a weighted, linear
sum over these clusters with the weights learned by an SVME22k Jike approach (Joachims,
2002) that can utilize pairwise preference information. The utility of a policy can then be
estimated by the weight vector and sampled occurrences of SMS clusters. This enables the
ranking of policies for creating new policies within the ES framework.

The Bayesian preference learning from trajectory preference queries (BayesTPQ) al-
gorithm (Wilson et al., 2012) also requires a parameterized policy space. By utilizing a
trajectory distance function, it is possible to estimate a probably distribution over policies,
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based on pairwise preferences. This probability is maximized for creating the best policy
concerning the given preferences.

9. Conclusions

EPMC shows that Monte Carlo based approaches to preference-based reinforcement learn-
ing are very promising and already able to compete with SARSA(A). This is especially
interesting, because preferences are lacking a great amount of information included in tra-
ditional rewards. Not only the numeric grading is missing, but the feedback is also only
available for certain trajectory pairs, wheras the conventional numeric feedback allows a
comparison between all trajectories. Current PBRL algorithms still offer plenty of room
for improvements, as shown by the comparison to the baseline algorithm of Wirth and
Fiirnkranz (2013). We have also shown, that it is possible to use estimates for the numeric
preference grade without loosing substantial information. The greatest drawback of the
EPMC algorithm is its variance condition. Many domains do conform to this requirement,
but relaxing it would greatly increase the amount of possible applications.
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