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Abstract

The first Causality Challenge competition posted several causal discovery problems that
require researchers to employ the full arsenal of state-of-the-art causal discovery methods,
while prompting the development of new ones. Our approach used the formalism of Causal
Bayesian Networks to model and induce causal relations and to make predictions about the
effects of the manipulation of the variables. Using state-of-the-art, under development, or
newly invented methods specifically for the purposes of the competition, we addressed the
following problems in turn in order to build and evaluate a model: (a) finding the Markov
Blanket of the target even under some non-faithfulness conditions (e.g., parity functions),
(b) reducing the problems to a size manageable by subsequent algorithms, (c) identifying
and orienting the network edges, (d) identifying causal edges (i.e., not confounded), and
(e) selecting the causal Markov Blanket of the target in the manipulated distribution. The
results of the competition illustrate some of the strengths and weaknesses of the state-of-the-
art of causal discovery methods and point to new directions in the field. An implementation
of our approach is available at http://www.dsl-lab.org for use by other researchers.
Keywords: Causal Bayesian Networks, Causal Discovery, Manipulations

1. Introduction

In order to optimally predict the effects of manipulations on a system, one needs to induce
a subset of the causal relations among the parts of the system. Three key characteristics of
the challenge data sets led to the choice of Causal Bayesian Networks (CBN) as the formal-
ism to model and induce causal relations and to make predictions about the effects of the
manipulation of the variables: the data contain cross-sectional measurements, the generat-
ing causal models contain no feedback loops, and the definition of causality is stochastic.
A CBN is a Bayesian Network where the edges have the additional semantics that they
correspond to direct causal relations. Thus, a first major assumption in our analyses is that
there exists a CBN that can represent the probability distribution of the data. This in turn
implies that we assume the Causal Markov Condition holds: every node X is probabilisti-
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Figure 1: Causal Bayesian Networks: The unmanipulated CBN graph, G∅, and CBN graph G{S}
where S is manipulated, are depicted in (a) and (b). In (c), a network with a hidden
variables H1 causing both B and T , H2 causing both D and Q, and dashed edges (when
the marginal over the observed variables, O, is considered) is shown.

cally independent of its non-causal effects conditioned on its direct causes. An example of
a graph of a CBN is shown in Figure 1(a).

1.1 Theory for Making Predictions Under Manipulation

We will denote the variable to predict with the letter T (target). Let us denote the set
of variables as V that is partitioned into observed variables included in the data O, and
unobserved variablesH. Single variables are denoted with capital letters or with Vi where i is
an index and sets of variables with bold capital letters. Let M denote the set of manipulated
variables. For the challenge it is assumed that M ⊆ O, i.e., there are no manipulated
unobserved variables. We will denote with PM(V) the joint probability distribution of
variables V when the set of manipulated variables is M. There were three different types
of tasks in the competition, each requiring a different approach, that we now explain.

1.1.1 Predictions under no manipulation

For this type of task, one could first estimate P∅(T |V \ {T}). The estimation may be
difficult and unreliable if the size of V is large. A Markov Blanket of T , MB∅(T ), for
distribution P∅, is defined as a minimal set such that P∅(T |V \ {T}) = P∅(T |MB∅(T )). In
other words, a Markov Blanket contains the required information for optimal prediction of
T , thus rendering the remaining variables superfluous and is the solution to the variable
selection problem under some general conditions (Tsamardinos and Aliferis, 2003). Notice
that in a CBN (by definition a minimal I-map, Pearl, 1988), a MB∅(T ) corresponds to the
parents, children, and spouses of T in the graph (Pearl, 1988, Sec. 3.3, Corollary 6). Based
on the above, our approach for this task was to identify a Markov Blanket of T , MB∅(T )
then learn a predictive model using only these variables.

1.1.2 Predictions under known manipulations

In this case, we assume that there is a known subset of variables M ⊆ O that are being
effectively manipulated, i.e., their values are completely determined by the external agent,
that we model with variable E. As in a typical supervised learning setting, one could
attempt to learn a model for PM(T |V \ {T}). According to Pearl (2000) and Spirtes et al.
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(2000), the joint distribution can be factorized as

PM(V) =
∏

Vi∈V\M
P∅(Vi|Pa(Vi)) ·

∏

Vi∈M

PM(Vi|E)

where Pa(Vi) are the parents (direct causes) of Vi and PM(Vi|E) the manipulated distri-
bution of a variable. From PM(V) one could obtain PM(T |V \ {T}) and solve the problem.
However, this approach requires knowledge of the distributions of the manipulated variables
PM(Vi|E) that is not provided; in addition, it requires fitting the complete joint distribution
of the variables that is computationally inefficient and prone to statistical errors.

Alternatively, we employ the concept of the Markov Blanket, to instead learn a model
for PM(T |MBM(T )). If the causal graph is known, the MBM(T ) can be identified from
it as follows. Let G∅ and GM be the CBN graphs of the unmanipulated and manipulated
distribution respectively. From Pearl (2000) and Spirtes et al. (2000), GM results from G∅
by removing the direct causes of every variable Vi ∈ M and replacing them with an edge
from an external agent performing the manipulations, E. An example is shown in Figures
1(a-b) for M={S}. Intuitively, this is justified by the fact that the manipulated variables
have no other causal dependence but with the external agent. Thus, MBM(T ) is a subset
of MB∅(T ) with manipulated children and their corresponding spouses removed (if a node
is a spouse via multiple children, it is removed only if all of them are manipulated). Even if
MBM(T ) is known, PM(T |MBM(T )) should be induced from observational data following
P∅. We now present the following theorem stemming again from the more general theory
of probability invariance under manipulations by Spirtes et al. (2000) (proof in Appendix):

Theorem 1 Let 〈G∅, P∅〉 be a CBN and 〈GM, PM〉 be the resulting CBN under manipula-
tions of variables in M. Suppose that T 6∈ M and also that there is no manipulated child C
of T in G∅ with a descendant D in G∅ that is also in MBM(T ). Then,

PM(T |MBM(T )) = P∅(T |MBM(T )).

In other words, when the theorem holds, we can learn an optimal model for predicting
T in the manipulated distribution by learning P∅(T |MBM(T )) from data sampled from
the unmanipulated distribution. The latter of course requires knowledge of MBM(T )
which is a subset of MB∅(T ). When the theorem does not hold, then predicting T us-
ing P∅(T |MBM(T )) is not theoretically guaranteed to be optimal; however, the condition of
the theorem is relatively strict and it is expected that it often holds in practice (of course,
this claim requires further evaluation).

Notice the condition regarding the existence of a manipulated child of T and its descen-
dant D ∈ MBM(T ) is important. Consider the network in Figure 1(a), where the condition
does not hold when S is manipulated, and the resulting network 1(b). Then, we have:

P∅(T |MBM(T )) =
P∅(T ) · P∅(S|T ) · P∅(C|S, T )∑

t P∅(t) · P∅(S|t) · P∅(C|S, t)

PM(T |MBM(T ))=
PM(T ) · PM(do(S)) · PM(C|S, T )∑

t PM(t)· PM(do(S))· PM(C|S, t)
=

P∅(T ) · PM(do(S)) · P∅(C|S, T )∑
t P∅(t)· PM(do(S))· P∅(C|S, t)

,
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where P (do(S)) follows Pearl’s nomenclature denoting the probability of S being ma-
nipulated to obtain a specific value and if V is not manipulated then PM(V |Pa(V )) =
P∅(V |Pa(V )) (see Pearl, 2000 for explanation and discussion). In general the top quantity
takes different values from the bottom one; when the theorem does not hold, we could
still fit a model from the observational data and use it in the manipulated distribution, if
information about the distribution of the manipulations is provided.

From the above discussion, to identify MBM(T ) one needs to know both MB∅(T ) and
the edge orientation in that graph neighborhood. So, we first attempt to learn the causal
network from the training data and then derive MBM(T ) by deleting the appropriate edges.
There are two potential problems with this approach, even if the network is induced per-
fectly. First, there may be several statistically indistinguishable networks that fit the data
equally well. For example, the models T →X and T ←X are indistinguishable with the
P∅ distribution. We do not have a solution to this problem, which implies that some ma-
nipulated children of T may be falsely included in MBM(T ). The second problem with
inducing MBM(T ) is the existence of hidden variables H. The induced networks regard
the marginal distribution over variables in O. In Figure 1(c) an example is shown, where
H = {H1, H2} and the dashed edges appear in the network capturing the marginal over
O. True causal parents and spouses (A and S) belong in MBM(T ) even when they are
manipulated, but confounded parents and spouses (B and Q) should be removed when
manipulated. In Section 2.5 we present newly developed methods to address this issue.

For this type of task, our general strategy was to first learn MB∅(T ), then orient the
edges in that neighborhood to identify a candidate MBM(T ); subsequently, evidence about
possible confounding is obtained to further remove variables if necessary (details are de-
scribed in Section 2.5). Finally, a predictive model using only the variables in the estimated
MBM(T ) was learned.

1.1.3 Predictions under unknown manipulations

For these tasks, the set M of manipulated variables is unknown. The only nodes that always
belong in MBM(T ) for any M ⊆ O are the parents of T . Thus, the safest bet for avoiding
to include irrelevant or even misleading variables (depending on the sort of manipulations)
in predicting T is to build a model P∅(T |Pa(T )), where Pa(T ) are the (non-confounded)
parents (direct causes) of T .

2. General Steps of the Strategy

In order to identify the Markov Blankets to build the predictive models, several different
algorithms were used in our procedure. Figure 2 summarizes the general approach followed
while the subsequent sections (noted in the figure) describe the process in more detail. The
first step in our strategy is to identify the MB∅(T ). If there are no manipulations in the
test set distribution, an SVM model is constructed using the variables in MB∅(T ) (Section
1.1.1). If there are manipulations, a set of additional steps are taken to orient the edges
in MB∅(T ) and identify non-confounded edges. Combining all this information, a set of
variables is selected, either MBM(T ) or the non-confounded parents of T , depending on
whether the manipulations are known or not, respectively (Section 1.1.2 and Section 1.1.3).
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Sec. 2.2 Identify MB 
MMMB (Tsamardinos, et. al 2003), FSMB (novel), 

RFE (Guyon et. al 2002)

Sec. 2.3 Region of Interest Identification
MMPC recursively (Tsamardinos et al. 2006)

Sec. 2.4 Orient Edges
MMHC (Tsamardinos et al. 2006)

(Bach and Jordan 2004)

Sec. 2.5 Identify Non-Counfounded Edges

Sec. 2.1 Preprocess Data

novel method

Sec. 2.6 Combine Edge Information
novel method

Manipulations?

Yes

Sec. 2.6 

Select MBM(T)

Sec. 2.6 

Select Pa(T)

Known Manipulations?

Yes No

Sec. 2.7 Model Construction
SVM (Boser, Guyon, Vapnik 1992)

No

Figure 2: Diagram illustrating the general steps of our method including the individual algorithms
used.

The final set of variables is again used to construct an SVM model for predicting the cases
in the manipulated test set.

Our method is publicly available online at http://www.dsl-lab.org. In order to fully
automate the procedure, the released code has been modified from that used during the
challenge. Wherever a difference between the competition and the released code exists, we
note it in the text. The code implementing the high-level strategy is released, although
some of the employed algorithms are only available as executable Matlab p-files.

2.1 Preprocessing

The data sets used in the challenge represented real world problems that required prepro-
cessing which was tailored for each data set. For the REGED data set each variable was
normalized so its mean was zero and standard deviation was one. For the SIDO data set,
the variables were binary and no preprocessing was performed. For the CINA data set,
variables that were not binary were treated as continuous and normalized as above; binary
variables were all set to values of zero and one. For the MARTI data set, the calibrant
variables were used as an indication of the position-dependent noise on the chip. For each
training example, we fitted a 2D cubic spline to the values of the calibrants and then used
the spline to obtain the correlated noise level at the chip location of each variable. The
estimated noise was then subtracted from the value of each variable for that training sample.

39



Brown and Tsamardinos

2.2 Identifying MB∅(T )

Once the initial data sets have been preprocessed, the next step of our procedure was
to identify the MB∅(T ). Algorithms such as HITON (Aliferis et al., 2003a) and MMMB
(Tsamardinos et al., 2003a) rely on statistical tests of conditional independence. A basic
assumption of these and similar methods is that if a variable is a neighbor of the target,
then it will have a detectable pairwise association with the target. The general case of
this assumption is that the Faithfulness Condition (Spirtes et al., 2000) holds in the causal
network. However, there were no such guarantees in the problems of the competition. Thus,
there could exist strong multivariate associations with the target (e.g., parity functions)
whose participating variables have no detectable pairwise association with T . To address
this problem we use our newly proposed algorithm called Feature Space Markov Blanket,
FSMB (Brown and Tsamardinos, 2008).

2.2.1 Feature Space Markov Blanket (FSMB)

FSMB explicitly constructs a set of features, namely all the products among the variables up
to a given degree d. For two variables and d = 2, these are V1, V2, V 2

1 , V 2
2 and V1V2. It then

runs HITON to find the Markov Blanket of T in this feature space. While straight-forward,
this strategy does not scale up to data sets of practical sizes. A key idea in FSMB is to first
learn an SVM model using a polynomial kernel that implicitly maps to this feature space
consisting of all possible monomials up to a given degree d. We expect that if a feature is
given a small absolute weight by the SVM, then it probably has a small association with
T and there is no need to compute it and feed it to HITON. FSMB is enriched with a
heuristic search to efficiently construct only the top-weighted features of the SVM model,
before passing them to HITON.

This heuristic search procedure is now presented in more detail. The following standard
SVM notation is used in this section; let vk denote the predictor vector k in the data and
tk ∈ {−1, 1} denote its class. Assume the use of a trained soft-margin, 1-norm SVM with
full polynomial (heterogeneous) kernel K(vk, vj) = Φ(vk) ·Φ(vj) = (vk · vj + 1)d, where d is
the degree of the kernel and the Lagrange multiplier vector is denoted a. The SVM model is
stored as the Lagrange multipliers and support vectors, rather than explicitly constructing
the feature and weight vectors of the decision function due to the large number of possible
features.

In order to identify the top weighted-features without explicitly reconstructing the entire
weight vector, bounds on the weights are found and updated through the search and feature
construction process. Let si,j be the sum of squares of the weights of all features (monomials
in polynomial-kernel feature space) that involve variable i and are exactly of degree j. Then,
similarly to the corresponding result for the Recursive Feature Elimination (Guyon et al.,
2002) we can show that:

si,j =
(

d

j

) n∑

k=1,l=1

akaltktl(H(vk, vl)−H(v\ik , v
\i
l ))

where v
\i
k denotes vector vk with the i component removed and H(vk, vl) = (vk ·vl)j . Notice

that si,j is a bound on the square of the largest weight of any feature that can be constructed
with variable i having degree exactly j.
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Let us call this bound bi,j and initially set it to si,j . We use this bound to heuristically
select some features Φq, for an indexing q of all features, to explicitly construct and calculate
the corresponding weight wq. We expect that the features with the largest weights probably
increase the corresponding bi,j ’s to which they contribute. So, we select the degree l of
monomials exhibiting the largest bound l = argmaxjbi,j and the variables Vi in that level
with the largest bounds bi,l. For example, let us assume that l = 2 and the variables V1

and V2 have the largest bounds b1,2 and b2,2. Then, we explicitly construct the features V 2
1 ,

V1V2 and V 2
2 and calculate their corresponding weights using the formula

wq =
n∑

k=1

aktkΦq(vk).

For example, if we denote with vr,z the value of the r-th training example for variable z,
then the weight corresponding to constructed feature V1V2 equals

∑n
k=1

√
2aktkvk,1vk,2. The

weight wq of each explicitly constructed feature is then subtracted from the corresponding
bounds: bi,j = bi,j −w2

q . Thus, bi,j always maintains the sum of the squared weights of the
remaining features, not yet constructed, involving variable i of degree exactly j. A stopping
criterion can determine when the bound on the remaining weights is small enough to stop
the explicit calculation of the weights. Preliminary experiments showing the time-efficiency
and quality of the algorithm are presented in Brown and Tsamardinos (2008).

2.2.2 Implementation of Identifying MB∅(T )

The MMMB algorithm (using the χ2 test for conditional independence based on the G2

statistic for discrete data and Fisher’s z-test for continuous or mixed data) was employed
to obtain a first approximation of the Markov Blanket (Tsamardinos et al., 2003a).

To estimate how good of an approximation we obtained, we employed other feature
selection algorithms and constructed models using all feature sets output (see Section 2.7
for details on our procedure of building and evaluating the models). Specifically, we build
models using as variable sets the output of MMMB, FSMB, RFE (Guyon et al., 2002,
run using the same kernel parameters as FSMB) and all variables. If all sets exhibited
similar predictive cross-validated performance (judged manually), we accepted MMMB’s
output as a good approximation of MB∅(T ). Otherwise the better performance of RFE
or FSMB, indicates important variables were missed and checked the output of FSMB for
additional variables participating in strong multivariate associations. If that was the case,
the interaction terms and constructed features were added as part of our Markov Blanket
for all subsequent steps to use1.

At this point, we considered that we have obtained a MB∅(T ) that could be used for
optimal prediction under no manipulation, and is a superset of the Causal Markov Blanket in
any manipulated distribution (plus false positives depending on the type of manipulations).

2.3 Reducing the Size of the Problem to a Region of Interest

The previous step identifies the participants in the MB∅(T ). However, the methods em-
ployed do not indicate which variables are parents and which are children, i.e., the orienta-

1. In the released code, FSMB’s constructed features are always included in the Markov Blanket, if they
contain variables not participating in the output of MMMB.
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tion of the edges in the G∅. This is necessary to be able to filter out the manipulated children
and their parents and obtain MBM(T ). Unfortunately, many state-of-the-art methods for
orientation are unable to run on problems of the size of the tasks in the competition.

To overcome the efficiency problem, we attempted to reduce the size of the problems
by identifying the variables at most three edges away from T in G∅. Therefore, rather than
learn the entire global network, we focus on a smaller region engulfing the target variable.
This type of learning became possible with the invention of local causal structure-learning
methods such as Grow-Shrink (Margaritis and Thrun, 1999) and MMPC, where MMPC
returns the parents and children of T in a network G∅ (Tsamardinos et al., 2003a). The
idea of learning regions (subgraphs) of arbitrary size was first presented in Tsamardinos
et al. (2003b). The variables in the region are identified through recursive application of
a local neighborhood identification method (MMPC using the default parameter settings,
Fisher’s z test and χ2 test on continuous and discrete data respectively) in a breadth-first
search then, the graph is oriented as described in Section 2.4.

Restricting our attention to a region may reduce the number of edges that can be
oriented. That is, it is possible for remote parts of the network to lead to orientation
of edges close to or involving T . Preliminary experiments we have conducted however
(publication under preparation), indicate that in many typical networks this effect is not
severe and the edges in the region can be oriented as well as when using the full network.
The idea of reconstructing a region of interest of limited depth around T to help orient the
Markov Blanket edges has also appeared in Bai et al. (2008).

The choice of a region of depth three is explained thusly; implicitly (in search-and-score
methods) or explicitly (constraint-based methods) v-structures are crucial in orientation.
A v-structure occurs when the subgraph X → T ← Z exist in the true unknown graph
but the edge X−Z is not. To determine from data that X−Z is absent we need to make
sure that we have conditioned on a subset of their parents. Thus, to identify a v-structure
X→ T← Z we need the parents of X and Z that are two edges away from T . The method
we present in Section 2.2 requires v-structures among the parents of T , thus forcing us to
induce a region of depth three.

2.4 Identifying and Orienting Edges

In this step, we run standard Bayesian Network learning algorithms on the data projected
on the variables of the restricted region found in the previous step. For the case of binary
data, MMHC with the default parameter settings and a χ2 test was employed to find a high
scoring network; in extensive experimentation MMHC was deemed one of the best such
learning algorithms (Tsamardinos et al., 2006). For the case of continuous or mixed data,
the kernel generalized variance scoring metric of Bach and Jordan (2002), with κ = 0.01
and σ = 1, was used with a greedy hill-climbing search to learn the structure. In Bach
and Jordan (2002), the variable distribution is assumed Gaussian in feature space, mapped
implicitly by a kernel function. This method is able to work on combinations of discrete
and continuous variables and performed well compared to other algorithms and approaches
targeting continuous or mixed data as shown in Fu (2005). The final structures were con-
verted to their corresponding PDAGs with the compelled edges identified. A compelled
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Figure 3: Four example networks to explain the Y-structure analysis.

edge X→ T provides evidence (under the Faithfulness Condition) that either X causes T ,
or (inclusive) X and T are confounded by a hidden variable.

2.5 Dealing with Confounded Variables

To deal with hidden variables and identify confounded parents of T , or confounded spouses
of T we first tried the FCI algorithm (Spirtes et al., 2000). Unfortunately, FCI could not
scale up even to the reduced region found (FCI was run with version 4.3.9 of the Tetrad
Project). It also failed to run even when we input several constraints to make it more
efficient and specifically, to constrain the edges to the ones found by the previous step.

We then turned to the method of Mani et al. (2006) to identify a Y-structure involving
a quadruple of the variables; see Figure 3(a) for such a structure. If a Y-structure faithfully
captures the marginal of the four variables, then edge C → D has to be causal, i.e., there
can be no hidden confounder of C and D, as shown in Figure 3(b). If Figure 3(b) was the
case, A and D would be dependent given C and so their marginal would not faithful to
Figure 3(a). There is no causal claim for the other two edges in the graph.

We found this idea interesting but did not apply the algorithm as given by Mani et al.
(2006) because the conditions to identify such a structure are restrictive (e.g., A and B need
to be unconditionally independent). Instead, we extended the general idea to identify causal
edges in more general settings, where the pairs A and B, or A and D may be conditionally
independent instead of unconditionally, such as in Figure 3(c) (this is mentioned as future
work in Mani et al. 2006). We proved (proof omitted for scope) and implemented a test
based on the following proposition:

Proposition 2 Let V = O ∪ H be a set of variables, O ∩ H = ∅; P (V) is faithful to a
CBN 〈G,P 〉 and I(X; Y |Z) denotes independence of X and Y given the conditioning set
Z and ¬I(X; Y |Z) denotes dependence. For the distinct variables A,B, C,D ∈ O when the
following conditions hold:

1. ∀S ⊆ O,¬I(A; C|S) 4. ∃Z1 ⊆ O, I(A; B|Z1)
2. ∀S ⊆ O,¬I(B; C|S) 5. ¬I(A;B|Z1 ∪ {C})
3. ∀S ⊆ O,¬I(D; C|S) 6. ∃Z2 ⊆ O, I(A; D|Z2) and C ∈ Z2

then, there is a causal path C → . . . → D in G, where the intermediate variables belong in
H (are hidden).

We call this set of conditions collectively the Y-test for the variables A, B, C, and D. In our
implementation, we apply the Y-test for every quadruple of distinct variables A,B, C,D in
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the region of interest around T 2. If all conditions (1) - (6) are satisfied then we considered the
edge C → D as causal and without possible confounding. We applied the Y-test only once
per quadruple of variables and reused cached results for improved efficiency as follows: If an
edge A−C (ignoring the direction) exists in the region of interest then ∀S ⊆ O,¬I(A;C|S),
or MMPC would have discovered a d-separating set for A and C. Thus, condition (1) of the
proposition holds. Similarly, if the edges B − C and C −D exist in the region of interest,
the quadruple passes the first three conditions. If the edges A − B and A − D are not
in the region of interest, it implies that MMPC has discovered subsets Z1 and Z2 that
d-separate the two pairs of variables respectively: condition (4) and the first part of (6) also
hold. Condition (5) is checked with an additional test of independence, using the specific
Z1 found by MMPC when removing the edge A−B. Finally, it is checked whether C ∈ Z2,
the subset found by MMPC when removing the edge A−D.

Multiple applications of the Y-test for different quadruple of variables may provide
conflicting information for an edge C → D. We devised two weighting schemes to rank
the strength of evidence a single Y-test provides. First, a value was calculated as the
minimum p-value returned by the independence tests of conditions (4) and (6). Let this
value be referred to as the p-score of the Y-test. This value represents the closest the
independence conditions (4) and (6) were to failing to pass the threshold for accepting
dependence. Second, a ratio of the BDeu score of the Y-structure (including the nodes in
the conditioning sets) to the BDeu score of an empty DAG was assessed. In preliminary
tests on known networks, the BDeu score metric was not consistently informative; therefore,
the p-score was used in further analysis.

2.6 Combining Information to Identify MBM(T )

We used the PDAG at the end of Section 2.4 to obtain the orientation of some edges
and the method of Section 2.5 to obtain both orientation and causal evidence for some
edges, i.e,. that they are non-confounded. The information from these two sources may
be incomplete (some edges are not oriented or could appear due to possible confounding
phenomena) and conflicting. This information was combined manually and subjectively
during the competition; however, for testing purposes during the post-challenge analysis
and to be able to release a fully automated algorithm, we have replaced the manual step
with an automated method. The latter attempts to follow as close as possible our thought
process during the challenge.

We present the method following an example using the REGED1 data set. Figure 4
illustrates and summarizes the different information sources. Figure 4(a) shows the Markov
Blanket variables extracted from the PDAG of Section 2.4. The shaded nodes indicate the
manipulated variables in REGED1. In addition, all possible Y-structures involving edges
of the Markov Blanket were identified and scored. Figures 4(b)-(g) show the top six Y-
structures centered on the target node ranked by the maximum p-score. Finally, the table
in 4(h) lists for each variable the number of times it is determined to be a child of T and
the maximum p-score among those instances. There were no Y-structures (A,B, X, T ) that

2. In our actual implementation the symmetrical test for B, ∃Z3 ⊆ O, I(B; D|Z3) and C ∈ Z3 is also
checked, although theoretically not necessary.
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930 3 0.148
321 4 0.185
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939 7 0.185
251 8 0.185
825 7 0.591
593 11 0.598
425 6 0.656
453 12 0.656
83 13 0.671

344 11 0.764
(h)

Figure 4: Information available to determine MBM(T ) for REGED: (a) the DAG involving the
MB variables determined by the search-and-score procedure (variables manipulated in
REGED1 are shaded), (b)-(g) the top valid Y-tests ranked by p-score, and (h) a table of
the variables from (a) considered to be either parents or children along with the number
of valid Y-tests where the node appears as a child of T and the top p-score when this
occurs.

passed the Y-test with an edge X → T where X ∈ MB∅(T ); therefore, the Y-tests alone
did not give any strong evidence for a variable to be a parent of the target.

We now describe how to identify the parents of T . We consider as possible parents all
variables returned by FSMB as neighbors of T . First, we identify the variables with strong
evidence of being parents of T . These are the ones that appear as parents in the PDAG
of the edge orientation phase of Section 2.4. We sort them by the number of times they
appear as non-confounded parents of T in Y-tests. In our example, these are variables with
indexes {930, 321} (Figure 4(a)). Then, we filter out the variables with strong indication
that they are indeed children of T ; these are variables X for which the edge T → X gets a
high p-score in some Y-test, i.e., they have maximum p-score above a threshold (arbitrarily
set to 0.5). In our example, these are variables {825, 593, 425, 453, 83, 344} (Figure 4(h)).
The remaining variables {409, 939, 251} are those without strong evidence that they are
either parents or children. These are sorted in decreasing order of the ratio of valid Y-tests
as a parent to that as a child; ties are broken with preference to variables appearing less
often as children of T in Y-tests. The final list to consider thus is {930, 321, 409, 939, 251}.
During the competition, several subsets of this list were tried and a final decision was made
among those submissions that ranked in the top 25% of all competitors. The automated
procedure simply uses a threshold on the number of times the variables appear as children
of T to remove the tail of the list.

If the complete MB(T ) is sought and not just the parents of T , we also need to identify
the children and spouses of T . As children we consider the remaining non-manipulated
variables adjacent to the target; in our example, these are variables with indexes {825, 425,
453, 344}. The spouses of the selected children are found from the PDAGs orientation:
{454} (alternatively, we could have used the same procedure for the identification of the
parents of T as above, to identify the parents of the children of T ).

45



Brown and Tsamardinos

Table 1: Results on Challenge Data Sets: The Fnum, Fscore, Dscore, Tscore and Ranking is given
for each version of the data sets; the results in (a) represent the final challenge submission
and (b) show the results if the MB∅(T ) is used for every variable list regardless of consid-
ering manipulations. In (a), the number of entries, the overall ranking and average Tscore
are given for each data problem. The cells are shaded in the colored quartile information:
green - best 25%, yellow - best 50%, orange - worst 50%, and red worst 25%.

Final Challenge Submission Unmanipulated MB used for all Data Sets

Fnum Fscore Dscore Tscore Ranking Fnum Fscore Dscore Tscore Ranking

CINA0 101 0.8496 0.9717 0.9721 9 Num. Entries / Total 7 / 277 101 0.8496 0.9717 0.9721 9

CINA1 5 0.4716 0.9316 0.5113 23 Average Tscore 0.6015 101 0.5795 0.9717 0.8581 4

CINA2 5 0.4716 0.9316 0.3210 25 Overall Ranking 23 / 25 101 0.5795 0.9717 0.6917 8

MARTI0 24 0.5869 0.9952 0.9681 8 Num. Entries / Total 2 / 233 24 0.5869 0.9948 0.9824 7

MARTI1 17 0.5643 0.9951 0.7837 9 Average Tscore 0.8083 24 0.5985 0.9948 0.8477 9

MARTI2 3 0.4985 0.6973 0.6730 10 Overall Ranking 9 / 19 24 0.7429 0.9948 0.6971 9

REGED0 15 0.8571 1.0000 0.9998 2 Num. Entries / Total 5 / 355 15 0.8571 1.0000 0.9998 2

REGED1 9 0.7851 1.0000 0.9673 4 Average Tscore 0.9423 15 0.7825 1.0000 0.9280 14

REGED2 3 1.0000 0.9728 0.8600 1 Overall Ranking 1 / 30 15 1.0000 1.0000 0.7231 9

SIDO0 13 0.5115 0.9356 0.9230 12 Num. Entries / Total 2 / 242 13 0.5015 0.9365 0.9237 12

SIDO1 4 0.5003 0.8587 0.6073 12 Average Tscore 0.6909 13 0.5012 0.9365 0.6626 11

SIDO2 4 0.5003 0.8587 0.5426 14 Overall Ranking 12 / 28 13 0.5012 0.9365 0.5713 11

(a) (b)

In our effort to automate the above procedure after the challenge, we noticed that the
procedure was not stable. Specifically, the lists of variables output and the corresponding
models produced, varied significantly under different ordering of the variables in the data
set. To alleviate the problem we augmented the procedure with a model-averaging-type step
where we run the orientation procedure several times with different parameters (namely,
we vary the equivalent sample size in the Bayesian Score and the kernel parameters for
the scoring metric of Bach and Jordan, 2002). Only the variables that appear consistently
across parameter combinations remain in consideration. The procedure has been validated
in the post-challenge tests set by the organizers and was found stable and robust under
permutations of the variables and subsampling of the data.

2.7 Building Predictive Models

Once the variable list was determined for each data set, a final classification SVM model was
trained on only the variable list members (Boser et al., 1992). An n-fold cross-validation
design was used to select the optimal parameters: type of kernel (polynomial or Gaussian),
kernel parameters (degree of kernel ∈ {1, 2, 3, 4} or sigma ∈ {10−4, 10−3, . . . , 100}), and C
value ∈ {10−4, 10−3, . . . , 101}. The value of n ranged from 5 to 10 based on the sample
size available in the training sample. Once the best parameters were selected, a final SVM
model was trained and used to predict the values for the test data sets.

3. Results

The classification performance (AUC reported as Tscore in the challenge results) is ulti-
mately how the challenge submissions were rated. Table 1(a) presents the Fnum, Fscore,
Dscore, Tscore, and ranking of our final submission for each data set version. The number
of entries before the final submission, the average Tscore (across the versions of a data set),
and the overall ranking (generated from the average Tscore) are also shown in the table.
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Figure 5: The selected features’ relationship to the target variable, where dcauses = direct causes,
deffects = direct effects, ocauses = other causes (indirect), oeffects = other effects (in-
direct), spouses = parent of direct effect, orelatives = other relatives, and unrelated =
completely irrelevant.

3.1 What Went Well

The specific implementation of our strategy performs well on the REGED data set achieving
the top overall ranking. The strategy also exhibits decent performance on the unmanip-
ulated data sets, version “0”. This indicates that our implementation is approximating
MB∅(T ) well. This is corroborated by the organizers’ post-challenge analysis, shown in
Figure 5. In 3 of the 4 data sets (REGED, SIDO, and CINA) the method is performing
well at identifying members of MB∅(T ). In fact, in those three data sets only ∼2 false posi-
tives are added to the Markov Blanket (the number of false negatives is undisclosed). Notice
that our algorithms were able to accurately identify CINA’s MB∅(T ) numbering close to 100
variables. On MARTI it seems that MB∅(T ) was not accurately found, however we believe
this is due to our inability to handle the noise correctly. Evidence to this is provided by the
following experiment: the post-challenge analysis included other teams’ preprocessed data
for MARTI; re-running our method on the preprocessed data provided by Dr. Guyon we
see a marked improvement in our performance (in particular on the MARTI0 data, where
our method has proven to do well in all other cases). Specifically, the Tscore on MARTI0
improves from 0.9681 to a score of 0.9910 resulting in an improved ranking on that data set
from eighth to fifth and corroborating that we approximate well the MB∅(T ) (the actual
false positives and false negatives have not been released for post-challenge submissions).

3.2 What Went Wrong

While our methods performed well at identifying the unmanipulated Markov Blanket, the
identification of the manipulated Markov Blanket was very poor on all but the REGED
data set. This indicates that our methods for orienting the edges of MB∅(T ) performed
poorly. We now provide some possible explanations.

Unfortunately, we spent most our time on the REGED data sets and the development of
new methods, leaving little time for the rest of the data sets. Most importantly, we set out to
solve a more difficult problem than what the organizers had set, namely inducing causality
in the presence of hidden variables and violations of faithfulness. These are two important
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issues in real data sets, but did not occur in the challenge: FSMB identified between 0-4
features per data set that were added for consideration; these features were often considered
spouses, or other relatives when selecting MBM(T ) and did not make much difference in
performance. Also, there were actually no hidden variables in the challenge data sets. More
specifically, all the variables participating in the models from which data were simulated,
were also included in the released data sets. Because of the way data were simulated, the
problematic confounding effect we described never occurred. We spent a significant amount
of time on this problem is because the FAQ of the competition specifically declared that
there may be missing variables (a problem for many real-world analyses).

Also, our submissions were overly conservative in regards to including false positive
variables, i.e, variables not in MBM(T ). However, it turns out that for this challenge, false
negatives degrade performance significantly more than false positives (also see discussion in
the organizers’ post-challenge analysis online Appendix B, Challenge Website 2008). This
is exemplified by the following post-challenge experiment: we submitted a new set of entries
where the variable list for each data set version was the MB∅(T ), a superset of MBM(T ).
The results for these submissions are shown in Table 1(b) and can be contrasted with the
challenge results in 1(a). On REGED, the performance is degraded since we were already
ranking 1st on this task. On CINA, the challenge submission choice of MBM(T ) was both
incorrect and very conservative, especially in light of the large size of the Markov Blanket
and number of possible parents. The use of MB∅(T ) improved the performance and these
results rank as high as fourth for CINA1. For MARTI and SIDO, the new submission returns
a similar or slightly better ranking to that of the challenge submission. This analysis, while
only over the limited data sets of this challenge, suggests that without an edge orientation
procedure to supply correct information to differentiate the parents and children, letting
MB∅(T ) be the default manipulated Markov Blanket is a reasonable approach. In addition,
we believe that a model averaging approach would also greatly improve the robustness of
identifying the MBM(T ) and make it more resilient to edge-orientation errors.

Regarding the CINA data sets, we note that they consisted of a mixture of discrete
and continuous variables. Many of the algorithms employed by our strategy heavily rely on
tests of independence. Our implementations of these tests however, have been developed
targeting only all discrete or all continuous variables and were not designed for mixed types
of variables. Regarding the SIDO data sets, we were informed after the completion of
the challenge that it contained variables created by the binarization of other variables. For
example a variable V taking values v1, . . . , vk is converted to the binary variables B1, . . . , Bk

taking values Bi = I(V = vi), where I is the indicator function. The newly created variables
Bi are all inter-dependent, since knowing Bi = 1 implies that Bj = 0, for i 6= j. Graphically,
the new set of variables {Bi} would consist of a clique in the PDAG of a network. If V
is a parent of T in the original network, then all Bi’s are connected to T and among
each other. This reduces the identifiable Y-structures by our procedure and confuses all
traditional search-and-score Bayesian Network learning algorithms. The problem stemming
from binarization of variables points to an interesting future research direction.

Finally, due to the time pressure, several parts of our strategy were not fully optimized.
We did not optimize the model construction procedure and just used standard SVMs with
cross-validation. Most importantly, we did not have the time to fully test and optimize the
novel algorithms and procedures for these tasks.
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4. Lessons Learned and Conclusions

The most important outcome of our participation to the challenge is the experience gained
and realization of several theoretical and practical issues as well as ideas that emerged for
future directions in the field. We now distill some of these in the following.

Knowledge of the causal structure is theoretically necessary for making optimal pre-
dictions under manipulations. This is exemplified, in our opinion, in this challenge by
the difference between the top non-causal submissions and the theoretical optimum perfor-
mance; see the organizers’ post-challenge analysis online (Challenge Website, 2008, Figures
3-6). Regarding the state-of-the-art in causal discovery, we believe there exists efficient,
scalable, and publicly available code to learn the Markov Blanket. In fact, several other top
participants also used our package Causal Explorer (Aliferis et al., 2003b) implementing
such algorithms. These methods perform well on a range of high-dimensional data sets
involving discrete, continuous, and mixed data. However, we also note that there is a short-
age of reliable and efficient, publicly-available code or software packages that are meant to
identify hidden variables or non-confounded variables. Of those available (e.g., Tetrad’s FCI
implementation), they are unable to scale to the size of the challenge problems (even when
reduced to a region of depth 3). In addition, we observe that the state-of-the-art methods
employed to learn the orientation did not perform well. Consequently, we were unable to
reliably identify the manipulated Markov Blanket.

Regarding important implementation issues, we note that reducing the size of the prob-
lem to a region of depth 3 greatly improved the efficiency of the later applied methods; this
reduction allowed the orientation procedures to complete in minutes rather than hours or
days if the full variable set was considered. Several algorithms heavily depend on statistical
tests that ought to be tailored for the problem at hand. Binarized variables pose a problem
to causal-discovery methods at the moment.

In summary, we presented a general strategy for predicting a quantity under manipula-
tions of a system. It relies on identifying MBM(T ) and fitting a model for P∅(T |MBM(T ))
from the observational data. The steps of the strategy are shown in Figure 2. They are
implemented by existing algorithms and augmented with novel procedures for detecting
certain kinds of violations of faithfulness and for detecting non-confounded causal edges.
Overall, this challenge provided us with an opportunity to develop, apply, and compare
methods for causal discovery on realistic, challenging problems and initiating new avenues
of research.
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Appendix A.

Theorem 1 Let 〈G∅, P∅〉 be a CBN and 〈GM, PM〉 be the resulting CBN under manipula-
tions of variables in M. Suppose that T 6∈ M and also that there is no manipulated child C
of T in G∅ with a descendant D in G∅ that is also in MBM(T ). Then,

PM(T |MBM(T )) = P∅(T |MBM(T )).

Proof
We base the proof of the theorem on the more general theory of probability invariance

under manipulations found in Spirtes et al. (2000). Let G be the original graph G∅ with
the additional exogenous variable E representing the manipulating agent and edges from
E to any manipulated variable in M. All graph operations that follow in the proof are
on G (in the terminology of Spirtes et al. (2000) G is the combined graph Gcomb). Then
P∅(Y|Z) = PM(Y|Z), if Dsep(E,Y|Z), where Y, Z are two disjoint sets and Dsep(E,Y|Z)
denotes the d-separation of E from Y given Z in G. Thus, we just need to show that
Dsep(T ; E|MBM(T )) under the conditions C:

There is no pair of variables C, D such that:

1. E → C ← T

2. C Ã D

3. D ∈ MBM(T )

where C Ã D denotes a directed path from C to D. Let us assume that the d-separation
does not hold when conditions C do, and reach a contradiction. Recall that there are no
incoming edges to E since it is an exogenous variable and no edge from E to T .

Since the d-separation does not hold, there must be an open path from E to T that is
not blocked by MBM(T ). Take a path of the form E → · · ·P → T . P ∈ MBM(T ) under
any manipulation and so we condition on it and it blocks the path. Thus, since there is
an open path, it must be of the form E → · · ·C ← T . For the path to be open, for each
collider on it, we must be conditioning on either the collider or a descendant of the collider.
Let us now consider the last collider on the path, which can be (1) C itself, or (2) some
other node G.

Case (1): The open path is of the form E → · · ·C ← T and C is the last collider on it.
We also distinguish two subcases, either (1a) the path is of the form E → C ← T , or (1b)
of the form E → · · ·S → C ← T . If (1a) is true, since C is a collider on the open path of
case (1) we must be conditioning on either itself or a descendant of it D ∈ MBM(T ). Since,
in (1a) C is manipulated, C 6∈ MBM(T ) and we cannot be conditioning on C itself. Thus,
there is a D ∈ MBM(T ), descendant of C and conditions C all hold reaching a contradiction.

If (1b)is true, then S cannot belong in MBM(T ) or it would block the path by condition-
ing on it. Thus, S 6∈ MBM(T ) and the only way for this to be possible is if C is manipulated
and so E → C ← T holds. Similarly to case (1a) we then conclude that conditions C should
hold, reaching a contradiction.

Case (2): The open path is of the form E → · · ·G ← · · · ← C ← T and G is the last
collider on the path. If C ∈ MBM(T ) then we condition on it and it blocks the path. Thus,
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C 6∈ MBM(T ) which means C is manipulated and so E → C ← T holds. For the path to
be open, given that G is a collider we must be conditioning on a node D ∈ MBM(T ) that is
either G itself or a descendant of it. In either case, D must be a descendant of C too since
there is a directed path G ← · · · ← C (notice this path cannot be of the form G ← Q → C
or C and not G would be the last collider on the path E → · · ·G ← · · · ← C ← T ). Thus,
case (2) implies conditions C hold, again contrary to what we assumed.
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