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Abstract

This paper presents the use of Bernoulli mixture models for Markov blanket filtering and
classification of binary data. Bernoulli mixture models can be seen as a tool for partitioning
an n-dimensional hypercube, identifying regions of high data density on the corners of the
hypercube. Once Bernoulli mixture models are computed from a training dataset we use
them for determining the Markov blanket of the target variable. An algorithm for Markov
blanket filtering was proposed by Koller and Sahami (1996), which is a greedy search
method for feature subset selection and it outputs an approximation to the optimal feature
selection criterion. However, they use the entire training instances for computing the
conditioning sets and have to limit the size of these sets for computational efficiency and
avoiding data fragmentation. We have adapted their algorithm to use Bernoulli mixture
models instead, hence, overcoming the short comings of their algorithm and increasing the
efficiency of this algorithm considerably. Once a feature subset is identified we perform
classification using these mixture models. We have applied this algorithm to the causality
challenge datasets. Our prediction scores were ranked fourth on SIDO and our feature
scores were ranked the best for test sets 1 and 2 of the same dataset.
Keywords: Markov blanket filtering, mixture models, feature selection

1. Introduction

The term Markov blanket was coined by Pearl (1988). The Markov blanket (MB) of a
feature variable represents the set of features/attributes required to exactly predict the
behavior of that variable. In a Bayesian network the Markov blanket consists of parents,
children and spouses of the node representing that feature variable. The work described
in this paper concentrates on identifying the MB of the target variable. Practically, it is
not possible to identify the MB of the target variable exactly because of computational
issues or lack of sufficient data. Koller and Sahami (1996) presented a feature selection
algorithm called Markov Blanket filtering (MBF) which outputs an approximation to the
MB of the target variable. Their algorithm can also output a sorted feature list according
to the relevance of a feature with respect to the target variable. To run this algorithm we
have to assume K which is the size of the conditioning sets. However, large K values are
not possible due to computational issues.

In order to find the Markov blanket of target variable, we adapted the algorithm of
Koller and Sahami to use Bernoulli mixtures so that large K values can be used. The use
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of Bernoulli mixture models for classification is not new. The basic formula for a Bernoulli
mixture model was first proposed by Duda and Hart (1973). They have been successfully
used for OCR tasks by Juan and Vidal (2004) and Grim et al. (2000) and in supervised
text classification tasks (Juan and Vidal, 2002). Bernoulli mixtures have also been used for
supervised dimensionality reduction tasks (Sajama and Orlitsky, 2005).

Recently, we used Bernoulli mixtures for dimensionality reduction and showed how this
transformed data can be used as input to a classifier giving rise to a hybrid model of learning
(Saeed, 2008; Saeed and Babri, 2008). We used Bernoulli mixtures for mapping raw input
data onto a new probability space. Such a transformation results in an immense reduction
in the dimensionality of original data. It also achieves better classification results than
individual models. The algorithm, described in this paper, calculates the entropy values
from Bernoulli mixtures instead of calculating them from the actual training data. We
employed this technique to the causality challenge datasets (WCCI, 2008a), i.e., SIDO and
CINA datasets. Our results were amongst the top ranked entries in the competition.

The outline of this paper is as follows: In Section 2, Koller and Sahami’s MBF algorithm
is presented. In Section 3, Bernoulli mixtures are briefly introduced and the Bernoulli mix-
tures based MBF algorithm is described. The simulation results on the causality challenge
datasets are presented in Section 4 and finally the conclusions are given in Section 5.

2. Markov Blanket Filtering (MBF) By Koller and Sahami (1996)

Koller and Sahami (1996) presented an algorithm for Markov blanket filtering (MBF) which
is a greedy search algorithm, for identifying the MB of the target variable, based upon an
optimal feature selection criterion. We will briefly describe their algorithm in this section.
Let F = {F1, F2, . . . , Fn} be a set of features and f = (f1, f2, . . . , fn) be a corresponding
assignment of values. Let G be a subset of the feature set F and fG be a projection of f onto
the variables in G. The MBF algorithm minimizes the divergence between P (C|F = f) and
P (C|G = fG) using an expected conditional entropy measure given by:

δG =
∑

f

P (f)DKL

(
P (C|f) ‖ P (C|fG)

)

where C is the class label and DKL is the Kullback-Leibler (KL) divergence between the
true distribution P (C|F = f) and its estimated distribution P (C|G = fG). This divergence
is given by DKL(p ‖ q) =

∑
x∈Ω p(x) log p(x)

q(x) . The probability space Ω is the set of all
possible target labels. If we can find a feature set G for which δG is very small then G can
be used as an approximation to the full feature set F for predicting the target class.

Theoretically, Koller and Sahami have shown that a feature Fi can be omitted from a
possible feature set G by finding the Markov Blanket, M, for Fi. If the MB for Fi can
be identified then Fi can be safely removed from G without an increase in the divergence
from the true distribution. Practically, it is not possible to pinpoint exactly the MB of Fi,
hence, heuristics have to be applied. The algorithm selects a candidate set Mi for each
feature Fi and estimates how close Mi is to being the MB of Fi. The candidate set Mi

is composed of those features which have the highest correlation with Fi. The feature Fi

for which Mi is closest to being the MB is omitted. The approximation is based upon the
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following expected cross entropy measure:

δG(Fi|Mi) =
∑

fMi
,fi

P (Mi = fMi , Fi = fi)DKL

(
P (C|M = fM, Fi = fi) ‖ P (C|M = fM)

)

If Mi is the MB for Fi then δG(Fi|Mi) = 0 and this value will be small for an approxi-
mate MB. Algorithm 1 outlines the basic steps for selecting an approximate feature set for
predicting the target variable. In this algorithm K determines the size of the conditioning
set. We would like K to be as large as possible, however, practically larger values of K
lead to fragmentation of the dataset and reduce the accuracy of the probability estimates
used in estimating the cross entropy measure. Also, large values of K are not practical to
implement as they require the counting of 2(K+1) combination of values to calculate the
cross entropy measure. This algorithm can also be used to order variables, according to
priority or relevance to target variable, based upon the cross entropy measure.

1. Let G = F
2. Repeat until desired number of features in G

a. For each feature Fi ∈ G, let Mi be the set of K features Fl ∈ G− {Fi} which have the
highest correlation with Fi.

b. Compute δG(Fi|Mi) for each i.
c. Choose the i for which this term is minimal and define G = G− {Fi}

Algorithm 1: MBF Algorithm by Koller and Sahami (1996)

3. Multivariate Bernoulli Mixtures

Suppose we have a sample of training data, X = {x1,x2, . . . ,xm}, consisting of m input
vectors. Each input vector x ∈ Rn. If we want to estimate D mixture components from this
data, then a finite mixture model is described by a probability (density) function given by
p(x) =

∑D
d=1 πdp(x|d). Here, πd is the prior of each mixture and p(x|d) is its component-

conditional probability (density) function.
A multivariate Bernoulli mixture model assumes that each component of the model is an

n-dimensional multivariate Bernoulli probability distribution, each component or mixture
having its own set of parameters. For a single binary vector xk ∈ {0, 1}n, the form of this
distribution, in the dth mixture is given by (Bishop, 2006):

p(xk|d) =
n∏

i=1

(pdi)xki(1− pdi)1−xki ∀k, 1 ≤ k ≤ m,∀d, 1 ≤ d ≤ D

Here pdi ∈ [0, 1] is the probability of success of the ith component of vector xk for the dth

mixture, i.e., pdi = p(xki = 1|d). Also, we are assuming that the n-dimensional vector x has
n independent component attributes. The parameter θ to be determined is the probability
of success for each attribute of vector x, i.e., θ = p where p ∈ [0, 1]n.

We can use expectation maximization (EM) algorithm to find the parameters of each
mixture component as described in Appendix A. Also, Appendix B explains the use of these
mixtures for dimensionality reduction and classification. For details we refer the reader to
our recent work in this area (Saeed, 2008; Saeed and Babri, 2008).
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3.1 Adaptation of MBF algorithm Using Bernoulli Mixture Models

We found that the main problem with the MBF algorithm is in computing the expected cross
entropy from training data. It is not possible to compute this measure using large values
of K because of computational issues and problems with data fragmentation. However, we
can compute an approximation to this measure via the use of Bernoulli mixture models.
Bernoulli mixtures identify regions of high data density on the corners of a hypercube and
we can exploit this fact to estimate the cross entropy measure for large K values.

Let’s look at one Bernoulli mixture more closely. The parameters of the dth Bernoulli
mixture are completely specified by the probability vector pd and its prior πd. Here, the
ith component of pd, i.e., pdi represents the probability that the ith binary feature is one in
the dth Bernoulli mixture. We can threshold these probability values to see which corner of
the hypercube is represented by this mixture. A probability value greater than 0.5 can be
taken as a one and zero otherwise.

As an example lets take a 3 feature case. The mixture (0.7, 0.9, 0.1) with prior πd

represents the corresponding feature vector (1, 1, 0). It shows us that within the dataset
this mixture occurs πd fraction of times and within this mixture, feature 1 is one with
probability 0.7, feature 2 is 1 with probability 0.9 and feature 3 is 0 with probability 0.9.
We can also estimate the probability of occurrence of this feature vector. If we make an
optimistic estimate then we can say that feature 1 will be 1 when features 2 and 3 are 1 and
0 respectively at the most 70% of times. However, we can also say that feature 1 will be 1
at least 50% times when feature 2 and 3 are 1 and 0 respectively. So making an optimistic
guess, we can estimate the probability of feature vector (1,1,0) to be at the most 0.7 ∗ πd.
This also tells us that (1, 1, 1) occurs at the most 10% times and similarly (0,1,0) occurs at
the most 30% times.

We can formalize the above scheme and express the probability of feature vector, x,
when given the probability vector pd of the dth mixture, as:

p(x|d) = πd ∗min
i

pxi
di(1− pdi)1−xi (1)

Suppose X represents the set of all binary vectors in {0, 1}n, hence, |X | = 2n. We will use
the term ‘main vector’ for the feature vector that can be derived from a mixture density
and has the highest probability of occurrence according to Eq. (1). Hence, ‘main vector’ v
is defined as:

v = arg max
x∈X

p(x|d)

The main vector can also be derived by thresholding the probability values of a Bernoulli
mixture with probability vector p. The ith feature of the main vector is assigned binary 1
value if its probability pi ≥ 0.5 and binary 0 value otherwise.

The algorithm for finding the MBF is the same as Algorithm 1, except that Step 2b for
calculating the cross entropy measure is replaced by Algorithm 2. Here, the cross entropy
measure for a feature Fi, 1 ≤ i ≤ n, is approximated from the Bernoulli mixtures instead
of training data. To run this algorithm, we first determine the Bernoulli mixtures, from the
training data, for each class label separately. d+

k and d−k are the kth mixtures for the positive
and negative classes (C+ and C−) respectively. The total mixtures, D+ and D−, for positive
and negative classes respectively, are specified as one of the initial parameters to the EM
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algorithm and they don’t have to be the same. Hence, the total mixtures generated from
the entire training data is D = D+ + D−. Effectively, this algorithm finds the probability
of each main vector within all Bernoulli mixtures of positive and negative classes. If the
number of Bernoulli mixtures for each class is small then this can be done efficiently for
large values of K.

Take all sub-vectors vj , 1 ≤ j ≤ D, of main vectors, in the mixture models found by EM so
that vj ∈ {0, 1}K , i.e., vj is composed of all features that have the highest correlation with the
target (corresponds to M of Algorithm 1). As before, Fi is a feature and fi is a corresponding
assignment of value to Fi. In our case fi ∈ {0, 1}. The cross entropy measure δ′G(Fi|Mi) for
each feature Fi, 1 ≤ i ≤ n, can be computed as:

1. Find the probability of vj in the positive class as p+ =
∑D+

k=1 πkp(vj |d+
k )

2. Find the probability of vj in the negative class as p− =
∑D−

k=1 πkp(vj |d−k )
3. Calculate P (C+|vj) = p+

p++p− , assuming equal priors for both classes and similarly calculate
P (C−|vj)

4. Repeat 1,2,3 to calculate P (C+|vj , fi = 0) and P (C+|vj , fi = 1)
5. Sum over all sub-vectors and all values of fi to calculate cross entropy measure, δ′G(Fi|Mi),

approximated by:
∑

l∈{0,1}
∑D

j=1 DKL(P (C|vj , fi = l)||P (C|vj))

Algorithm 2: Approximating the cross entropy measure using Bernoulli mixtures

Time Complexity: Section 4.1 shows that this algorithm has particular advantage
when total training examples and features are very large in a dataset. If we don’t count the
initial step of computing correlation matrix and D Bernoulli mixtures then subsequent steps
of the algorithm have roughly a time complexity of O(rnKD2c), where r is the number of
features to eliminate, n is the total features and c is the total number of classes. In contrast,
Koller and Sahami’s algorithm for m training examples takes O(rnKm2Kc) as the cross
entropy measure is being computed from mxK sized data and we need to look at 2K

combination of values. However, we are computing our cross entropy measure from DxK
sized data, where we are only looking at D main vectors in each Bernoulli mixture, resulting
in a dramatic reduction in time.

4. Simulations

To get an insight of MBF using Bernoulli mixtures we applied it to the SIDO and CINA
datasets of the causality challenge. Each dataset has three types of test sets corresponding
to the same training data. Test sets with subscript 0 are un-manipulated datasets and have
the same distribution as the training data. Datasets with subscripts 1 and 2 have features
that have been manipulated by some external agent and can have distracters or probes.
Details can be found on the challenge’s website (WCCI, 2008a) and are summarized in
Table 1. The identity of each feature was not revealed to the challenge participants.

SIDO dataset is a pharmacology dataset that has only binary features. The features
denote descriptor molecules which have been tested against AIDS HIV virus. The labels
of each instance indicate molecular activity. Some of the features are actual molecular
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descriptors and some of them are artificially generated probes. The identity of each feature
was not revealed to the contestants of the challenge. CINA dataset is an econometrics
dataset derived from UCI machine learning repository ‘Adult’ dataset. In this case also,
the details of each feature were not revealed to us.

The evaluation of results was based upon the average accuracy, ‘Tscore’, of the three
test sets for each dataset (Guyon et al., 2008). The contestants had the option of submitting
a sorted nested feature subset list of r (r ≤ n) features, sorted according to the importance
of each feature in predicting the target. Hence, multiple predictions could be made using
the first s features, where s varies by powers of 2, i.e., 1, 2, 4, 8, . . . features. An ‘Fscore’
was computed to indicate how well the predicted set of features matched with the actual
MB of the target variable (known only to the organizers) (Guyon et al., 2008). For our
submissions, we submitted a sorted list of features ranked according to a feature’s relevance
in predicting the target, and a set of predictions corresponding to the nested feature subsets.
Submitting a set of predictions gives us an added advantage over those participants who
submitted only a single set of predictions.

During the challenge we made 29 complete entries on SIDO and 16 complete entries on
CINA dataset. A complete entry consists of predictions on all three test files of a dataset
(i.e., subscript 0, 1 and 2). Once we submitted an entry, we got immediate feedback on
our performance, whether our entry was in the first, second, third or fourth quartile, as
compared to the other participants. Only our last submitted entry was considered for final
ranking. We used the quartile information and 2 fold cross validation accuracy to determine
the final models for the last entry. Our entire source code was written in C++ and Matlab
in the CLOP framework (Saffari and Guyon, 2006).

Dataset Domain Continuous Binary Positive Negative Total
Features Features Examples Examples

SIDO Pharmacology 0 4932 452 12226 12678
CINA Econometrics 24 108 3939 12094 16033

Table 1: SIDO and CINA challenge datasets

4.1 Results on SIDO, The Pharmacology Dataset

We generated Bernoulli mixtures on the SIDO dataset. The initial values specified to the
algorithm for number of Bernoulli mixtures was 10 for both classes, however, we ended
up with 4 and 7 Bernoulli mixtures for the positive and negative class respectively. There
were 16,033 training examples in this set and we were unable to run Koller and Sahami’s
algorithm on this set for K ≥ 6 due to limited computing resources available to us. However,
we easily ran it for large values of K with the Bernoulli mixture version of MBF as there are
only 11 mixtures and the combinations needed to compute cross entropy values is immensely
smaller. Hence, we compute the MB from 11x4932 sized data instead of the full 16033x4932
sized data. The feature scores along with test scores on different values of K for the SIDO0,
SIDO1 and SIDO2 datasets are given in Table 2.

For this dataset we returned our predictions on nested feature subsets, as described
in Section 4. The challenge organizers chose the feature set for which the classification
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SIDO0 SIDO1 SIDO2
K Fnum Fscore Tscore Fnum Fscore Tscore Fnum Fscore Tscore
10 1024 0.4717 0.9332 1024 0.6895 0.7140 1024 0.6895 0.6145
15 1024 0.4857 0.9407 1024 0.6928 0.7464 128 0.6928 0.7155
20 512 0.4831 0.9457 2048 0.6635 0.6565 1024 0.6635 0.6134
25 512 0.4921 0.9381 1024 0.7335 0.7124 1024 0.7335 0.6325
30 1024 0.4592 0.9434 4096 0.7242 0.7246* 512 0.7242 0.6216
40 4096 0.4095 0.9391* 4096 0.694 0.7309* 4096 0.694 0.5788*

Table 2: Results on the SIDO dataset. Fnum is the number of features, Fscore is the score
on the feature set (see Section 4), Tscore is the accuracy on the test set. The
entries marked by ’*’ were classified using the naive Bayes’ classifier. For the
rest of the entries the classifier used was a combination of Bernoulli mixtures and
ensemble of neural networks.

accuracy was maximum and hence, this decides the ‘fnum’ value in Table 2. Depending
upon the feature subset we used two different classifiers. Either the naive Bayes’ classifier
or a combination of Bernoulli mixtures and ensemble of neural networks was used to classify
data (see Appendix B). In an ensemble of neural networks, the overall prediction was made
by combining outputs from individual neural networks (Saffari and Guyon, 2006). We used
maximum of 10 neural network models, each trained with a different number of neurons in
the hidden layer.

Figure 1: Profile of features selected for SIDO. Legend: dcause=direct cause, def-
fect=direct effects, ocauses=other causes (indirect), oeffects=other effects (in-
direct), spouses=parent of a direct effect, orelatives=other relatives, unre-
lated=completely irrelevant (see WCCI, 2008b)

Our final entry for SIDO1 and SIDO2 was made using K = 30. It has the best Fscores
amongst all ranked entries in the challenge on SIDO1 and SIDO2. Figure 1 shows the profile
of features selected with K = 30. It is interesting to note that the algorithm finds only
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the direct causes of target and irrelevant features in case of SIDO1 but the accuracy of the
classifier is quite good even in the presence of the irrelevant features. However, in case of
SIDO2, the algorithm is able to find out a higher fraction of direct causes as compared to
irrelevant features and the classifier performs quite well.

The classification accuracy on SIDO0 is almost the same for all values of K. Interest-
ingly, the performance of a simple naive Bayes’ classifier and the hybrid model is almost
identical on SIDO0 and SIDO1. The best classification results are obtained for K = 15 for
both SIDO1 and SIDO2 where the algorithm gives best results using 1024 and 128 features
respectively and classification was done using a hybrid model of Bernoulli mixtures and an
ensemble of neural networks.

4.2 Results on CINA, The Econometrics Dataset

CINA0 CINA1 CINA2
No. Fnum Fscore Tscore Fnum Fscore Tscore Fnum Fscore Tscore
1 32 0.5069 0.9751 16 0.7858 0.8248 16 0.7858 0.6867
2 21 0.4875 0.9727 21 0.5196 0.8188 16 0.5196 0.6627

Table 3: Results on the CINA dataset. See Table 2 for explanation of Fnum, Fscore and
Tscore

Table 3 shows the results obtained on two of our submitted entries for CINA dataset.
The first row shows the feature scores and accuracy of the three test sets. Here, feature
subset selection algorithm was used where forward selection was done based on the accuracy
achieved by the Naive Bayes’ classifier on the training set. The second row shows the
results of feature selection when MBF using Bernoulli mixtures was used for selecting binary
features and feature subset selection was used for selecting continuous features. Here, the
total features used include 6 continuous features and the rest are binary. For this dataset
classification was performed using an ensemble of neural networks on the selected feature

Figure 2: Profile of features selected for CINA. For legend see Figure 1 (WCCI, 2008b)
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values after standardizing the data. We can see that the two methods have almost the same
percentage accuracy on the three types of datasets, however, feature subset selection gives
much better feature scores.

Figure 2 shows the profile of features selected for CINA on our last entry. It is interesting
to see that our forward selection algorithm with naive Bayes’ is able to find many direct
causes of the target variable for all three datasets. The percentage of irrelevant features
identified is very small compared to the direct causes that have been identified. For dataset 0
this algorithm is able to identify many indirect causes of the target and also the parents of
the direct causes.

4.3 Comparison and Discussion of Results

K=15 Last Submission
Dataset Features TScore Features Tscore Top Max Test

ranking Score
SIDO0 1024 0.9407 8 0.9391 0.9443 0.9467
SIDO1 1024 0.7464 4096 0.7246 0.7532 0.7893
SIDO2 128 0.7155 512 0.6216 0.6684 0.7674

K=3
CINA0 21 0.9727 32 0.9751 0.9765 0.9788
CINA1 21 0.8188 16 0.8248 0.8691 0.8977
CINA2 16 0.6627 16 0.6867 0.8157 0.891

Table 4: Comparison of results. Top ranking is the Tscore of the winning participant. Max
Test score is the highest achieved using actual knowledge of causal features.

Table 4 shows a comparison of results with the top ranking entries on both SIDO and
CINA datasets. The table shows our results with K = 15 on SIDO dataset, results with
our last submitted entry and test scores of the winning participants. The column with
the ‘Max Test Score’ indicates the best score reachable, as estimated by reference entries,
using the knowledge of true causal relationships, not available to participants. Our last
entry counted towards the ranking of participants and was ranked fourth. The average test
score with K=15 was the best accuracy rate amongst all participants, however, it did not
count towards the final ranking as it was not our last submitted entry. The original dataset
had 4932 features and we can see from the table that we were able to make quite good
predictions using a very small set of features.

In case of CINA, we attained good results by using only 21 features on CINA0 and
CINA1 and 16 features for CINA2 for K = 3. Also, our last entry was made using subset
feature selection, with the forward selection algorithm with Naive Bayes’ algorithm (Alpay-
din, 2005). Here the classifier used was an ensemble of neural networks. We can see that the
two methods give almost the same accuracy, even though, they use a different feature set.
Our test set accuracies are quite comparable with the top ranking participant for CINA0
and CINA1. However, our algorithm failed to produce good results for CINA2. Our last
submitted entry was ranked sixth amongst all other entries.
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Figure 3: Pairwise performance of participants on test sets 0, 1 and 2. Green is SIDO and
blue is CINA (see WCCI, 2008b). Our entry is encircled and denoted by ‘∗’.

Our feature scores (Fscores) were the best amongst all participants for test sets 1 and 2
of SIDO dataset and also for test sets 1 and 2 of the CINA dataset (Guyon et al., 2008). In
order to further compare performances, the challenge organizers made pairwise comparisons
between different challenge participants and counted the fraction of times our Tscore was
better than other participants for a fixed number of features (Guyon et al., 2008). They did
the same for Fscores also. Figure 3 shows the pairwise comparison. We have encircled our
entries in black. Our feature scores are not very good for the test set 0, i.e., the data with
no manipulations, but SIDO has a high Tscore as compared to the rest of the entries. Our
feature scores for test sets 1 and 2 are significantly better than the rest of the participants on
both SIDO and CINA datasets. Also, our Tscore is higher than the rest of the participants
more than 70% of the times for test sets 1.

To further evaluate the results of the challenge, the organizers defined a new Fscore.
The new Fscore was defined using the 3 versions of precision and recall, using as a set of
features, the MB in set 1, MB and causes and effects in set 2 and all variables connected
to the target in set 3 (Guyon et al., 2008). Figure 4 shows the plot of Tscore vs. the
new Fscore of different participants for SIDO and CINA datasets. Again our entries are
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Figure 4: TScores Vs. new FScore for all participants for CINA (left) SIDO (right) datasets
(see WCCI, 2008b). Our entry is encircled and denoted by ‘∗’.

encircled in black. It can be seen that we do quite well on CINA dataset as compared to
the rest of the participants and our results are considerably better than other participants
for the SIDO datasets.

5. Conclusions

In this paper we discussed the use of Bernoulli mixture models for Markov Blanket filtering
by adapting the original algorithm proposed by Koller and Sahami in 1996. Instead of
using the training data for estimating entropy values we have used Bernoulli mixtures to
approximate these values. Hence, in this way we can reduce the computations required
for approximating the cross entropy values and use larger conditioning sets. We tried our
method on the SIDO and CINA datasets of the causality workbench challenge. Our method
was ranked fourth on SIDO and sixth on CINA. Our feature scores were ranked best on
the test sets 1 and 2 of both SIDO and CINA. Also, one of our entries, submitted during
the challenge, had the best results on SIDO, out of all challenge entries, but did not count
towards the final ranking as it was not our last submitted entry.

As part of future work we would like to extend our algorithm to do causal feature
selection. Right now we determine only the MB of the target variable but do not pin point
the causes or effects of the target variable. Also, we are working on developing methods that
determine a suitable value of K for a particular dataset so that model selection techniques
can be applied to datasets that have probes or noise added to them.
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Appendix A. The EM Algorithm for Learning Bernoulli Mixtures

A finite mixture model is described by a probability function given by p(x) =
∑D

d=1 πdp(x|d).
Learning the parameters of a finite mixture model is a statistical parameter estimation prob-
lem and we can use expectation maximization (EM) algorithm to estimate these parameters
from a sample of training data X = {xk}m

k=1,x ∈ Rn. The EM algorithm maximizes the
log likelihood function of data given by:

L(Θ|X) =
m∑

k=1

log
( D∑

d=1

πdp(xk|d)
)

(2)

Here Θ denotes the unknown variables to be estimated and consists of the priors, πd, of
each mixture and the parameters, θd, of each mixture distribution, i.e., Θ = {πd, θd}D

d=1.
A Bernoulli mixture model assumes that each component of the model is an n-dimensional

multivariate Bernoulli probability distribution, each component or mixture having its own
set of parameters. The form of this distribution for a single vector xk ∈ {0, 1}n in the dth

distribution is given by (Bishop, 2006):

p(xk|d) =
n∏

i=1

(pdi)xki(1− pdi)1−xki (∀k, 1 ≤ k ≤ m,∀d, 1 ≤ d ≤ D)

Here pdi ∈ [0, 1] is the probability of success of the ith component of vector xk for the
dth mixture. Here the parameter θ to be determined is the probability of success of each
attribute of vector x, i.e., θ = p where p ∈ [0, 1]n.

The EM algorithm assumes that the observed data is incomplete and associates a vector
of latent variables zk = {zk1, zk2, . . . , zkD} with each data point. The latent variables are
indicator variables, with zkd = 1 indicating that the dth mixture component generated the
kth data point. The EM optimization takes place iteratively in two steps. In step 1, also
called the expectation step (E-Step), we estimate the expected values of the hidden variables
assuming that the model parameters θd are known. In step 2, also called the maximization
step (M-Step), we estimate the parameter values θd to maximize the likelihood of data,
given by Eq. (2), on the basis of the latent variables calculated in the E-step. This is done
iteratively until the parameters converge to stable values. To start the EM algorithm we
initialize the probabilities with random values.

The form of E-step is the same for more or less all distributions and it is given by:

zkd =
πdp(xk|d)∑D
j=1 πjp(xk|j)

(∀d, 1 ≤ d ≤ D, ∀k, 1 ≤ k ≤ m) (3)

The M-step determines the maximum likelihood estimate of the priors, of each distri-
bution, as given below:

πd =
1
m

m∑

k=1

zkd (∀d, 1 ≤ d ≤ D)

Also, in this step the parameters of the particular probability distribution are estimated.
These parameters depend on the probability function being used. For a Bernoulli mixture
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model, the M-step finds the maximum likelihood estimate of the probability of success of
each vector component as given below:

pd =
∑m

k=1 zkdxk∑m
k=1 zkd

(∀d, 1 ≤ d ≤ D)

The simulations, described in this paper, use the regularized version of EM algorithm de-
scribed by Li et al. (2005). Also, Laplacian prior can be used to smooth the probability
estimates, hence, the probability values are estimated as below (γ is the regularization
constant):

pd =
1 +

∑m
k=1 zkd(1 + γ ln zkd)xk

2 +
∑m

k=1 zkd(1 + γ ln zkd)

The parameter D, i.e., the total mixtures to be determined is input to the algorithm by
the user. We determine this number through cross-validation. Normally, we end up with
fewer mixtures than originally specified, as the priors for many mixtures converge to zero
and we can ignore those mixtures. This is especially true for sparse binary data with a high
dimensional feature space. In such a case, no matter what the original value of D, specified
to the regularized EM algorithm, we always end up with more or less the same number of
mixtures with non-zero priors. Hence, the regularized version of EM algorithm is able to
find an optimal number of clusters within data.

Appendix B. Classification Using Bernoulli Mixtures

In this section we give a brief overview of how we use Bernoulli mixtures for feature trans-
formation and classification of instances. For details, we refer the reader to our previous
work (Saeed, 2008; Saeed and Babri, 2008). We extend our terminology to include the
class labels assigned to each example point. Suppose we have a set of c labeled classes
Q = {q1, q2, . . . , qc}. We generate a total of Di mixtures for class qi. Let sid represent
the dth mixture/cluster in the ith class with prior for that mixture being given by πid and∑Di

d=1 πid = 1. Then the class conditional probability function, for the ith class having Di

mixture components (given by {sid}Di
d=1), is given by:

p(x|qi) =
Di∑

d=1

πidp(x|sid)

Given the original dataset X, we perform a transformation on X given by: T : X →
Φ, X ∈ Rn, Φ ∈ RN . The lth component of the new feature vector φk is given by:

φkl =
p(xk|sid)πid∑c

i=1

∑Di
j=1 πijp(xk|sij)

(∀k, 1 ≤ k ≤ m)

The index l has a value corresponding to every mixture of every class. For a sub-cluster
sid, the subscript l is given by l =

∑i−1
j=1 Dj + d . Here φk ∈ RN , where N =

∑c
i=1 Di. We

can see that the numerator in the above expression is the same as that of Eq. (3) which
represents the expectation of the latent variable in a mixture. The term in the denominator
is used to normalize the entire feature vector over all the classes. If N < n then our new
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feature set will lie in a lower dimensional space as compared to the original feature space
and hence, this method can be used for dimensionality reduction.

We use the expectation of the latent variables as the transformed set of features for input
to a classification algorithm. The feature vector is normalized so that the sum of components
is unity. We have shown in our previous work (Saeed, 2008; Saeed and Babri, 2008) that
these set of transformed features lead to an immense reduction in the dimensionality of data,
especially when the data is sparse. We can apply any classification algorithm to classify the
data, e.g., SVM, neural networks, boosting models, etc. The work described in this paper
uses an ensemble of neural networks.
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