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Abstract: Causal Explorer is a Matlab library of computational causal discovery and variable 
selection algorithms. Causal Explorer offers a wide variety of major prototypical and state-of-
the-art algorithms in the field and a unified and easy-to-learn programming interface. Causal 
Explorer is designed for all researchers performing data analysis with the desire to gain an 
understanding in the underlying causal mechanisms that generated their data. In addition to the 
causal discovery methods, Causal Explorer contains related variable selection techniques. The 
variable selection algorithms in Causal Explorer are based on theories of causal discovery and 
the selected variables have specific causal interpretation. The Causal Explorer code emphasizes 
efficiency, scalability, and quality of discovery. The implementations of previously published 
algorithms included in Causal Explorer are more efficient than their original implementations. A 
unique advantage of Causal Explorer is the inclusion of very large scale and high quality 
algorithms developed by the authors of this chapter. The first version of Causal Explorer was 
introduced several years ago to the biomedical community. The purposes of this chapter are to 
re-introduce the library to a broader audience, to describe new functionality of the library, and to 
provide information on the use of Causal Explorer in community as a whole and in the 
Causation and Prediction Challenge. 
 
1. Introduction  
 
Discovery of causal knowledge is crucial for advancing research, developing new technology, 
and making sound policy, financial, and marketing decisions. Biologists need to know the factors 
that cause a disease to devise new therapeutic procedures. Public health policy makers need to 
know the factors that cause an increase in the number of medical errors in order to reduce them. 
Epidemiologists seek the factors causing disease in order to prevent it. Launching a new 
advertisement campaign requires knowing the factors that affect consumer behavior regarding 
the product. Increasing the number of visitors to a web site requires knowledge of what attracts 
them to the site. 
 
Classically-trained statisticians often quote the maxim “association is not causation” to indicate 
that causal discovery is impossible without experiments. For example, simply observing a high 
occurrence of yellow stains on the fingers in patients with lung cancer relative to normal subjects 
does not imply a causal relation between cancer and staining (in reality heavy smoking is causing 
both to co-occur often). Similarly, observing that two items tend to be purchased together in high 
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frequency does not necessarily imply that increasing the sales of the first item will be followed 
by an increase of the sales of the second item. 
 
Unfortunately, discovering causal relations strictly by randomized experimentation is inefficient 
and often impractical, unethical, or simply impossible. Recent advances in computational causal 
discovery theory and algorithm research and development mathematically prove and 
experimentally show respectively the feasibility of causal discovery from observational data 
alone under broad conditions. The acceptance and application of causal discovery methods are 
steadily gaining ground. The following are just a few of important references in this emerging 
and exciting branch of science and technology: (Neapolitan, 2004; Spirtes et al., 2000; Pearl, 
2000; Glymour and Cooper, 1999; Neapolitan, 1990; Pearl, 1988). 
  
A large body of causal discovery algorithm research and development relies on the formalisms of 
graphical models such as Bayesian Networks (BNs) and Causal Probabilistic Networks (CPNs). 
BNs are computational and mathematical objects that represent compactly joint probability 
distributions by means of a directed acyclic graph denoting dependencies and independencies 
among variables and conditional probability distributions of each variable given its parents in the 
graph (Neapolitan, 1990). The fundamental axiom of BNs is the Markov Condition that allows 
for a concise factorization of the joint distribution and captures the main characteristic of 
causation in macroscopic systems, namely that causation is local (Glymour and Cooper, 1999). 
This leads naturally to Causal Probabilistic Networks (CPNs), i.e., a special class of Bayesian 
Networks (BNs) in which edges between any two variables in the graph denote direct causal 
relationships between the two variables (Spirtes et al., 2000). A review of applications of CPNs 
and BNs is outside the scope of this chapter; however we do note that CPNs and BNs although 
introduced a mere 20 years ago have already led to a long series of pioneering applications in 
various scientific disciplines (Neapolitan, 2009; Taroni, 2006; Popp and Yen, 2006; Gámez et 
al., 2004; Friedman et al., 2000; Heckerman et al., 1992; Heckerman and Nathwani, 1992). 
 
Causal graphical models such as CPNs are also recognized in bioinformatics and computational 
biology, as important representations for modeling causal relationships at a finer granularity than 
standard clustering or regression methods, and as having sound statistical foundations for 
handling noise, missing data and doing inference (Neapolitan, 2009; Baldi and Hatfield, 2002). 
The appeal of CPNs is that, contrary to the heuristic approaches for generation of causal 
hypotheses in bioinformatics and medical research, (e.g., methods that were based on clustering, 
regression, and variable selection as in (Li et al., 2001; Eisen et al., 1998; Spellman et al., 1998)) 
the recently-developed theory of causal induction using graphical models and related 
distributions, provides guarantees for highly sensitive and specific discovery of causal 
relationships (Spirtes et al., 2000). For example, it has been theoretically proven that such 
methods can be used to reliably infer causal relationships among variables in: distributions 
captured by acyclic graphs (Spirtes et al., 2000); continuous linear Gaussian systems with 
feedback loops in equilibria (Spirtes et al., 2000); dynamic systems outside equilibrium sampled 
at discrete time points (Friedman et al., 1998); and linear or non-linear systems of discrete 
variables in equilibria (Pearl and Dechter, 1996).  
 
It has also been shown that under certain broad conditions, a Markov blanket which is the 
minimal set of predictors needed for the classification of a response variable of interest is the set 
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of direct causes, direct effects, and direct causes of the direct effects of the response variable in a 
CPN (Tsamardinos and Aliferis, 2003). Thus, causal discovery algorithms that find the Markov 
blanket by necessity solve the variable selection problem. 
 
We have recently introduced to the biomedical audience the powerful technology of causal 
discovery and variable selection encapsulated in the Causal Explorer library (Aliferis et al., 
2003b). Over the years, we have added more algorithms and new functionality to the library. The 
purposes of this chapter are to re-introduce Causal Explorer to a broader audience, to describe 
new functionality of the library, and to provide information on the use of Causal Explorer in 
community as a whole and in the Causation and Prediction Challenge. In addition, we wish to 
stimulate research with the set of causal discovery and variable selection algorithms that we have 
developed for datasets with very large numbers of variables (Aliferis et al., 2009a; Aliferis et al., 
2009b; Tsamardinos et al., 2006a; Brown et al., 2005; Brown et al., 2004; Tsamardinos and 
Aliferis, 2003; Aliferis et al., 2003a; Tsamardinos et al., 2003a; Tsamardinos et al., 2003b; 
Aliferis et al., 2002). 
 
2. The Causal Explorer Library 
 
Currently a rich variety of software is available for modeling and inference with BNs but only a 
limited amount of commercial and public domain software for learning causal graph models 
from data is available to researchers (for a comprehensive collection of software tools see: 
http://www.ai.mit.edu/~murphyk/Software/bnsoft.html). 
 
Causal graph induction algorithms come in three flavors: Bayesian (or search-and-score) 
approaches, constraint-based conditional independence approaches, and hybrid approaches. 
When a researcher is interested in a specific region of the causal graph (e.g., to find causes and 
effects of the response variable or to find a pathway), there is no need to induce the entire causal 
graph (i.e., perform “global causal discovery”), instead one can induce that specific region of 
interest (i.e., perform “local causal discovery”) which is typically much more computationally 
efficient (Aliferis et al., 2009a; Aliferis et al., 2009b; Chickering et al., 1994). In our experience, 
local causal discovery methods can be applied to datasets with hundreds of thousands variables 
where global causal discovery methods may not be practical. Also, the so-called Markov blanket 
induction methods (which is a sub-family of local causal discovery techniques) provably solve 
the variable selection problem under the assumptions about the learner and loss function 
(Tsamardinos and Aliferis, 2003). 
 
We describe here a software library (which we call Causal Explorer) that provides researchers 
with code that can be used for causal discovery (global and local) and variable selection. Causal 
Explorer can be used primarily to: 
 

1. Discover the direct causal or probabilistic relations around a response variable of interest 
(e.g., disease is directly caused by and directly causes a set of variables/observed 
quantities). 

2. Discover the set of all direct causal or probabilistic relations among the variables. 
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3. Discover the Markov blanket of a response variable of interest, i.e., the minimal subset of 
variables that contains all necessary information to optimally predict the response 
variable. 

 
The selection of algorithms in Causal Explorer (see next section) emphasizes highly-scalable 
causal discovery, reliable and fast implementations and convenient integration to custom code. 
Such algorithms have been frequently employed in analysis of data in psychology, medicine, 
biology, weather forecasting, animal breeding, agriculture, financial modeling, information 
retrieval, natural language processing, and other fields. They can be used to automatically 
construct decision support systems from data (e.g., for medical diagnosis), or to generate 
plausible causal hypotheses (e.g., which gene regulates which). 
 
The Causal Explorer library is provided as a collection of Matlab functions. The reasons for this 
choice are fourfold: (a) Matlab is a versatile and wide-spread environment for experimentation 
with data mining and modeling tasks; (b) Matlab codes can be interfaced with practically any 
standard language such as C++, Java, etc. (c) As newer versions of the contained algorithms are 
being developed, transfer to the library can be made very quickly (e.g., compared to the much 
slower process of re-writing the new algorithms in C/C++); (d) Matlab code if written correctly 
(i.e., in “vectorized” form) is very efficient and in our experiments it often outperforms native 
implementations of the algorithms written in C/C++ and other languages.  
 
The Causal Explorer library is provided free of charge for non-commercial research. Code, 
example data, and documentation are available online at: http://www.dsl-
lab.org/causal_explorer. 
 
3. Causal Discovery and Variable Selection Algorithms 
 
In this section, we describe the algorithms implemented in Causal Explorer. Most constraint-
based algorithms currently support three statistical tests of independence (or measures of 
association depending on context): G2 and thresholded mutual information for multinomial 
distributions and Fisher’s Z-test for multivariate Gaussian distributions (Anderson, 2003; Cover 
et al., 1991). In most cases this extends the functionality of the algorithms from their original 
published form. We also note that the algorithms HITON-PC, HITON-MB, MMHC, MMPC, 
and MMMB were not included in the first version of Causal Explorer (Aliferis et al., 2003b). 
The detailed information on running algorithms, their inputs, and outputs can be found in the 
user’s manual that is included in the installation package of Causal Explorer. 
 
3.1. PC 
 
PC is a prototypical global causal discovery constraint-based algorithm with well-developed 
theory and many applications (Spirtes et al., 2000). The Causal Explorer implementation of PC 
does not impose limits on the number of variables or cases in the input, and is conveniently 
callable from other code via the provided API. 
 
3.2. TPDA (Three Phase Dependency Analysis) 
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TPDA is also a global causal discovery algorithm that achieves polynomial-time execution if a 
constraint on the distribution of variables is enforced (Cheng et al., 2002). The Causal Explorer 
implementation of TPDA employs a very fast implementation of mutual information and does 
not restrict the number of input variables or cases unlike the version distributed by the TPDA 
inventors in BN PowerConstructor software (http://www.cs.ualberta.ca/~jcheng/bnpc.htm). It is 
also easily callable from other code. 
 
3.3. SCA (Sparse Candidate Algorithm) 
 
This is a fast search-and-score global causal discovery algorithm designed for sparsely connected 
domains, e.g., gene networks (Friedman et al., 1999).  
 
3.4. MMHC (Max-Min Hill Climbing) 
 
MMHC is a highly scalable hybrid global causal discovery algorithm that has been shown to 
outperform in speed and quality several state-of-the-art algorithms including techniques 
mentioned above (Tsamardinos et al., 2006a). MMHC first uses a local discovery algorithm 
MMPC to learn a skeleton of the network and then it uses search-and-score method for its 
orientation. 
 
3.5. KS (Koller-Sahami) 
 
The Koller-Sahami algorithm returns a heuristic approximation to the Markov blanket of the 
response variable (Koller and Sahami, 1996). A very fast implementation of expected cross 
entropy is used in the algorithm implementation. 
 
3.6. LCD2 
 
The LCD2 algorithm is a local causal discovery algorithm that requires knowledge of one or 
more instrumental variables (i.e., variables that have no parents within the studied set of 
variables) (Cooper, 1997).  
 
3.7. GS (Grow-Shrink) 
 
The Grow-Shrink algorithm returns the Markov blanket of a variable (Margaritis and Thrun, 
1999). In multinomial distributions, this algorithm requires sample size exponential to the 
number of variables in the Markov blanket. 
 
3.8-3.11. IAMB (Incremental Association Markov Blanket), IAMBnPC, InterIAMB, 
interIAMBnPC 
 
These are algorithms that return the Markov blanket of a variable (Tsamardinos and Aliferis, 
2003; Tsamardinos et al., 2003a). IAMBnPC, InterIAMB, interIAMBnPC either use the PC 
algorithm (Spirtes et al., 2000) or interleaved pruning to reduce the number of returned false 
positives relative to IAMB (trading off sample for speed) (Tsamardinos et al., 2003a). In 
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multinomial distributions, all these algorithms require sample size exponential to the number of 
variables in the Markov blanket. 
 
3.12-3.13. HITON-PC (HITON Parents and Children) and MMPC (Max-Min Parents and 
Children) 
 
HITON-PC and MMPC are local causal discovery algorithms that return the set of direct causes 
and effects of the response variable (Aliferis et al., 2009a; Aliferis et al., 2009b; Tsamardinos et 
al., 2006a; Aliferis et al., 2003a; Tsamardinos et al., 2003b). HITON-PC uses univariate heuristic 
for prioritization of variables, while MMPC uses max-min association heuristic. These are highly 
sample efficient discovery techniques. 
 
3.14-3.15. HITON-MB (HITON Markov Blanket) and MMPC (Max-Min Markov Blanket) 
 
These are Markov blanket induction algorithms that require much less sample compared to GS 
and IAMB family of Markov blanket inducers (Aliferis et al., 2009a; Aliferis et al., 2009b; 
Tsamardinos et al., 2006a; Aliferis et al., 2003a; Tsamardinos et al., 2003b). HITON-MB uses 
univariate heuristic for prioritization of variables, while MMMB uses max-min association 
heuristic. 
 
4. Other Tools  
 
In addition to the causal discovery algorithms mentioned in section 3, Causal Explorer also 
includes several tools that facilitate causal discovery experiments and development of new 
algorithms. These tools are outlined below. None of these tools were provided in the first version 
of Causal Explorer (Aliferis et al., 2003b). The detailed information on running these tools can 
be found in the user’s manual that is included in the installation package of Causal Explorer. 
 
4.1. Bayesian network tiling tool 
 
It is well recognized in the field that the major technique for evaluating and comparing causal 
discovery algorithms is by simulation of data from a network of known structure. Then, it is easy 
to compare the reconstructed network as learnt by an algorithm with the true data-generating 
network to assess the quality of learning. For the results of the evaluations to carry to real-world 
data distributions the networks used for data simulations have to be representative of the real-
world examples. Typically, the networks employed for the data simulation are extracted from 
real-world BN-based decision support systems. Unfortunately, the size of the existing known 
BNs is relatively small in the order of at most a few hundred variables. Thus, typically causal 
discovery algorithms were so far validated on relatively small networks (e.g., with less than 100 
variables), such as the classical ALARM network (Beinlich et al., 1989) or other ”toy-networks”. 
Algorithms have also been developed to generate large random BNs. The BNGenerator system is 
one example for generating large random BNs from a uniform distribution (Ide and Cozman, 
2002). However, the BNGenerator system and other algorithms of this type do not provide any 
guarantees that these networks resemble the networks of the distributions likely to be 
encountered in practice (Aliferis and Cooper, 1994). The emergence of datasets of very high-
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dimensionality poses significant challenges to the development of new causal discovery 
algorithms.  
 
To address this problem, Causal Explorer implements an algorithm for generating arbitrarily 
large discrete Bayesian networks by tiling smaller real-world known networks. The algorithm 
preserves the structural and probabilistic properties of the tiles so that the distribution of the 
resulting tiled network resembles the real-world distribution of the original tiles (Tsamardinos et 
al., 2006b). 
 
4.2. Bayesian network data simulator 
 
Causal explorer implements a procedure to simulate data from Bayesian networks using the 
Gibbs sampling algorithm (Russell and Norvig, 2003). Such data can be used for evaluation of 
existing causal discovery algorithms and development of new methods. 
 
4.3. Utility for supervised discretization of continuous data 
 
In order to discretize continuous data, Causal Explorer implements a supervised discretization 
method that works as follows: 
 

1. Data is normalized so that each variable has mean 0 and standard deviation 1. 
2. After normalization, association of each variable with the response variable is computed 

using either Wilcoxon rank sum test (for binary response variable) or Kruskal-Wallis 
non-parametric ANOVA (for multicategory response variable) at 0.05 alpha level 
(Hollander and Wolfe, 1999). 

3. If a variable is not significantly associated with the response variable, it is discretized as 
follows: 

• 0 for values less than -1 standard deviation 
• 1 for values between -1 and 1 standard deviation 
• 2 for values greater than 1 standard deviation 

4. If a variable is significantly associated with the response variable, it is discretized using 
sliding threshold (into binary) or using sliding window (into ternary). The discretization 
threshold(s) is determined by the Chi-squared test to maximize association with the 
response variable (Agresti, 2002). 

 
The discretization procedure can be instructed to compute necessary statistics only using training 
samples of the data to ensure unbiased estimation of error metrics on the testing data. 
 
5. General Guidelines and Context of Use 
 
The algorithms in Causal Explorer can be used in several different experimental tasks and 
contexts: (a) to gain insight in the causal structure of the studied domain; (b) to locate promising 
variables for subsequent experimentation or detailed modeling; and (c) to derive a provably 
optimal minimal set of predictors for classification purposes. 
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In general, global causal discovery algorithms PC, TPDA, and SCA can be practically run when 
the number of variables is up to a few hundred and the connectivity (i.e., number of direct 
causes/effects around variables) of the data-generating process is uniformly small. When the 
number of variables is of the order of thousands, MMHC algorithm will be most helpful as it is 
the most scalable method. 
 
Local causal discovery algorithms will be most helpful when the number of variables is very 
large, or when the connectivity around the response variable is small (relative to available 
sample) while around other variables it may be large. 
 
In particular, when the sample is large relative to the size of the Markov blanket of the response 
variable (as a rule of thumb when several hundred samples are available for a Markov blanket 
with ~5 variables), GS and the IAMB variants will return excellent results. When the sample is 
smaller, HITON-MB and MMMB should be applied instead. Also, in many cases algorithms 
HITON-PC and MMHC that return the set of direct causes and effects of the response variable 
can be used for approximation of the Markov blanket. 
 
6. Statistics of Registered Users 
 
At the time of writing this chapter, Causal Explorer has 739 registered users in more than 50 
countries all over the world. Based on provided information in the user registration form, 402 
(54%) users are affiliated with educational, governmental, and non-profit organizations and 337 
(46%) users are either from private or commercial sectors. Major commercial organizations that 
have registered users of Causal Explorer include IBM, Intel, SAS Institute, Texas Instruments, 
Siemens, GlaxoSmithKline, Merck, and Microsoft. Table 1 provides a list of major U.S. 
institutions that have registered users of Causal Explorer. 
 
7. Use of Causal Explorer in the Causation and Prediction Challenge 
 
Causal Explorer library was used both by participants and organizers of the Causation and 
Prediction Challenge. 
 
7.1. Use of Causal Explorer by the Challenge participants 
 
Here are major achievements enabled by the Causal Explorer library in the Causation and 
Prediction Challenge: 
 

1. Gavin Cawley used Causal Explorer to become one of the Challenge winners. The 
software library allowed him to achieve the best prediction accuracy on SIDO and 
MARTI datasets (p12). 

2. Jianxin Yin et al. used Causal Explorer to become the Challenge winners in the “best 
overall contribution” category. Specifically, they obtained the best position of the Pareto 
front of the Fscore vs. Tscore graph over all datasets (p12, p13). 

3. Laura Brown and Ioannis Tsamardinos used Causal Explorer to achieve the top overall 
ranking on REGED dataset (p47). 
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Summary of the use of Causal Explorer by the Challenge participants is provided in Table 2. 
 
 
Table 1: A list of major U.S. institutions that have registered users of Causal Explorer. 
 

1. Boston University 
2. Brandies University 
3. Carnegie Mellon University 
4. Case Western Reserve University 
5. Central Washington University 
6. College of William and Mary 
7. Cornell University 
8. Duke University 
9. Harvard University 
10. Illinois Institute of Technology 
11. Indiana University-Purdue University 

Indianapolis 
12. Johns Hopkins University 
13. Louisiana State University 
14. M. D. Anderson Cancer Center 
15. Massachusetts Institute of Technology 
16. Medical College of Wisconsin 
17. Michigan State University 
18. Naval Postgraduate School 
19. New York University 
20. Northeastern University 
21. Northwestern University 
22. Oregon State University 
23. Pennsylvania State University 
24. Princeton University 
25. Rutgers University 
26. Stanford University 
27. State University of New York 
28. Tufts University 
29. University of Arkansas 

30. University of California Berkley 
31. University of California Los Angeles 
32. University of California San Diego 
33. University of California Santa Cruz 
34. University of Cincinnati 
35. University of Colorado Denver 
36. University of Delaware 
37. University of Houston-Clear Lake 
38. University of Idaho 
39. University of Illinois at Chicago 
40. University of Illinois at Urbana-

Champaign 
41. University of Kansas 
42. University of Maryland Baltimore 

County 
43. University of Massachusetts Amherst 
44. University of Michigan 
45. University of New Mexico 
46. University of Pennsylvania 
47. University of Pittsburgh 
48. University of Rochester 
49. University of Tennessee Chattanooga 
50. University of Texas at Austin 
51. University of Utah 
52. University of Virginia 
53. University of Washington 
54. University of Wisconsin-Madison 
55. University of Wisconsin-Milwaukee 
56. Vanderbilt University 
57. Virginia Tech 
58. Yale University 

 
7.2. Use of Causal Explorer by the Challenge organizers 
 
The Causal Explorer library was also used by the Challenge organizers. First, resimulation of 
REGED dataset (p166) employed HITON-PC algorithm (as a part of HITON-Bach method) that 
was implemented in Causal Explorer. In addition, HITON-PC and MMHC algorithm 
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implementations from Causal Explorer were used as the baseline methods to gain insight into the 
problem difficulty (p171, pp177-179, pp186-188). At the time of Challenge the use baselines 
was not disclosed to the participants. 
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Table 2: Summary of the use of Causal Explorer by the Challenge participants. 
 

Challenge ranking on Tscore Participant 
team 

Algorithms used in 
Causal Explorer REGED SIDO CINA MARTI Reference

Gavin Cawley • HITON-MB,  
• HITON-PC,  
• MMHC 

2 1 3 1 p118 

Jianxin Yin et al. • MMPC,  
• Supervised 

discretization 
3 5 4 2 p95, p100, 

p153 

Cristian Grozea • Markov blanket 
algorithm (details 
are not provided) 

7 12 7 6 p129 

H. Jair Escalante 
and Luis Enrique 

• HITON-PC 6 8 9 5 p130 

Ernest Mwebaze 
and John Quinn 

• HITON-PC 9 7 8 - p139 

Marius Popescu • HITON-MB, 
• TPDA 5 - - - p145 

Wu Zhili • HITON-MB,  
• HITON-PC 13 13 14 11 p156 

Laura Brown 
and Ioannis 
Tsamardinos 

• MMPC,  
• MMMB,  
• MMHC,  
• HITON-MB  

Excluded from the Challenge 
ranking due to conflict of interest p35, p114 

 
8. Discussion 
 
CPNs and other causal graphical models are powerful mathematical formalisms that are useful 
for variable selection, dimensionality reduction, causal hypothesis generation, and automatic 
creation of predictive/classification tools and decision support systems. Unfortunately the 
complexity of most related algorithms prevents many researchers from employing them in 
experiments since proper implementation often requires extensive familiarity with the theory and 
a substantial investment of resources for proper coding and testing. In addition, the existing code 
in the public domain typically comes in stand-alone executable form and may contain hard-
coded limitations on input data size.  
 
The first contribution of the present chapter is that it re-introduces the Causal Explorer library to 
a broader audience and describes new functionality compared to the previous version of the 
library (Aliferis et al., 2003b). The second contribution is that the library makes available to the 
research community a suite of algorithms designed by authors of this chapter for coping 
efficiently and reliably with thousands of variables. These algorithms have been recently tested 
with a variety of datasets with excellent results (Aliferis et al., 2009a; Aliferis et al., 2009b), 
however at this stage the potential of these methods is practically untapped. Finally, we also 
describe the use of Causal Explorer in community at a whole and in the context of Causation and 
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Prediction Challenge. It is our hope that the Causal Explorer library will stimulate interest in, 
and experimentation with this important class of mathematical and computational tools by the 
broader research community. 
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