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Abstract

The random sets approach is heuristic in nature and has been inspired by the growing
speed of computations. For example, we can consider a large number of classifiers where
any single classifier is based on a relatively small subset of randomly selected features or
random sets of features. Using cross-validation we can rank all random sets according to the
selected criterion, and use this ranking for further feature selection. Another application
of random sets was motivated by the huge imbalanced data, which represent significant
problem because the corresponding classifier has a tendency to ignore patterns with smaller
representation in the training set. Again, we propose to consider a large number of balanced
training subsets where representatives from both patterns are selected randomly. The above
models demonstrated competitive results in two data mining competitions.
Keywords: causal relations, random forest, boosting, SVM, CLOP, cross validation

1. Introduction

It is a well known fact that for various reasons it may not be possible to theoretically analyze
a particular algorithm or to compute its performance in contrast to another. The results of
the proper experimental evaluation are very important as these may provide the evidence
that a method outperforms alternative approaches.

Feature selection (FS) represents a very essential component of data mining, as it will
help to reduce overfitting and make prediction more accurate (see, for example, Nikulin
(2006)). According to (Guyon et al., 2007) causal discovery may be regarded as a next
step with the aim of uncovering causal relations between features and target variable. In
many cases it is theoretically impossible to solve full graphical structure of all relations
between features and target variable but it may be possible to uncover and approximate
some essential relations. This knowledge will help to understand data better and will give
some hints which methods will be more efficient.

A graphical model is a family of probability distributions defined in terms of a directed
or undirected graph (Jordan, 2004). The nodes in the graph are identified with random
variables, and joint probability distributions are defined by taking products over functions
defined on connected subsets of nodes. By exploiting the graph-theoretic representation, the
formalism provides general algorithms for computing conditional probabilities of interest.

In line with Bayesian Networks graphical semantics (Tsamardinos et al., 2004) every
edge from a feature x1 to a feature x2, x1 → x2, means that x1 probabilistically and directly
causes x2, see Figure 1. Bayesian Networks represent the joint probability distribution. For
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the given target variable y, the set of parents, children and spouses (i.e. parents of common
children) is called the Markov Blanket (MB) of y. Markov Blanket as a set of features is
sufficient in relation to y. Any other features becomes superfluous. Ideally, we would be
interested to find MB and investigate its structure (see Section 2.1 for more details).

Usually, any dataset may be viewed as a matrix with two dimensions: 1) data entries
and 2) features. In the Section 3.3 we consider application of the random sets (RS) approach
to data-entries.

2. Methods

Let X = (xt, yt) , t = 1..n, be a training sample of observations where xt ∈ R` is `-
dimensional vector of features, and yt is binary label: yt ∈ {−1, 1}. Boldface letters denote
vector, whose components are labeled using a normal typeface.

In practical situation the label yt may be hidden, and the task is to estimate it using
vector of features. Area under receiver operating curve (AUC) will be used as an evaluation
and optimisation criterion.

Figure 1: Illustrative Example.

According to Holland (1986) we shall assume that there are two causes of treatment,
denoted by e (the experiment) and c (the control, which may be automatic or natural).

Fundamental problem of causal inference: it is impossible to observe the values of yt(e)
and yt(c) on the same unit (that meant at the same time and for the same client) and,
therefore, it is impossible to observe the effect of e on y.

For example, price of premium in insurance industry represents one of the most im-
portant features. Based on this price and available alternatives the customer will make a
decision whether or not to renew an insurance contract. Suppose that the customer decided
to accept renewal. In this case the Company would be interested to know decision if the
price will be slightly higher. In an alternative case, if the customer decided to decline the
proposed contract, the Company would be interested to know decision if the price will be
slightly lower.

Classical randomized designs (Rubin, 1978) stand out as especially appealing assignment
mechanisms designed to make inference for causal effects.

Let us consider another example where e represents a novel year-long study of arith-
metics, c represents a standard arithmetic program, and target variable y is a score on a
test at the end of the year. Obviously, for any particular student we can observe yt(e) or
yt(c) but not both. Respectively, it appears to be natural to split randomly available field
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of students into several groups where we can apply either e or c. Absolutely similarly we
can formulate example with medical applications.

During the Causal Discovery competition participants were able to take into account
some specific information and assumptions. By the given definitions1, there are two types of
data: purely artificial and semi-artificial. In the latter case, there are two types of features:
1) real features and 2) probes where the last ones were artificially created variables as a
functions of real features and other probes. Probes may be manipulated in order to highlight
the importance of the proper feature selection. The real features and the target variable
are never manipulated. As a result, in semi-artificial systems, only non-causes of the target
may be manipulated.

Definition 1 Manipulations are actions or experiments performed by an external agent on
a system, whose effect disrupts the natural functioning of the system.

Consider the example of Figure 1 where x5 is a target variable, which graphically repre-
sents a presumed semi-artificial system. Features x1 − x4 (to the left side from x5) cannot
be manipulated as they cause (directly or indirectly) x5. On the other hand, all features
x6−x9 (to the right side from x5) may be manipulated because they may be viewed as con-
sequences of the target variable. Let us consider two particular examples. Firstly, suppose
that x7 is a probe. Then, x6, x8 and x9 must have the same status of probes. Secondly,
suppose that x6 is a probe. In this case, x7 − x9 may be probes or real features.

In the example of the Figure 1 MB consists of 6 members: 1) parents (x2 and x4);
2) children (x6 and x8); 3) spouses (x7 and x9). We know that direct causal features
(parents) cannot be manipulated. Respectively, it will be the most disappointing to loose
these features as a result of the filtering process.

The main assumption: we assume that direct causal features (parents) have stronger
influence on the target variable and, therefore, are more likely to be selected by the Algo-
rithms 1 and 2.

Algorithm 1 Basic Iterative Feature Selection (BIFS)
1: Input: training sample X including set of all features S.
2: Select loss function (or evaluation criterion) D, algorithm g for the prediction and

forward threshold parameter ∆F .
3: Set Z = ∅.
4: Select feature f ∈ S, which optimizes criterion D applied to the prediction g(f ∪ Z).
5: Transfer feature f from S to Z in the case if improvement is sufficient (not smaller than

∆F ).
6: Stop the algorithm if there are no sufficient improvement, or no features left in S.

Alternatively, goto step 4.

Remark 2 Essentially, BIFS-process is not uniform: initially, overfitting is limited because
size of the set Z is small, and we can apply very simple algorithm (like linear regression).
Then, the size of Z will grow and we will be able to use more advanced technique (for
example, SVM). But, overfitting will grow at the same time and application of the cross
validation (CV) may become unavoidable.
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Figure 2: Illustration for RS-Algorithm 2 in the case of MARTI-set (see for more details
Section 3). First, we evaluated 10000 random sets using AUC, (a) illustrates
results sorted in an increasing order; (b) illustrates number of the occurrences for
999 features in the block B of 10% top performing random sets; (c) illustrates
results of the secondary CV where features were selected according to the numbers
of occurrences in the block B, stars correspond training results, circles correspond
test results.

Algorithm 2 Random Sets (RS)
1: Evaluate long sequence of random subsets of features using CV.
2: Sort results in an increasing order (see Figure 2(a)).
3: Select block B of the best (or worst in the case of deductive strategy, see Remark 5)

performing sets of features.
4: Compute for any feature number of occurrences in the block B (see Figure 2(b)).
5: Select range of occurrences for detailed investigation, which may be conducted using

secondary CV (see Figure 2(c)).

Remark 3 Note that we can add additional step (after step 5, Algorithm 1) with trimming
(see Algorithm 3) or with test for independence within subset Z, see definition of HITON
(Aliferis et al., 2003). On the one hand, this test will require additional computational time,

1. http://www.causality.inf.ethz.ch/challenge.php
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but, on the other hand, it may be viewed as barrier to prevent growth of Z. As a consequence,
the whole procedure may quickly reach state of equilibrium (subject to the proper selection
of forward and backward threshold parameters). Respectively, it will be stopped.

Remark 4 Note that we can facilitate Algorithm 1 using projections method as it is de-
scribed in (Stoppiglia et al., 2003).

Remark 5 By definition, random set τ represents a relatively small subset of features. In
the case if classifier requires bigger than 50% of all features it will be better to apply deductive
strategy. That means, we will form a new subset of features γ = S \ τ, which will be used in
the Step 1 of the algorithm 2. Accordingly, we can classify subset τ as the worst if subset γ
was classified as the best.

The functioning of the proposed Algorithm 2 is uniform, in difference to the Algorithm 1.
As a consequence, we can apply any base algorithm, which appears to be appropriate for
the given data (see for more details Figure 2 and Section 3).

Algorithm 3 Trimming
1: Input: training sample X including set of all features S.
2: Select loss function (or evaluation criterion) D, algorithm g for the prediction, block of

features Z ⊂ S and backward threshold parameter ∆B.
3: Compute α = D(g(Z)) - initial optimal value of the target function.
4: Select feature f ∈ Z, which optimises criterion D applied to the prediction g(Z \ f).
5: Compute β = D(g(Z \ f)) - new optimal value of the target function;
6: Z := Z \ f if |α− β| < ∆B, α = β, and goto Step 4 if Z 6= ∅;
7: stop the algorithm if Z = ∅ or |α− β| ≥ ∆B.

Algorithm 3 may be used independently or in conjunction with Algorithms 1 or 2.
The role of threshold parameters ∆F and ∆B is important and similar to the role of reg-
ularisation. Essentially, the online combination of the Algorithms 1 and 3 represents a
modification of the Iterative Associative Markov Blanket (IAMB) algorithm (Aliferis et al.,
2002).

2.1 Bayesian framework for the Markov blanket construction

Binary data-sets represent an ideal case for the illustration of the concepts of the Bayesian
approach. Suppose that events x6 = 1 and y = 1 represent coughing and lung cancer (see
Figure 1). Using available data we can calculate two empirical probabilities:

1)P(y = 1, x6 = 1|y = 1); 2)P(y = 1, x6 = 1|x6 = 1).

We can expect that the first probability will be significant in difference to the second
probability. As a next step, we can check stability of the values using standard bootstrapping
technique. Based on the results of our analysis, we can make conclusion that there is a
relation between y and x6 where y is a parent (lung cancer) and x6 is a child (coughing).
However, there may be some complications. For example, x6 may be a child of a child.
The target of the Algorithm 3 is to detect and to resolve such problems. Similarly, we can

69



Nikulin

investigate relations of the target variable with all other features. As an outcome we will
obtain subset of features which have direct relations with target variable either as children
or as parents where the last ones are the most important. Finally, we can detect field of
spouses considering any particular child as a target variable.

Similarly, we can consider any discreet features. Note that consideration of continuous
(numerical) features may be much more difficult. In this case we can apply transforma-
tion with several splitters for any particular feature. It works similarly to the method of
classification trees.

3. Experiments

The list of 6 datasets which were used during WCCI-2008 Causal Discovery competition is
given in the Table 1.

The case of MARTI -set appears to be the most complicated because of the 25 given
calibrants: the training set was perturbed by a zero-mean correlated noise model. As far
as the test sets have no added noise, we used linear regression model in order to filter
noise from the training set. Then, we considered sequence of 10000 sets with 40 randomly

Data # Train (positive) # Test ` Method Software

LUCAS 2000 (1443) 10000 11 neural+gentleboost MATLAB-CLOP
LUCAP 2000 (1443) 10000 143 neural+gentleboost MATLAB-CLOP
REGED 500 (59) 20000 999 SVM-RBF C
SIDO 12678 (452) 10000 4932 binaryRF C
CINA 16033 (3939) 10000 132 adaBoost R

MARTI 500 (59) 20000 1024 svc+standardize MATLAB-CLOP

Table 1: List of datasets including sizes and main methods plus software which were used
during the competition.

selected features (without repeats). Based on some preliminary experiments, we applied svc
function from MATLAB-CLOP (deductive strategy: means, we used all features without
features from random set, see Remark 5) for the evaluation. We sorted all sets in an
increasing order (see Figure 2(a)) according to the meanTestAUC (used CV with 20 folds),
and computed number of occurrences for any particular feature according to the block B
of the worst 10% sets (see Figure 2(b)). Based on the visual consideration, we conducted
detailed examination of the subinterval [17..48]. In this experiment features were selected
according to the condition: nj ≥ a, a ∈ [17..48] where nj is number of repeats in the block
B for the feature j.

Figure 2(c) illustrates the final CV experiment where blue-stars correspond to the train-
ing and black-circle to the test results. Some marginal numerical values: 17) 994, 0.9019; 31)
410, 0.9597; 48) 8, 0.8641 where first and second numbers indicate number of the selected
features and meanTestAUC. We can see some decline after point a = 31 (as a consequence
of overfitting). Accordingly, the cases of a ∈ [30..32] may be suitable for the submission in
the normal situation when training and test samples have the same probability distribution.
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Data Submission CASE0 CASE1 CASE2 Mean Rank

REGED vn14 0.9989 0.9522 0.7772 0.9094 4
SIDO vn14 0.9429 0.7192 0.6143 0.7588 6
CINA vn14a 0.9764 0.8617 0.7132 0.8504 2

MARTI vn14 0.9889 0.8953 0.7364 0.8736 4

LUCAS vn1 0.9209 0.9097 0.7958 0.8755 validation
LUCAP vn10b+vn1 0.9755 0.9167 0.9212 0.9378 validation

CINA vn1 0.9765 0.8564 0.7253 0.8528 all features
CINA vn11 0.9778 0.8637 0.718 0.8532 CE

Table 2: Results of the final submissions in terms of AUC (first 4 lines). LUCAS and
LUCAP were used for validation and learning only.

It is interesting to note that in the initial submission “vn1” for CINA-set we used all
132 features. The best CINA-result was obtained using committee of experts (CE) method
(“vn11”) applied to the following 7 submissions: “vn1” and “vn10-vn10e”.

Random Forest (Breiman, 2001) model proved to be the most suitable in the case of
SIDO-set. We used RF model with 1000 trees where 70 randomly selected features were
used for any splitter. Then, we computed number of occurrences in the RF-object for any
particular feature. These occurrences were used for further feature selection. For example,
we used in the final submission 1030 features for SIDO0, 517 features for SIDO1 and only
203 features for SIDO2.

Data Submission # features Fscore TrainAUC TestAUC

REGED1 vn14 400 0.7316 1 0.9522
REGED1 vn11d 150 0.8223 1 0.9487
REGED1 vn1 999 0.5 1 0.9445
REGED1 vn8 899 0.5145 1 0.9436

MARTI1 vn12c 500 0.5784 1 0.8977
MARTI1 vn14 400 0.5554 1 0.8953
MARTI1 vn3 999 0.5124 1 0.8872
MARTI1 vn7 899 0.4895 1 0.8722

SIDO0 vn9 203 0.5218 0.9684 0.946
SIDO0 vn9a 326 0.536 0.9727 0.9459
SIDO0 vn1 1030 0.5785 0.9811 0.943
SIDO0 vn14 527 0.5502 0.9779 0.9429

Table 3: Some additional results.

Lists of 100 manipulated features were given in the cases of REGED1 and MARTI1,
but, according to our experience, this information was not really helpful, see Table 3 where
submissions “vn1” (REGED) and “vn3” (MARTI) represent cases with all features. After
removal of the manipulated features, test-results were slightly worse: see submissions “vn8”
(REGED) and “vn7” (MARTI). Also, we have noticed surprising fact that value of Fscore
for “vn7” is smaller comparing with Fscore for “vn3” (MARTI). Respectively, FS was
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dataset         0         1         2    rk

REGED 0.9989 0.9522 0.7772  4

SIDO 0.9429 0.7192 0.6143  6

CINA 0.9764 0.8617 0.7132  2

MARTI 0.9889 0.8953 0.7364  4

Figure 3: Histograms of selected features (evaluated by the competition organizers) where
dcause: direct cause, deffect: direct effects, ocauses: other causes, oeffects: other
effects, spouses: parent of a direct effect, orelatives: other relatives, unrelated:
completely irrelevant.

conducted in the space of all features for the final submission “vn14”. In both cases of
REGED and MARTI we used 400 features including 33 manipulated features for REGED
and 42 manipulated features for MARTI. It appears that in case of SIDO0 Fscore reflects
rather relations with TrainAUC but not with TestAUC, see submissions “vn9” and “vn1”.

Remark 6 As a feedback the participants were able to view colour of their submission. For
example, all TestAUC for SIDO0 in the Table 3 were green (means top 25% of all current
results). Generally, this feedback appears to be too rough, and, definitely, cannot be accepted
as a sufficient in the case when distributions of the training and test datasets are different.

During competition we made the following number of full submissions (given in brack-
ets): CINA(8), REGED(12), MARTI(32) and SIDO(6) plus some partial submissions. We
did not use an opportunity of nested submissions (that means picking up the best out of
the table of results) during the competition, and have found afterwards that this option
may give significant advantage (see Table 4). Note that the methods which we used did not
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orient edges and cannot discover Market blanket as an expected outcome. Also, we did not
use HITON-algorithm or similar as a component of our methods.

Figure 3 was downloaded from the web-site of the competition. Similar histograms
of Jianxin Yin and Prof. Zhi Gengs Group (who won best overall contribution award)
demonstrate much larger proportions of dcauses and ocauses. However, Jianxin Yin and
his team did not produce significant improvement in terms of average AUC.

We have found that our results against unmanipulated datasets are quite competitive
(see column “CASE0” in the Table 2). In particular, CINA0-result is the best.

3.1 Post-challenge submissions

Using an opportunity of post-challenge submissions we were able to improve all results
against manipulated sets significantly. It is interesting to note that very competitive results

Data Method NoF Fscore TrainAUC TestAUC NoS BestChAUC

REGED1 LR 8 0.7133 0.9855 0.9861 9 0.9787
REGED2 LR 5 0.9985 0.9571 0.9467 8 0.8392
REGED1 Exp. 8 0.7133 0.9885 0.9867 10 0.9787
REGED2 Exp. 5 0.9985 0.9605 0.9513 9 0.8392

SIDO1 RF 128 0.5348 0.8681 0.7512 28 0.7532
SIDO2 RF 128 0.5348 0.8681 0.7359 28 0.6684

CINA1 AdaBoost 4 0.5455 0.8758 0.8694 5 0.8691
CINA2 AdaBoost 4 0.5455 0.8758 0.872 5 0.8157

MARTI1 LR 4 0.6429 0.8433 0.9407 8 0.947
MARTI2 LR 3 0.9995 0.7542 0.8049 9 0.7975
MARTI1 Exp. 4 0.6429 0.845 0.9469 9 0.947
MARTI2 Exp. 3 0.9995 0.7613 0.8296 10 0.7975

Table 4: Results of the post-challenge submissions against manipulated sets where the fol-
lowing abbreviations were used: 1) NoF - number of used features; 2) NoS - number
of previous submissions; 3) LR - linear regression with squared loss function; 4)
RF - random forest; 5) Exp. - optimisation with exponential loss function (1); 6)
BestChAUC - best challenge AUC.

for REGED and MARTI-sets (see Table 4) were produced using the most simplest linear
regression. Regularization was not necessary here because of the ultimate reduction of the
number of features. The property when TrainAUC is smaller comparing with TestAUC
(MARTI-set) may be viewed as a very interesting side effect of manipulation. Also, we were
trying to use AdaBoost algorithm against data with the same feature selection as in the
Table 4 but results were very poor.

Based on our experience, feature selection was the most important in order to achieve
all results of the Table 4. Also, we have found that the Algorithm 1 is particularly efficient
if we have prior information that the number of required features should be very small,
and, consequently, classification algorithm may be very simple. It appears that design of
the SIDO1 and SIDO2-sets was essentially different. Respectively, the number of features
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in the best submission was a quite significant, and the numbers of previous submissions
were three times greater comparing with other sets.

3.2 An exponential loss function

The following exponential loss function

exp {−ρ · yt · ut}, ut =
∑̀
j=1

wj · xtj , ρ > 0, (1)

appears to be more natural comparing with squared loss function which over-punish large
values of the decision function. However, application of the loss function (1) may not be
simple because we cannot optimize step size in the case of the gradient-based optimization.
Respectively, we will need to maintain low level of the step size in order to ensure stability
of the algorithm. As a result, convergence of the algorithm may be very slow. In the cases of
REGED or MARTI training sets with 3-8 features (see Table 4) we don’t need to be worried
about time problem: 100000 iterations until full convergence were conducted within 3min.

3.3 UCF-2008 data-mining competition

This recent competition was organized by the department of statistics and actuarial science
of the University of Central Florida2.

The available data are strongly imbalanced: 858620 (where 9737 positive and 848883
negative) units for training (labeled) and 95960 for testing (unlabeled). Any data-entry
includes label, id and 61 features which are not necessarily numerical. Using special Perl
software we transformed data into sparse format with 530 binary features. Then, we split
the labeled data into 2 parts for training (90%) and testing (10%), and applied k = 1000
balanced training subsets where representatives from the larger pattern were selected ran-
domly. As an outcome, the system produced matrix of linear regression coefficients M where
rows represent random subsets and columns represent features. Based on this matrix we
made an assessment of how stable is influence of the particular features. It is proposed to
keep in the model only features with stable influence (the ratio of the mean to StDev must
be bigger or equal comparing with selected value of threshold parameter ∆ = 0.5). As a
consequence, number of binary features was reduced to 320.

Our entry produced AUC = 0.6645 - third best result.

3.3.1 Uncertainty estimation

Using above matrix of regression coefficients M we can estimate uncertainty associated with
any particular data entry. First, we compute k predictions where k is number of random
sets. Then, we can measure the corresponding standard deviation or empirical probabilities
of deviation from the sample mean for any given margin.

2. http://dms.stat.ucf.edu/competition08/home.htm
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3.4 Computation Time and Used Hardware

A Dell desktop with 3GB RAM, 2.4GHZ INTEL CORE 2 DUO, was used for the most of
computations. For example, experiment with 10000 random sets as it is described in the
Section 3 took about 17 hours according to the special program written in C. We spent
about 2 hours in order to generate random forest for SIDO-set with 1000 trees where each
tree had up to 8 levels of depth.

4. Concluding Remarks

Computational statistics is a relatively new scientific area, which may be viewed as one of
the most promising areas of contemporary science. High technologies are generating large
data sets and new problems, which must be addressed. Data mining competitions represent
a rapidly growing and very important part of computational statistics. Practically any large
commercial company in the world has data mining department, which is responsible for data
analysis and modeling. Additionally, companies are hiring consultants in order to produce
an alternative solutions and check effectiveness of their own results. These activities may
be quite expensive, but unavoidable.

Generally, practical experience is the best way to learn, and participation in data mining
competitions may be useful for wide range of researchers including academics, consultants
and students in particular.

We understand that Causal Discovery competition was motivated by some interesting
theoretical papers. However, in practical applications we are dealing not with pure proba-
bility distributions, but with mixtures of distributions, which reflect changing in time trends
and patterns. Accordingly, it appears to be more natural to form training set as an unla-
beled mixture of subsets derived from different (manipulated) distributions, for example,
REGED1, REGED2,..,REGED9. As a distribution for the test set we can select any “pure”
distribution.

Another point, “blind learning” (case when training and test data-sets have different
distributions) appears to be interesting as a form of gambling. But in most practical appli-
cations proper organized validation is the most important. Respectively, it will be good to
apply traditional strategy: split randomly available test-set into 2 parts 50/50 where one
part will be used for validation, second part for the testing.

We considered in this paper several methods which may be used independently or in
conjunction. We cannot expect that any of the methods may demonstrate an absolute
superiority against the others. Therefore, performance of the particular method depends
on the dataset, and the main strength of our approach rests on flexibility.
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