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Abstract

Via a unified view of probability estimation, classification, and prediction, we derive a
uniformly-optimal combined-probability estimator, construct a classifier that uniformly
approaches the error of the best possible label-invariant classifier, and improve existing
results on pattern prediction and compression.
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1. Introduction

Probability estimation, prediction, and classification, are at the core of statistics, informa-
tion theory, and machine learning. Using a unified approach, we derive several results on
these three related problems.

Let Mµ denote the combined probability of all elements appearing µ ∈ {0, . . . ,n} times in
n independent samples of a discrete distribution p. Building on the basic empirical estima-
tor, the classical Good-Turing estimator in Good (1953), and their combinations, McAllester
and Schapire (2000) and Drukh and Mansour (2004) derived estimators that approximate
Mµ to within Õ(n−0.4), where this and all subsequent bounds hold with probability close
to one and apply uniformly to all distributions p regardless of their support size and prob-

ability values. These estimators can be extended to approximate Mn def
= (M0, . . . ,Mn) to

within `1 distance of Õ(n−1/6). In this paper, we:

1. Show that the above estimators perform best among all simple combinations of empiri-
cal and Good-Turing estimators in that for some distributions, any simple combination
of these two estimators aimed at approximating Mn, will incur `1 distance Ω̃(n−1/6).

2. Derive a linear-complexity estimator that approximates Mn to `1 distance Õ(n−1/4)
and KL-divergence Õ(n−1/2), and prove that this performance is optimal in that any
estimator for Mn must incur at least these distances for some underlying distribution.

3. Apply this estimator to sequential prediction and compression of patterns, deriving a
linear-complexity algorithm with per symbol expected redundancy Õ(n−1/2), improv-
ing the previously-known O(n−1/3) bound for any polynomial-complexity algorithm.
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4. Modify the estimator to derive a linear-complexity classifier that takes two length-
n training sequences, one distributed i.i.d. according to a distribution p and one
according to q, and classifies a single test sample generated by p or q, with error
at most Õ(n−1/5) higher than that achievable by the best label-invariant classifier
designed with knowledge of p and q, and show an Ω̃(n−1/3) lower bound on this
additional error for any classifier.

The paper is organized as follows. Sections 2, 3, and 4, address probability estimation,
prediction, and classification, respectively, providing a more comprehensive background,
precise definitions, and detailed results for each problem. Section 5 outlines some of the
analysis involved. For space considerations, the proof are relegated to the Appendix.

2. Probability estimation

2.1. Background

A probability distribution over a discrete set X is a mapping p : X → [0, 1] such that∑
x∈X px = 1. Let DX denote the collection of all distributions over X . We study the

problem of estimating an unknown distribution p ∈ DX from a sample Xn def
= X1, . . . ,Xn of

n random variables, each drawn independently according to p. A probability estimator is a

mapping q : X n → DX associating a distribution q
def
= q(xn) ∈ DX with every sample xn.

For any distribution p over a finite support X , given sufficiently many samples, many
reasonable estimators, will eventually estimate p well. Take for example the empirical-
frequency-estimator E that associates with every symbol the proportion of times it appeared

in the observed sample. For example, given O
(
|X |
δ2.1

log 1
ε

)
samples, a number linear in the

distribution’s support size |X |, E estimates p to within `1 distance δ with probability
≥ 1 − ε (see, e.g., Das, 2012). Paninski (2004) proved that no estimator can estimate all
distributions over X using o(|X |) samples. Orlitsky et al. (2005) showed that not only
p, but even just the probability multiset {p(x) : x ∈ X} cannot be uniformly `1-estimated,
and Valiant and Valiant (2011) proved that estimating the probability multiset with earth-

mover distance ≤ 0.25 requires Ω
(
|X |

log |X |

)
samples.

Estimation that requires a number of samples proportional or nearly-proportional to
the distribution’s support size suffers several drawbacks. Some common distributions, such
as Poisson and Zipf have infinite support size. Many practical problems, for example those
involving natural-language processing or genomics, have very large support sizes (the sets
of possible words or nucleotide locations). Additionally, in many cases the alphabet size is
unknown, hence no bounds can derived on the estimation error.

For these and related reasons, a number of researchers have recently considered distri-
bution properties that can be estimated uniformly. A uniform bound is one that applies to
all distributions p regardless of the support set X . As we saw, p itself cannot be uniformly
estimated. Intuitively, the closer a property is to p, the harder it is to uniformly approxi-
mate. It is perhaps surprising therefore that a slight modification of p, that as we shall see
is sufficient for many applications, can be uniformly approximated.

Good (1953) noted that reasonable estimators assign the same probability to all symbols
appearing the same number of times in a sample. For example, in the sample b, a, n, a, n, a, s,
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the same probability to b and s. The performance of such estimators is determined by the
combined probability they assign to all symbols appearing any given number of times,
namely by how well they estimate the combined probability, or mass,

Mµ
def
=

∑
x:µx=µ

px

of symbols appearing µ ∈ {0, 1, . . . ,n} times, where µx is the number of times a symbol
x ∈ X appears in the sample xn. Let 1µx be the indicator function that is 1 iff µx = µ.

2.2. Previous results

Let Φµ denote the number of symbols appearing µ times in a sample of size n. Empirical
frequency estimates Mµ by

Eµ =
µ

n
· Φµ.

The Good-Turing estimator in Good (1953), estimates Mµ by

Gµ
def
=

µ+ 1

n
· Φµ+1. (1)

The Good-Turing estimator is an important tool in a number of language processing appli-
cations, (e.g., Chen and Goodman, 1996). However for several decades it defied rigorous
analysis, partly because of the dependencies between µx for different x’s. First theoretical
results were provided by McAllester and Schapire (2000). Using McDiarmid’s inequal-
ity (McDiarmid, 1989), they showed that for all 0 ≤ µ ≤ n, with probability ≥ 1− δ,

|Gµ −Mµ| = O

(√
log(3/δ)

n

(
µ+ 1 + log

n

δ

))
.

Note that this bound, like all subsequent ones in this paper, holds uniformly, namely applies
to all support sets X and all distributions p ∈ DX .

To express this and subsequent results more succinctly, we will use several abbreviations.
Õ and Ω̃ will be used to hide poly-logarithmic factors in n and 1/δ, and for a random variable
X, we will use

X =
δ
Õ(α) to abbreviate Pr

(
X 6= Õ(α)

)
≤ δ,

and similarly X =
δ

Ω̃(α) for Pr
(
X 6= Ω̃(α)

)
< δ. For example, the above bound becomes

|Gµ −Mµ| =
δ
Õ
(
µ+ 1√
n

)
.

As could be expected, most applications require simultaneous approximation of Mµ over
a wide range of µ’s. For example, as shown in Section 4, classification requires approximating

Mn def
= (M0, . . . ,Mn) to within a small `1 distance, while prediction requires approximation

to within a small KL-Divergence.
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Drukh and Mansour (2004) improved the Good-Turing bound and combined it with the
empirical estimator to obtain an estimator G′ with `∞ convergence,

||G′n −Mn||∞
def
= max

0≤µ≤n
|G′µ −Mµ| =

δ
Õ
(

1

n0.4

)
,

where G′n
def
= (G′0, . . . ,G

′
n). With some more work one can extend their results to the more

practically useful `1 convergence,

||G′n −Mn||1
def
=

n∑
µ=0

|G′µ −Mµ| =
δ
Õ
(

1

n1/6

)
. (2)

Subsequently, Wagner et al. (2006) considered `1 convergence for a subclass of distribu-
tions where all symbols probabilities are proportional to 1/n, namely for some constants
c1, c2, all probabilities px are in the range [c1/n, c2/n]. Recently, Ohannessian and Dahleh
(2012) showed that the Good-Turing estimator is not uniformly multiplicatively consistent
over all distributions, and described a class of distributions for which it is.

2.3. New results

First we show that upper bound (2) and the one in Drukh and Mansour (2004) are tight
in that no simple combination of Gµ and the empirical estimator Eµ can approximate Mµ

better. A proof sketch is provided in Appendix B.11.

Lemma 1 For every n, there is a distribution such that

n∑
µ=0

min (|Eµ −Mµ|, |Gµ −Mµ|) =
1/n

Ω̃

(
1

n1/6

)
.

In Subsections 5.3–5.5, we construct a new estimator F ′µ and show that it estimates Mµ

better than G′µ and essentially as well as any other estimator. A closer inspection of Good
and Turing’s intuition in Gale and Sampson (1995) shows that the average probability of a
symbol appearing µ times is

Mµ

Φµ
≈ µ+ 1

n
· E[Φµ+1]

E[Φµ]
. (3)

If we were given the values of the E[Φµ]’s, we could use this equation to estimate the Mµ’s.
Since we are not given these values, Good-Turing (1) approximates the expectation ratio by
just Φµ+1/Φµ. However, while Φµ and Φµ+1 are by definition unbiased estimators of their
expectations E[Φµ] and E[Φµ+1] respectively, their variance is high, leading to a probability
estimation Gµ that may be far from Mµ.

In Section 5.4 we smooth the estimate of E[Φµ] by expressing it as a linear combination
of the values of Φµ′ for µ′ near µ. Lemma 15 shows that an appropriate choice of the

smoothing coefficients yields an estimate Ê[Φµ] that approximates E[Φµ] well.
Incorporating this estimate into Equation (3), yields a new estimator Fµ. Combining it

with the empirical and Good-Turing estimators for different ranges of µ and Φµ, we obtain
a modified estimator F ′µ that has a small KL divergence from Mµ, and hence by Pinsker’s
inequality, also small `1 distance uniformly over all distributions.
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Theorem 2 For every distribution and every n, F ′n
def
= (F ′0, . . . ,F

′
n) satisfies,

D(Mn||F ′n)
def
=

n∑
µ=0

Mµ log

(
Mµ

F ′µ

)
=

1/n
Õ
(

1

n1/2

)
and ||F ′n −Mn||1 =

1/n
Õ
(

1

n1/4

)
.

In Section 5.7 we show that the proposed estimator is optimal. An estimator is label-
invariant, often called canonical, if its estimate of Mµ remains unchanged under all permu-
tations of the symbol labels. For example, its estimate of M1 will be the same for the sample
a, a, b, b, c as it is for u, u, v, v, w. Clearly all reasonable estimators are label-invariant.

Theorem 3 For any label-invariant estimator M̂ , there is a distribution such that

D(Mn||M̂n) =
1/n

Ω̃

(
1

n1/2

)
and ||M̂n −Mn||1 =

1/n
Ω̃

(
1

n1/4

)
.

Finally we note that the estimator F ′µ can be computed in time linear in n. Also,

observe that while the difference between `1 distance of 1/n1/6 and 1/n1/4 may seem small,
an equivalent formulation of the results would ask for the number of samples needed to
estimate within a `1 distance ε. Good-Turing and empirical frequency would require (1/ε)6

samples, while the estimator we construct needs (1/ε)4 samples. For ε = 1%, the difference
between the two is a factor of 10,000.

3. Prediction

3.1. Background

Probability estimation can be naturally applied to prediction and compression. Upon

observing a sequence Xi def
= X1, . . . ,Xi generated i.i.d. according to some distribution

p ∈ DX , we would like to form an estimate q(x|xi) of p(x) to minimize a cumulative loss∑n
i=1 fp(q(Xi+1|Xi), Xi+1) (see for example Vovk, 1995; Merhav and Feder, 1998).
The most commonly used loss is log-loss, fp(q(xi+1|xi), xi+1) = log(q(xi+1|xi)/p(xi+1)).

Its numerous applications include compression, (e.g., Rissanen, 1984), MDL principle, (e.g.,
Grünwald, 2007), and learning theory, (e.g., Cesa-Bianchi and Lugosi, 1999). Its expected
value is the KL-divergence between the underlying distribution p and the prediction q.

Again we consider label-invariant predictors that use only ordering and frequency of
symbols, not the specific labels. Following Orlitsky et al. (2003), after observing n samples,
we assign probability to each of the previously-observed symbols, and to observing a new
symbol new. For example, if after three samples, the sequence observed is aba, we assign
the probabilities q(a|aba), q(b|aba), and q(new|aba) that reflects the probability at which
we think a symbol other than a or b will appear. These three probabilities must add to 1.
Furthermore, if the sequence is bcb, then the probability we assign to b must be the same
as the probability we previously assigned to a.

Equivalently, Orlitsky et al. (2003) defined the pattern of a sequence to be the sequence
of integers, where the ith new symbol appearing in the original sequence is replaced by the
integer i. For example, the pattern of aba is 121. We use Ψn and to denote a length-n
pattern, and Ψi to denote its ith element.
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The prediction problem is now that of estimating Pr(Ψn+1|Ψn), where if Ψn consists of
m distinct symbols then the distribution is over [m+ 1], and m+ 1 reflects a new symbol.
For example, after observing 121, we assign probabilities to 1, 2, and 3.

3.2. Previous results

Orlitsky et al. (2003) proved that the Good-Turing estimator achieves constant per-symbol
worst-case log-loss, and constructed two sequential estimators with diminishing worst-case
log-loss: a computationally efficient estimator with log-loss O(n−1/3), and a high complexity
estimator with log-loss O(n−1/2). Orlitsky et al. (2004) constructed a low-complexity block
estimator for patterns with worst-case per-symbol log-loss of O(n−1/2). For expected log-
loss, Shamir (2004) improved this bound to O(n−3/5) and Acharya et al. (2012b) further
improved it to Õ(n−2/3), but their estimators are computationally inefficient.

3.3. New results

Using Theorem 2, we obtain a computationally efficient predictor q that achieves expected

log-loss of Õ(n−1/2). Let F ′µ be the estimator proposed in Section 5.5. Let q(Ψn+1|Ψn) =
F ′µ
Φµ

if Ψn+1 appears µ times in Ψn, and F ′0, if it is Ψn+1 is a new symbol. The following corollary,
proved in Appendix C, bounds the predictor’s performance.

Corollary 4 For every distribution p,

Ep[D(p(Ψn+1|Ψn)||q(Ψn+1|Ψn)] = Õ
(

1

n1/2

)
.

4. Classification

4.1. Background

Classification is one of the most studied problems in machine learning and statistics
(Boucheron et al., 2005). Given two training sequences Xn and Y n, drawn i.i.d. according
to two distributions p and q respectively, we would like to associate a new test sequence Zm

drawn i.i.d. according to one of p and q with the training sequence that was generated by
the same distribution.

It can be argued that natural classification algorithms are label invariant, namely, their
decisions remain the same under all one-one symbol relabellings, (e.g., Batu, 2001). For
example, if given training sequences abb and cbc, and a classifier associates b with abb,
then given utt and gtg, it must associate t with utt.

Our objective is to derive a competitive classifier whose error is close to the best possible
by any label-invariant classifier, uniformly over all (p, q). Namely, a single classifier whose
error probability differs from that of the best classifier for the given (p, q) by a quantity
that diminishes to 0 at a rate determined by the sample size n alone, and is independent of
p and q.
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4.2. Previous results

A number of classifiers have been studied in the past, including the likelihood-ratio, generalized-
likelihood, and Chi-Square tests. However while they perform well when the number of
samples is large, none of them is uniformly competitive with all label-invariant classifiers.

When m = Θ(n), classification can be related to the problem of closeness testing that
asks whether two sequences Xn and Y n are generated by the same or different distributions.
Over the last decade, closeness testing has been considered by a number of researchers. Batu
et al. (2000) showed that testing if the distributions generating Xn and Y n are identical or
are at least δ apart in `1 distance requires n = Õ(k2/3) samples where the constant depends
on δ. Acharya et al. (2011) took a competitive view of closeness testing and derived a test

whose error is ≤ εeO(n2/3) where ε is the error of the best label-invariant protocol for this
problem, designed in general with knowledge of p and q.

Their result shows that if the optimal closeness test requires n samples to achieve an
error ≤ ε, then the proposed test achieves the same error with Õ(n3) samples. Acharya
et al. (2012a) improved it to Õ(n3/2) and proved a lower bound of Ω̃(n7/6) samples.

4.3. New results

We consider the case where m = 1, namely the test data is a single sample. Many machine-
learning problems are defined in this regime, for example, we are given the DNA sequences
of several individuals and need to decide whether or not they are susceptible to a certain
disease (e.g., Braga-Neto, 2009).

It may seem that when m = 1, the best classifier is a simple majority classifier that
associates Z with the sequence Xn or Y n where Z appears more times. Perhaps surprisingly,
the next example shows that this is not the case.

Example 5 Let p = U [n] and q = U [2n] be the uniform distributions over {1, . . . ,n} and
{1, . . . ,2n}, and let the test symbol Z be generated according to U [n] or U [2n] with equal
probability. We show that the empirical classifier, that associates Z with the sample in which
it appeared more times, entails a constant additional error more than the best achievable.

The probability that Z appears in both Xn and Y n is a constant. And in all these cases,
the optimal label-invariant test that knows p and q assigns Z to U [n], namely Xn, because
p(Z) = 1/n > 1/2n = q(Z). However, with constant probability, Z appears more times
in Y n than in Xn, and then the empirical classifier associates Z with the wrong training
sample, incurring a constant error above that of the optimal classifier.

Using probability-estimation techniques, we derive a uniformly competitive classifier.
Before stating our results we formally define the quantities involved. Recall that Xn ∼ p
and Y n ∼ q. A classifier S is a mapping S : X ∗×X ∗×X → {x, y}, where S(x, y, z) indicates
whether z is generated by the same distribution as x or y. For simplicity we assume that
Z ∼ p or q with equal probability, but this assumption can be easily relaxed. The error
probability of a classifier S with n samples is

ES
p,q

(n) =
1

2
Pr (S(Xn, Y n, Z) = y|Z ∼ p) +

1

2
Pr (S(Xn, Y n, Z) = x|Z ∼ q).
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Let S be the collection of label-invariant classifiers. For every p, q, let ESp,q
p,q

(n) = minS∈S ESp,q(n)
be the lowest error achieved for (p, q) by any label-invariant classifier, where the classifier
Sp,q achieving ESp,q

p,q
(n) is typically designed with prior knowledge of (p, q).

We construct a linear-time label-invariant classifier S whose error is close to ESp,q
p,q

(n).
We first extend the ideas developed in the previous section to pairs of sequences and develop
an estimator F ′pµ,µ′ , and then use this estimator to construct a classifier whose extra error

is Õ(n−1/5).

Theorem 6 For all (p, q), there exists a classifier S such that

ES
p,q

(n) = ESp,q
p,q

(n) + Õ
(

1

n1/5

)
.

In Appendix D we state the classifier that has extra error Õ(n−1/5) and prove Theorem 6.
In Appendix D.6 we also provide a non-tight lower bound for the problem and show that
for any classifier S, there exist (p, q), such that ES

p,q
(n) = ESp,q

p,q
(n) + Ω̃

(
n−1/3

)
.

5. Analysis of probability estimation

We now outline proofs of Lemma 1 and Theorems 2 and 3. In Section 5.1 we introduce
Poisson sampling, a useful technique for removing the dependencies between multiplicities.
In Section 5.2, we state some limitations of empirical and Good-Turing estimators, and
use an example to motivate Lemma 1. In Section 5.3 we motivate the proposed estimator
via an intermediate genie-aided estimator. In Section 5.5 we propose the new estimator.
In Section 5.6 we sketch the proof of Theorem 2. In Section 5.7, we sketch the proof of
Theorem 3 providing lower bounds on estimation.

5.1. Poisson sampling

In the standard sampling method, where a distribution is sampled n times, the multiplic-
ities are dependent. Analysis of functions of dependent random variables requires various
concentration inequalities, which often complicates the proofs. A useful approach to make
them independent and hence simplify the analysis is to do Poisson sampling. The distribu-
tion is sampled a random n′ times, where n′ is a Poisson random variable with parameter
n.

The following fact, mentioned without proof states that the multiplicities are indepen-
dent under Poisson sampling.

Fact 7 (Mitzenmacher and Upfal, 2005) If a distribution p is sampled i.i.d. Poi(n)
times, then the number of times symbol x appears is an independent Poisson random variable

with mean npx, namely, Pr(µx = µ) = e−npx (npx)µ

µ! .

In Appendix B.1 we provide a simple proof for the following lemma, which shows that prov-
ing properties for Poi(n) sampling implies properties for sampling the distribution exactly
n times. Hence in the rest of the paper, we prove the properties of an estimator under
Poisson sampling.
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Lemma 8 (Mitzenmacher and Upfal, 2005) If when a distribution is sampled Poi(n)
times, a certain property holds with probability ≥ 1−δ, then when the distribution is sampled
exactly n times, the property holds with probability ≥ 1− δ · e

√
n.

To illustrate the advantages of Poisson sampling, we first show that Good-Turing estimator
is unbiased under Poisson sampling. We use this fact to get a better understanding of the
proposed estimator. It is proved in Appendix B.2.

Claim 9 For every distribution p and every µ,

E[Gµ] =
µ+ 1

n
E[Φµ+1] = E[Mµ].

5.2. Limitations of Good-Turing and empirical estimators

We first prove an upper bound on the estimation error of Good-Turing and empirical esti-
mators. Proofs for variations of these lemmas are in Drukh and Mansour (2004). We give
simple proofs in Appendix B.3 and B.4 using Bernstein’s inequality and Chernoff bound.

Lemma 10 (Empirical estimator) For every distribution p and every µ ≥ 1,

|Mµ − Eµ| =
δ
O
(
Φµ

√
µ+ 1 log n

δ

n

)
.

Lemma 11 (Good-Turing estimator) For every distribution p and every µ, if E[Φµ] ≥
1, then

|Mµ −Gµ| =
δ
O

(√
E[Φµ+1] + 1

(µ+ 1) log2 n
δ

n

)
.

The following example illustrates the tightness of these results.

Example 12 Let U [k] be the uniform distribution over k symbols, and let the sample size
be n � k. The expected multiplicity of each symbol is n

k , and by properties of binomial
distributions, the multiplicity of any symbol is > n

k +
√

n
k with probability ≥ 0.1. Also, for

every multiplicity µ, Mµ = Φµ/k.

• The empirical estimate Eµ = Φµ
µ
n . For µ ≥ n

k +
√

n
k , the error is Φµ

√
1
nk ≈ Φµ

√
µ
n .

• The Good-Turing estimate Gµ = Φµ+1
µ+1
n and it does not depend on Φµ. Therefore,

if two sequences have same Φµ+1, but different Φµ then Good-Turing makes an error
in at least one of the sequences. It can be shown that, the typical error is

√
E[Φµ] 1

k ≈√
E[Φµ]µn , as the standard deviation of Φµ is

√
E[Φµ].

The errors in the above example are very close to the upper bounds in Lemma 10 and
Lemma 11. Using a finer analysis and explicitly constructing a distribution, we prove
Lemma 1 in Appendix B.11.
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5.3. A genie-aided estimator

To motivate the proposed estimator we first describe an intermediate genie-aided estimator.
In the next section, we remove the genie assumption. Although by Claim 9 Good-Turing
estimator is unbiased, it has a large variance. It does not use the fact that Φµ symbols
appear µ times, as illustrated in Example 12.

To overcome these limitations, imagine for a short while that a genie gives us the values
of E[Φµ] for all µ. We can then define the genie-aided estimator,

M̂µ = Φµ
µ+ 1

n

E[Φµ+1]

E[Φµ]
.

We observe few properties of M̂µ. By Claim 9 E[M̂µ] = E[Gµ] = E[Mµ], and hence M̂µ is an
unbiased estimator of Mµ. It is linear in Φµ and hence shields against the variance of Φµ+1.

For a uniform distribution with support size k, it is easy to see that M̂µ = Φµ
1
k = Mµ. For

a general distribution, we quantify the error of this estimator in the next lemma, whose
proof is given in Appendix B.5.

Lemma 13 (Genie-aided estimator) For every distribution p and every µ ≥ 1, if E(Φµ) ≥
1, then ∣∣∣∣Mµ − Φµ

µ+ 1

n

E[Φµ+1]

E[Φµ]

∣∣∣∣ =
δ
O

(√
E[Φµ]µ log2 n

δ

n

)
.

Recall that the error of Eµ and Gµ are Õ
(√

µΦµ
n

)
and Õ

(√
E[Φµ+1]µ

n

)
, respectively.

In Appendix A we show that E[Φµ+1] = Õ(E[Φµ]). Hence errors of both Good-Turing
and empirical estimators are linear in one of µ and Φµ and sub-linear in the other. By
comparison, the genie-aided estimator achieves the smaller exponent of both estimators,
and has smaller error than both. It is advantageous to use such an estimator when both µ
and Φµ are ≥ polylog(n/δ). In the next section, we replace the genie assumption by a good

estimate of
E[Φµ+1]
E[Φµ] .

5.4. Estimating the ratio of expected values

We now develop estimator for the ratio
E[Φµ+1]
E[Φµ] from the observed sequence. Let Ê[Φµ+1],

Ê[Φµ] be the estimates of E[Φµ+1] and E[Φµ] respectively. A natural choice for the estimator

Ê[Φµ] is a linear estimator of the form
∑

µ hµΦµ. One can use tools from approximation
theory such as Bernstein polynomials (Lorentz, 1986) to find such a linear approximation.
However a naive application of these tools is not sufficient, and instead, we exploit properties
of Poisson functionals.

If we can approximate E[Φµ] and E[Φµ+1] to a multiplicative factor of 1± δ1 and 1± δ2,
respectively, then a naive combination of the two yields an approximation of the ratio
to a multiplicative factor of 1 ± (|δ1| + |δ2|). However, as is evident from the proofs in
Appendix B.7, if we choose different estimators for the numerator and the denominator, we
can estimate the ratio accurately. Therefore, the estimates of E[Φµ], while calculating Mµ

10
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and Mµ−1, are different. For ease of notation we use Ê[Φµ] for both the cases. The usage
becomes clear from the context.

We estimate E[Φµ0 ] as a linear combination
∑r

i=−r γr(i)Φµ0+i of the 2r+1 nearest Φµ’s.
The coefficients γr(i) are chosen to minimize to estimator’s variance and bias. We show that
if maxi |γr(i)| is small, then the variance is small, and that for a low bias the coefficients
γr(i) need to be symmetric, namely γr(−i) = γr(i), and the following function should be
small when x ∼ 1,

Br(x)
def
= γr(0) +

r∑
i=1

γr(i)
(
xi + x−i

)
− 1.

To satisfy these requirements, we choose the coefficients according to the polynomial

γr(i) =
r2 − rαr|i| − βri2

r2 + 2
∑r

j=1(r2 − rαr|j| − βrj2)
,

where αr and βr are chosen so that
∑r

i=1 γr(i)i
2 = 0 and γr(r) = 0.

The next lemma bounds Br(x) for the estimator with co-efficients γr and is used to
prove that the bias of the proposed estimator is small. It is proved in Appendix B.6.

Lemma 14 If r|(x− 1)| ≤ min(1, x), then

|Br(x)| = O(r(x− 1))4.

The estimators for E[Φµ0 ] and E[Φµ0+1] are as follows. Let rµ0 =

⌊ √
µ0

logn(Φµ0
√
µ0 )1/11

⌋
.

Let Sµ0r = {µ | |µ− µ0 | ≤ r}. Then,

̂E[Φµ0+1] =
∑

µ∈S
µ0
rµ0

γrµ0 (|µ0 + 1− µ|) µ0a
µ0
µ

µ0 + 1
Φµ,

Ê[Φµ0 ] =
∑

µ∈S
µ0+1
rµ0

γrµ0 (|µ0 − µ|)a
µ0
µ Φµ.

where, a
µ0
µ = µ!

µ0 !µ
µ0−µ
0 and is used for simplifying the analysis. Note that Ê[Φµ] used to

calculate Mµ and Mµ−1 are different. rµ0 is chosen to minimize the bias variance trade-off.
The following lemma quantifies the quality of approximation of the ratio of E[Φµ0+1] and
E[Φµ0 ]. The proof is involved and uses Lemma 14. It is given in Appendix B.7.

Lemma 15 For every distribution p, if µ0 ≥ log2 n and 1
logn

(
µ0

log2 n

)5
≥ E[Φµ0 ] ≥ log2 n

δ ,

then ∣∣∣∣∣ ̂E[Φµ0+1]

Ê[Φµ0 ]
−

E[Φµ0+1]

E[Φµ0 ]

∣∣∣∣∣ =
δ
O

(
log2 n

δ√
µ0(E[Φµ0 ]

√
µ0)4/11

)
,

and if E[Φµ0 ] > 1
logn

(
µ0

log2 n

)5
then,∣∣∣∣∣ ̂E[Φµ0+1]

Ê[Φµ0 ]
−

E[Φµ0+1]

E[Φµ0 ]

∣∣∣∣∣ =
δ
O

 log2 n
δ√

E[Φµ0 ]

 .

11
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5.5. Proposed estimator

Substituting the estimators for E[Φµ] and E[Φµ+1] in the genie-aided estimator we get the
proposed estimator as

Fµ = Φµ
µ+ 1

n

Ê[Φµ+1]

Ê[Φµ]
.

As mentioned before, for small values of Φµ, empirical estimator performs well, and for small
values of µ Good-Turing performs well. Therefore, we propose the following (unnormalized)
estimator that uses estimator Fµ for µ and Φµ ≥ polylog(n).

F ′un
µ =


max

(
G0,

1
n

)
if µ = 0,

Eµ if Φµ ≤ log2 n,

max
(
Gµ,

1
n

)
if µ ≤ log2 n andΦµ > log2 n,

min
(
max

(
Fµ,

1
n3

)
, 1
)

otherwise.

Letting N
def
=
∑n

µ=0 F
′un
µ , the normalized estimator is then F ′µ

def
= 1

NF
′un
µ . Note that the

Good-Turing and Fµ may assign 0 probability to Mµ even though Φµ 6= 0. To avoid infinite
log loss and KL Divergence between the distribution and the estimate, both estimators are
slightly modified by taking max

(
Gµ,

1
n

)
instead of Gµ and min

(
max

(
Fµ,

1
n3

)
, 1
)

instead of
Fµ so as not to assign 0 or ∞ probability mass to any multiplicity. Such modifications are
common in prediction and compression, (e.g., Krichevsky and Trofimov, 1981).

5.6. Proof sketch of Theorem 2

To prove Theorem 2, we will analyze the unnormalized estimator F ′un
µ and prove that

|N−1| =
10n−2

Õ(n−1/4) and use that to prove the desired result for the normalized estimator

F ′µ. We first show that the estimation error for every multiplicity is small. The proof is in
Appendix B.8.

Lemma 16 For every distribution p, |M0 − F ′un
0 | =

4n−3
O
(

log2 n√
n

)
, and for all µ ≥ 1,

|Mµ − F ′un
µ | =

4n−3
O

(
min(

√
Φµ(µ+ 1), Φ

7/11
µ
√
µ+ 1)

n log−3 n

)
.

The error probability in the above equation is 4n−3 can be generalized to any poly(1/n). We
have chosen the above error to achieve the over all error in Theorem 2 to be n−1. Note that
the error of F ′µ is smaller than both Good-Turing and empirical estimators up to polylog(n)
factors. Using Lemma 16, we show that N ≈ 1 in the following lemma. It is proved in
Appendix B.9.

Lemma 17 For every distribution p,

|N − 1| =
10n−2

Õ
(

1

n1/4

)
.

Using the bounds on N − 1 in Lemma 17 and bounds on |Mµ − F ′un
µ | in Lemma 16 and

maximizing the KL divergence, we prove Theorem 2 in Appendix B.10.

12
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5.7. Lower bounds on estimation

We now lower bound the rate of convergence. We construct an explicit distribution such
that with probability ≥ 1 − n−1 the total variation distance is Ω̃(n−1/4). By Pinsker’s
inequality, this implies that the KL divergence is Ω̃(n−1/2). Note that since distance is
Ω̃(n−1/4) with probability close to 1, the expected distance is also Ω̃(n−1/4).

Let p be a distribution with ni
def
=
√

π
2 i log1.5 n symbols with probability pi

def
= bi2 log3 nc

n ,

and ni symbols with probability pi+
i
n , for c1

n1/4

log9/8 n
≤ i ≤ c2

n1/4

log9/8 n
. c1 and c2 are constants

such that the sum of probabilities is 1. We sketch the proof and leave the details to the full
version of the paper.
Proof [sketch of Theorem 3] The distribution p has the following properties.

• Let R = ∪i{npi, npi + 1 . . . npi + i} for c1
n1/4

log9/8 n
≤ i ≤ c2

n1/4

log9/8 n
. For every µ ∈ R,

Pr(Φµ = 1) ≥ 1/3.

• If Φµ = 1, then the symbol that has appeared µ times has probability pi or pi + i
n

with almost equal probability.

• Label-invariant estimators cannot distinguish between the two cases, and hence incur
an error of Ω̃(i/n) = Ω̃(n−3/4) for a constant fraction of multiplicities µ ∈ R.

The total number of multiplicities in R is n1/4 · n1/4 = n1/2. Multiplying by the error for
each multiplicity yields the bound Ω̃(n−1/4).
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Appendix A. Useful facts

A.1. Concentration inequalities

The following two popular concentration inequalities are stated for completeness.

Fact 18 (Chernoff bound) If X ∼ Poi(λ), then for x ≥ λ,

Pr(X ≥ x) ≤ exp

(
−(x− λ)2

2x

)
,

and for x < λ,

Pr(X ≤ x) ≤ exp

(
−(x− λ)2

2λ

)
.

Fact 19 (Variation of Bernstein’s Inequality) Let X1, X2, . . . Xn be n independent zero
mean random variables such that with probability ≥ 1− εi, |Xi| < M , then

Pr(|
∑
i

Xi| ≥ t) ≤ 2 exp

(
− t2∑

i E[X2
i ] +Mt/3

)
+

n∑
i=1

εi.

If t =
√

2
(∑

i E[X2
i ]
)

log 1
δ + 2

3M log 1
δ , then

Pr

∣∣∣∣∣∑
i

Xi

∣∣∣∣∣ ≥
√√√√2

(∑
i

E[X2
i ]

)
log

1

δ
+

2

3
M log

1

δ

 ≤ 2δ +

n∑
i=1

εi.
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To prove the concentration of estimators, we bound the variance and show that with high
probability the absolute value of each Xi is bounded by M and use Bernstein’s inequality

with t =
√

2
(∑

i E[X2
i ]
)

log 1
δ + 2

3M log 1
δ .

A.2. Bounds on linear estimators

In this section, we prove error bounds for linear estimators that are used to simplify other
proofs in the paper. We first show that the difference of expected values of consecutive Φµ’s
is bounded.

Claim 20 For every distribution p and every µ,

|E[Φµ]− E[Φµ+1]| = O

(
E[Φµ] max

(
log n

µ+ 1
,

√
log n

µ+ 1

))
+

1

n
.

Proof We consider the two cases µ+ 1 ≥ log n and µ+ 1 < log n separately. Consider the
case when µ+ 1 ≥ log n. We first show that

∣∣E[1µx]− E[1µ+1
x ]

∣∣ = e−npx
(npx)µ

µ!

∣∣∣∣1− npx
µ+ 1

∣∣∣∣ ≤ 5e−npx
(npx)µ

µ!

√
log n

µ+ 1
+

2

n3
. (4)

The first equality follows by substituting E[1µx] = e−npx(npx)µ/µ!. For the inequality, note
that if |npx−µ−1|2 ≤ 25(µ+1) log n, then the inequality follows. If not, then by the Chernoff

bound E[1µx] = Pr(µx = µ) ≤ n−3 and hence
∣∣∣E[1µx]− E[1µ+1

x ]
∣∣∣ ≤ E[1µx] + E[1µ+1

x ] ≤ 2/n3.

By definition, E[Φµ]− E[Φµ+1] =
∑

x E[1µx]− E[1µ+1
x ]. Substituting,

|E[Φµ]− E[Φµ+1]| ≤
∑
x

∣∣E[1µx]− E[1µ+1
x ]

∣∣
(a)
=
∑
x

e−npx
(npx)µ

µ!

∣∣∣∣1− npx
µ+ 1

∣∣∣∣
=

∑
x:npx≤1

e−npx
(npx)µ

µ!

∣∣∣∣1− npx
µ+ 1

∣∣∣∣+
∑

x:npx>1

e−npx
(npx)µ

µ!

∣∣∣∣1− npx
µ+ 1

∣∣∣∣
(b)

≤
∑

x:npx≤1

npx
µ!

+
∑

x:npx>1

5e−npx
(npx)µ

µ!

√
log n

µ+ 1
+

2

n3

≤ 1

n2
+O

(
E[Φµ]

√
log n

µ+ 1

)
+

2n

n3
≤ O

(
E[Φµ]

√
log n

µ+ 1

)
+

1

n
.

where (a) follows from the fact that E[1µx] = e−npx(npx)µ/µ!. (b) follows from the fact that
npx ≤ 1 in the first summation and Equation (4). The proof for the case µ + 1 < log n is
similar and hence omitted.

The next claim bounds the variance of any linear estimator in terms of its coefficients.
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Claim 21 For every distribution p,

Var

(∑
x

∑
µ

1µxf(x, µ)

)
≤
∑
x

∑
µ

E[1µx]f2(x, µ).

Proof By Poisson sampling, the multiplicities are independent. Furthermore the variance
of sum of independent random variables is the sum of their variances. Hence,

Var

(∑
x

∑
µ

1µxf(x, µ)

)
=
∑
x

Var

(∑
µ

1µxf(x, µ)

)

≤
∑
x

E
[(∑

µ

1µxf(x, µ)

)2]
(a)
=
∑
x

E
[∑

µ

(1µxf(x, µ))2

]
(b)
=
∑
x

∑
µ

E[1µx]f2(x, µ).

For µ 6= µ′, E[1µx1
µ′
x ] = 0 and hence (a). (b) uses the fact that 1µx is an indicator random

variable.

Next we prove a concentration inequality for any linear estimator f .

Claim 22 Let r ≤
√

µ0
logn , µ0 ≥ log n, and f =

∑
µ∈S

µ0
r
cµΦµ. For every distribution p if

E[Φµ0 ] ≥ log 1
δ , then

|f − E[f ]| =
δ
O

(
max
µ∈S

µ0
r

|cµ|
√

E[Φµ0 ](2r + 1) log
1

δ

)
.

Proof By Claim 21,

Var(f) ≤
∑
µ∈S

µ0
r

∑
x

c2
µE[1µx]

≤

(
max
µ∈S

µ0
r

cµ

)2 ∑
µ∈S

µ0
r

∑
x

E[1µx]

(a)
=

(
max
µ∈S

µ0
r

cµ

)2 ∑
µ∈S

µ0
r

E[Φµ]

= O

( max
µ∈S

µ0
r

cµ

)2

(2r + 1)E[Φµ0 ]

 .

Substituting
∑

x E[1µx] = E[Φµ] results in (a). The last equality follows by repeatedly apply-
ing Claim 20. Changing one of the multiplicities changes f by at-most max

µ∈S
µ0
r
|cµ|. Apply-

ing Bernstein’s inequality with the above calculated bounds on variance, M = max
µ∈S

µ0
r
|cµ|,
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and
∑

i εi = 0 yields the claim.

Next we prove a concentration bound for Φµ in the next claim.

Claim 23 For every distribution p and every multiplicity µ, if E[Φµ] ≥ log 1
δ , then

|Φµ − E[Φµ]| =
δ
O
(√

E[Φµ] log
1

δ

)
.

Proof Since Φµ =
∑

x 1
µ
x, by Claim 21, Var(Φµ) ≤ E[Φµ]. Furthermore |1µx − E(1µx)| ≤ 1.

Applying Bernstein’s inequality with M = 1, Var(Φµ) ≤ E[Φµ], and
∑

i εi = 0 proves the
claim.

Appendix B. Proofs of results in Section 5

B.1. Proof of Lemma 8

If a distribution is sampled n′ = Poi(n) times, with probability e−n n
n

n! ≥
1

e
√
n

, n′ = n.

Conditioned on the fact that n′ = n, Poisson sampling is same as sampling the distribution
exactly n times. Therefore, if P fails with probability > δ · e

√
n with exactly n samples,

then P fails with probability > δ when sampled Poi(n) times. �

B.2. Proof of Claim 9

The proof follows from the fact that each multiplicity is a Poisson random variable under
Poisson sampling.

E[Mµ] = E
[∑

x

px · 1µx
]

=
∑
x

px · e−npx
(npx)µ

µ!
=
µ+ 1

n

∑
x

e−npx
(npx)µ+1

(µ+ 1)!
=
µ+ 1

n
E[Φµ+1].

�

B.3. Proof of Lemma 10

Let ε =
20
√
µ+1 log n

δ
n . Since ϕµ =

∑
x 1

µ
x and Mµ =

∑
x px1

µ
x,

Pr
(∣∣∣Mµ − Φµ

µ

n

∣∣∣ ≥ Φµε) ≤ Pr
(
∃x s.t.

∣∣∣px − µ

n

∣∣∣ > ε,1µx = 1
)
.

If px ≥ µ
n + ε, then by the Chernoff bound Pr(1µx = 1) ≤ δ/2n. Therefore by the union

bound,

Pr
(
∃ x s.t. px −

µ

n
> ε,1µx = 1

)
≤ n δ

2n
≤ δ

2
.

Now consider the set of symbols such that px ≤ µ
n − ε. Since px ≥ 0, we have µ ≥

20
√
µ+ 1 log n

δ . Group symbols x with probability ≤ 1/4n in to smallest number of groups
such that Pr(g) ≤ 1/n for each group g. By Poisson sampling, for each group g, µg =
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∑
x∈g µx and µg is a Poisson random variable with mean Pr(g). Observe that for any two

(or more) symbols x and x′, Pr(µx ≥ µ ∨ µx′ ≥ µ) ≤ Pr(µx + µx′ ≥ µ). Therefore

Pr
(
∃ x s.t.

µ

n
− px > ε,1µx = 1

)
≤ Pr

(
∃ x s.t. µx ≥ µ, px ≤

µ

n
− ε
)

≤ Pr

(
∃ g s.t. µg ≥ µ ∨ ∃x s.t. µx ≥ µ,

1

4n
≤ px ≤

µ

n
− ε
)
.

It is easy to see that the number of groups and the number of symbols with probabilities
≥ 1/4n is at most n+ 1 + 4n ≤ 6n. Therefore by the union bound and the Chernoff bound
the above probability is ≤ δ/2. Adding the error probabilities for cases px ≥ µ

n + ε and
px ≤ µ

n − ε results in the lemma. �

B.4. Proof of Lemma 11

By Claim 9, E
[
Mµ − Φµ+1

µ+1
n

]
= 0. Recall that Mµ =

∑
x px1

µ
x and Φµ+1 =

∑
x 1

µ+1
x .

Hence by Claim 21 (stated and proved in Appendix A),

Var

(
Mµ − Φµ+1

µ+ 1

n

)
≤
∑
x

E[1µx]p2
x + E[1µ+1

x ]
(µ+ 1)2

n2

(a)
=
∑
x

E[1µ+2
x ]

(µ+ 1(µ+ 2)

n2
+ E[1µ+1

x ]
(µ+ 1)2

n2

(b)
= O

(
(E[Φµ+1] + 1)(µ+ 1)2 log n

n2

)
.

E[1µx] = e−npx(npx)µ/µ! and E[1µ+2
x ] = e−npx(npx)µ+2/µ + 2!, and hence (a). (b) follows

from Claim 20 (stated and proved in Appendix A) and the fact that
∑

x E[1µ+2
x ] = E[Φµ+2].

By the proof of Lemma 10,

Pr

(
∃x s.t.

∣∣∣px − µ

n

∣∣∣ > 20
√
µ+ 1 log n

δ′

n
,1µx = 1

)
≤ δ′.

Choosing δ′ = δ/2 we get ∀x, |1µxpx − 1
µ+1
x

µ+1
n | = O

(√
µ+1 log n

δ
n + µ+1

n

)
with probability

1 − δ/2. The lemma follows from Bernstein’s inequality with M = O
(√

µ+1 log n
δ

n + µ+1
n

)
,∑

i εi = δ/2, and above calculated bound on the variance. �

B.5. Proof of Lemma 13

By Claim 9,

E[Mµ]− E[Φµ]
µ+ 1

n

E[Φµ+1]

E[Φµ]
= 0.
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We now bound the variance. By definition, Mµ =
∑

x px1
µ
x and Φµ+1 =

∑
x 1

µ+1
x . Using

Claim 21,

Var

(
Mµ −

(µ+ 1)Φµ
n

E[Φµ+1]

E[Φµ]

)
≤
∑
x

E[1µx]

(
px −

(µ+ 1)E[Φµ+1]

nE[Φµ]

)2

=
∑
x

E[1µx]

(
px −

µ+ 1

n
+

(µ+ 1)(E[Φµ]− E[Φµ+1])

nE[Φµ]

)2

(a)

≤
∑
x

2E[1µx]

(
px −

µ+ 1

n

)2

+ 2E[1µx]

(
(E[(Φµ+1]− E[Φµ])(µ+ 1)

nE[Φµ]

)2

(b)
= O

(
E[Φµ]µ log2 n

n2

)
,

where (a) follows from the fact that (x+ y)2 ≤ 2x2 + 2y2. Similar to the proof of Claim 20,

one can show that the first term in (a) is O
(
E[Φµ]µ log2 n

n2

)
. The second term can be bounded

by O
(
E[Φµ]µ log2 n

n2

)
using Claim 20, hence (b). We now bound the maximum value of each

individual term in the summation. By the proof of Lemma 10,

Pr

(
∃x s.t.

∣∣∣px − µ

n

∣∣∣ > c
√
µ+ 1 log n

δ′

n
,1µx = 1

)
≤ δ′ (5)

Choosing δ′ = δ/2 we get that with probability 1− δ/2, ∀x

1µx

∣∣∣∣px − (µ+ 1)E[Φµ+1]

nE[Φµ]

∣∣∣∣ ≤ 1µx

∣∣∣∣px − µ+ 1

n

∣∣∣∣+

∣∣∣∣(µ+ 1)E[Φµ+1]− E[Φµ]

nE[Φµ]

∣∣∣∣
(a)
= O

(√
µ+ 1 log n

δ

n
+

(µ+ 1) log n

n

)
= O

(
(µ+ 1) log n

δ

n

)
.

where the (a) follows from Lemma 20 and Equation (5). The lemma follows from Bernstein’s

inequality with the calculated variance, M = O
(

(µ+1) log n
δ

n

)
, and

∑
i εi = δ/2. �

B.6. Proof of Lemma 14

By assumption, |r(x−1)| ≤ min(1, x). Hence |r lnx| < 2|r(x−1)| and |r lnx| ≤ 1. Therefore

|Br(x)| =

∣∣∣∣∣1− γr(0)−
r∑
i=1

γr(i)2 cosh(i lnx)

∣∣∣∣∣
=

∣∣∣∣∣1− γr(0)− 2
r∑
i=1

γr(i)
(

1 +
(i lnx)2

2!
+

(i lnx)4

4!
+

(i lnx)6

6!
+ · · ·

)∣∣∣∣∣
(a)
=
∣∣∣2 r∑

i=1

γr(i)
((i lnx)4

4!
+

(i lnx)6

6!
+ · · ·

)∣∣∣
(b)

≤ 2

r∑
i=1

∣∣∣γr(i)∣∣∣2(i lnx)4

4!
,
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where in (a) we use that γr(0) + 2
∑r

i=1 γr(i) = 1 and
∑r

i=1 γr(i)i
2 = 0. (b) follows from

the fact that |r lnx| ≤ 1. Now using r| ln(x)| ≤ 2r|x − 1|, and |γr(i)| = O
(

1
r+1

)
(can be

shown), the result follows. �

B.7. Proof of Lemma 15

The proof is technically involved and we prove it in steps. We first observe the following
property of a

µ0
µ . The proof follows from the definition.

Claim 24 For every distribution p and multiplicities µ, µ0,

a
µ0
µ E[1µx] = E[1

µ0
x ]

(
npx
µ0

)µ−µ0
.

Next we bound Ê[Φµ]−E[Φµ]. The proposed estimators for E[Φµ] and E[Φµ+1] have positive

bias. Hence we analyze Ê[Φµ]− Ê[Φµ+1] to prove tighter bounds for the ratio.

Lemma 25 Let r ≤
√
µ0

logn and µ0 ≥ log n. For every distribution p, if E[Φµ0 ] ≥ log 1
δ , then

∣∣∣Ê[Φµ0 ]− E[Φµ0 ]
∣∣∣ =
δ
O

r4 log2 nE[Φµ0 ]

µ2
0

+

√
E[Φµ0 ] log 1

δ

r + 1

 ,

and

∣∣∣Ê[Φµ0 ]− ̂E[Φµ0+1]− E[Φµ0 − Φµ0+1]
∣∣∣ =
δ
O

r4E[Φµ0 ] log2.5 n

µ2.5
0

+

√
E[Φµ0 ] log 1

δ

(r + 1)1.5

 .

Proof By triangle inequality,
∣∣∣Ê[Φµ0 ]− E[Φµ0 ]

∣∣∣ ≤ |Ê[Φµ0 ]−E[Ê[Φµ0 ]]|+
∣∣∣E[Φµ0 ]− E[Ê[Φµ0 ]]

∣∣∣.
We first bound |Ê[Φµ0 ]− E[Ê[Φµ0 ]]|.

Since r ≤ √µ0 it can show that a
µ0
µ ≤ e and |γr(|µ−µ0 |)| = O((r+1)−1). Therefore each

coefficient in Ê[Φµ0 ] is O((r+1)−1). Hence by Claim 22 (stated and proved in Appendix A),

∣∣∣Ê[Φµ0 ]− E[Ê[Φµ0 ]]
∣∣∣ =
δ
O

√E[Φµ0 ] log 1
δ

r + 1

 .

Next we bound the bias, i.e.,
∣∣∣E[Φµ0 ]− E[Ê[Φµ0 ]]

∣∣∣. Recall that a
µ0
µ E[1µx] = E[1

µ0
x ]
(
npx
µ0

)µ−µ0
.

Therefore by the linearity of expectation and the definition of Br(x),

E[Ê[Φµ0 ]]− E[Φµ0 ] =
∑
x

E[1
µ0
x ]Br

(
npx
µ0

)
.

For r = 0, the bias is 0. For r ≥ 1, by the Chernoff bound and the grouping argument
similar to that in the proof of empirical estimator 10, it can be shown that there is a constant
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c such that if |npx − µ0 | ≥ c
√
µ0 log n, then

∑
x∈X E[1

µ0
x ]Br

(
npx
µ0

)
≤ n−3. If not, then by

Lemma 14, Br

(
npx
µ0

)
= O

(
r4 log2 n
µ20

)
. Bounding E[1

µ0
x ]Br

(
npx
µ0

)
for each alphabet x and

using the fact that E[Φµ0 ] ≥ log 1
δ , we get

∣∣∣ E[Ê[Φµ0 ]]− E[Φµ0 ]
∣∣∣ =

∑
x

E[1
µ0
x ]O

(
r4 log2 n

µ2
0

)
+

1

n3
= O

(
E[Φµ0 ]

r4 log2 n

µ2
0

)
.

The first part of the lemma follows by the union bound. The proof of the second part is

similar. We will prove the concentration of Ê[Φµ0 ] − ̂E[Φµ0+1] and then quantify the bias.

We first bound the coefficients in Ê[Φµ0 ]− ̂E[Φµ0+1]. The coefficient of Φµ is bounded by

a
µ0
µ
|γr(|µ0 + 1− µ|)|

µ0 + 1
+ a

µ0
µ |γr(|µ0 + 1− µ|)− γr(|µ0 − µ|)| = O

(
1

(r + 1)2

)
.

Applying Claim 22, we get

∣∣∣Ê[Φµ0 ]− ̂E[Φµ0+1]− E[Ê[Φµ0 ]− ̂E[Φµ0+1]]
∣∣∣ =
δ
O


√
E[Φµ0 ] log 1

δ

(r + 1)1.5

 .

Next we bound the bias.

E[Ê[Φµ0 ]− ̂E[Φµ0+1]]− E[Φµ0 − Φµ0+1] =
∑
x

E[1
µ0
x ]

(
1− npx

µ0 + 1

)
Br

(
npx
µ0

)
.

As before, bounding E[1
µ0
x ]
(

1− npx
µ0+1

)
Br

(
npx
µ0

)
for each x yields the lemma.

Now we have all the tools to prove Lemma 15.
Proof [Lemma 15.] If |∆b| ≤ 0.9b, then

|a+ ∆a

b+ ∆b
− a

b
| ≤ O(∆b)a

b2
+
O(∆a)

b
.

Let b = E[Φµ0 ], a = E[Φµ0+1−Φµ0 ], ∆b = ̂E[Φµ0+1]−E[Φµ0 ] and ∆a = Ê[Φµ0 ]− ̂E[Φµ0+1]−
E[Φµ0 − Φµ0+1]. By Lemma 25, if E[Φµ0 ] ≥ log2 n

δ and µ0 ≥ r2 log1.5 n, then |∆b| ≤ 0.9b.
Therefore by Lemma 25, Claim 20, and the union bound,∣∣∣∣∣ ̂E[Φµ0+1]

Ê[Φµ0 ]
−

E[Φµ0+1]

E[Φµ0 ]

∣∣∣∣∣ =
2δ′
O

r4 log2.5 n

µ2.5
0

+
log0.5 n

δ′

(r + 1)1.5
√

E[Φµ0 ]

 . (6)

By Claim 23 (stated and proved in Appendix A), if E[Φµ0 ] ≥ log2 n
δ , then with probability

1− δ/2, Φµ0 ∈ [0.5E[Φµ0 ], 2E[Φµ0 ]]. Hence,

rµ0 ∈ R
def
=

[⌊ √
µ0

(2E[Φµ0 ]
√
µ0)1/11 log n

⌋
,

⌊ √
µ0

(0.5E[Φµ0 ]
√
µ0)1/11 log n

⌋]
.
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Therefore if we prove the concentration bounds for all r ∈ R, the lemma would follow by the
union bound. If maxrR < 1, then substituting r = 0 in Equation (6) yields the result for the

case E[Φµ0 ] ≥ 2
logn

(
µ0

log2 n

)5
. If minrR ≥ 1, then substituting r = Θ

( √
µ

(E[Φµ0 ]
√
µ0 )1/11 logn

)
in Equation (6) yields the result for the case E[Φµ0 ] ≤ 0.5

logn

(
µ0

log2 n

)5
. A similar analysis

proves the result for the case 1 ∈ R. Choosing δ′ = δ/2 in Equation (6) and using the union
bound we get the total error probability ≤ δ.

B.8. Proof of Lemma 16

The proof uses the bound on the error of Fµ, which is given below.

Lemma 26 For every distribution p and µ ≥ log2 n, if 1
logn

(
µ

log2 n

)5
≥ E[Φµ] ≥ log2 n

δ ,

then

|Mµ − Fµ| =
2δ
O

(
(E[Φµ]

√
µ)7/11 log2 n

δ

n
+

√
E[Φµ]µ log2 n

δ

n

)
,

and if E[Φµ] ≥ 1
logn

(
µ

log2 n

)5
, then

|Mµ − Fµ| =
2δ
O

(
µ
√

E[Φµ] log2 n
δ

n
+

√
E[Φµ]µ log2 n

δ

n

)
.

Proof is a simple application of triangle inequality and the union bound. It follows from
Lemmas 13 and 15.

Proof [Lemma 16] We first show that E[Φµ] and E[Φµ+1] in the bounds of Lemmas 26
and 11 can be replaced by Φµ. By Claim 20, if E[Φµ+1] ≥ 1,

|E[Φµ]− E[Φµ+1]| = O

(
E[Φµ] max

(
log n

µ+ 1
,

√
log n

µ+ 1

))
+

1

n
= O (E[Φµ] log n) .

Hence E[Φµ+1] = O(E[Φµ] log n). Hence by Lemma 11, for E[Φµ] ≥ 1,

|Mµ −Gµ| =
0.5n−3

O
(√

E[Φµ+1] + 1
(µ+ 1) log2 n

n

)
= O

(√
E[Φµ]

(µ+ 1) log3 n

n

)
.

Furthermore by Claim 23, if E[Φµ] ≤ 0.5 log2 n, then Φµ ≤ log2 n with probability ≥
1 − 0.5n−3, and we use the empirical estimator. Therefore with probability ≥ 1 − 0.5n−3,
Fµ and Gµ are used only if E[Φµ] ≥ 0.5 log2 n. If E[Φµ] ≥ 0.5 log2 n, then by Claim 23
E[Φµ] =

0.5n−3
O(Φµ). Therefore by the union bound, if Φµ ≥ log2 n, then

|Mµ −Gµ| =
n−3
O
(√

Φµ
(µ+ 1) log3 n

n

)
.
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Similarly by Lemma 26, for µ ≥ log2 n and Φµ ≥ log2 n, if 1
logn

(
µ

log2 n

)5
≥ E[Φµ] ≥ log2 n,

then

|Mµ − Fµ| =
0.5n−3

O

(
(E[Φµ]

√
µ)7/11 log2 n

n
+

√
E[Φµ]µ log2 n

n

)
=
n−3
O

(
Φ

7/11
µ
√
µ log2 n

n

)
,

and if E[Φµ] ≥ 1
logn

(
µ

log2 n

)5
, then

|Mµ − Fµ| =
0.5n−3

O

(
µ
√
E[Φµ] log2 n

n
+

√
E[Φµ]µ log2 n

n

)
=
n−3
O

(
µ
√
Φµ log2 n

n

)
.

Using the above mentioned modified versions of Lemmas 11, 26 and Lemma 10, it can be
easily shown that the lemma is true for µ ≥ 1.

By Lemma 11, |F ′un
0 − M0| =

n−3
Õ
(√

Φ1
n

)
. By the Chernoff bound with probability

≥ 1− e−n/4, Φ1 ≤ n′ ≤ 2n. Hence, |F ′un
0 −M0| =

4n−3
Õ
(

1√
n

)
. Note that the error probabil-

ities are not optimized.

B.9. Proof of Lemma 17

By triangle inequality, |N−1| = |
∑

µ F
′un
µ −Mµ| ≤

∑
µ |F ′un

µ −Mµ|. By Lemma 16, for µ = 0,

|M0 − F ′un
0 | =

4n−3
Õ
(
n−1/2

)
. We now use Lemma 16 to bound |F ′un

µ −Mµ| for µ ≥ 1. Since∑
µ µΦµ = n′ is a Poisson random variable with mean n, Pr(

∑
µ µΦµ ≤ 2n) ≥ 1 − e−n/4.

For µ ≥ 1, applying Cauchy Schwarz inequality repeatedly with the above constraints we
get

|N − 1| =
10n−2

2n∑
µ=1

O

(
min

(
Φ

7/11
µ
√
µ

n
,

√
Φµµ

n

)
polylog(n)

)

=

2n∑
µ=1

Õ
(√

µ

n
Φ7/11
µ

)

= Õ

√√√√ 2n∑
µ=1

µΦµ
n

2n∑
µ=1

Φ
3/11
µ

n

 (a)
= Õ

√√√√ 2n∑
µ=1

Φ
1/2
µ

n



= Õ


√√√√√
√√√√ 2n∑

µ=1

Φµµ

n

2n∑
µ=1

1

nµ

 = Õ
(

1

n1/4

)
.

Φµ takes only integer values, hence (a). Note that by the union bound, the error probability
is bounded by

Pr

(∑
µ

µΦµ > 2n

)
+

2n∑
µ=0

Pr

(
|Mµ − F ′un

µ | 6= Õ

(
min

(
Φ

7/11
µ
√
µ

n
,

√
Φµµ

n

)))
.
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By the concentration of Poisson random variables (discussed above) the first term is≤ e−n/4.
By Lemma 16, the second term is 2n(4n−3). Hence the error probability is bounded by
e−n/4 + 2n(4n−3) ≤ 10n−2. �

B.10. Proof of Theorem 2

It is easy to show that if Φµ > log2 n, with probability ≥ 1−n−3 , max(Gµ, 1/n) = Gµ and
min(max(Fµ, n

−3)1) = Fµ. For the clarity of proofs we ignore these modifications and add
an additional error probability of n−3.

Recall that F ′µ =
F ′unµ

N . By Jensen’s inequality,
∑

µMµ log
Mµ

F ′µ
≤ log

∑
µ
M2
µ

F ′µ
. Further-

more
∑

µ
M2
µ

F ′µ
= 1 +

(Mµ−F ′µ)2

F ′µ
. Substituting F ′µ = F ′un

µ /N and rearranging, we get

∑
µ

(Mµ − F ′µ)2

F ′µ
≤ 2(N − 1)2 +

∑
µ

2N
(Mµ − F ′un

µ )2

F ′un
µ

.

By Lemma 17, N = 1 + Õ(n−1/4). Therefore,

∑
µ

(Mµ − F ′µ)2

F ′µ
= Õ

(
1

n1/2

)
+
∑
µ

O

(
(Mµ − F ′un

µ )2

F ′un
µ

)
.

To bound the second term in the above equation, we bound |F ′un
µ −Mµ| and F ′un

µ separately.

We first show that F ′un
µ =

n−3
Ω̃
(
µΦµ
n

)
.

If empirical estimator is used for estimation, then F ′un
µ = Φµ

µ
n . If Good-Turing or Fµ is

used, then Φµ ≥ log2 n. If E[Φµ] ≤ 0.5 log2 n, then Pr(Φµ ≥ log2 n) ≤ 0.5n−3. If E[Φµ] ≥
0.5 log2 n, then using Claim 20 and Lemma 15 it can be shown that F ′un

µ =
0.5n−3

Ω̃
(
µΦµ
n

)
.

By the union bound, F ′un
µ =

n−3
Ω̃
(
µΦµ
n

)
.

Now using bounds on |F ′un
µ −Mµ| from Lemma 16 and the fact that F ′un

µ = Ω̃(Φµµ/n),
we bound the KL divergence. Observe that

∑
µ µΦµ = n′ is a Poisson random variable with

mean n, therefore Pr(
∑

µ µΦµ ≤ 2n) ≥ 1 − e−n/4. Applying Cauchy Schwarz inequality
repeatedly with the above constraint and using bounds on |F ′un

µ −Mµ| (Lemma 16) and F ′µ
we get

2n∑
µ=1

(Mµ − F ′un
µ )2

F ′un
µ

=
2n(4n−3+n−3)

2n∑
µ=1

O

(
min

(
µ

n
,
Φ

3/11
µ

n

)
polylog(n)

)

=

2n∑
µ=1

Õ

(
Φ

1/2
µ

n

)

= Õ

√√√√ 2n∑
µ=1

Φµµ

n

2n∑
µ=1

1

nµ

 = Õ
(

1

n1/2

)
.
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For µ = 0, by Lemma 11, (M0 − F ′un
0 )2 =

n−3
O
(
Φ1polylog(n)

n2 + polylog(n)
n2

)
and hence,

(M0 − F ′un
0 )2

F ′un
0

=
n−3
Õ
(

1

n

)
.

Similar to the proof of Lemma 17, by the union bound the error probability is ≤ e−n/4 +
10n−2 + 2n(4n−3 +n−3) +n−3 +n−3 ≤ 22n−2 ≤ e−1n−1.5 for n ≥ 4000. Hence with Poi(n)
samples, error probability is ≤ e−1n−1.5 . Therefore by Lemma 8, with exactly n samples,
error probability is ≤ n−1. �

B.11. Lower bounds on Good-Turing and empirical estimates

We prove that the following distribution achieves the lower bound in Lemma 1.

Let p be a distribution with
√
n

log3 n
symbols with probability pi

def
= n1/3 log3 n

cn + in
1/6 log3 n
cn

for 1 ≤ i ≤ n1/6. c is chosen such that the sum of probabilities adds up to 1. We provide
a proof sketch and the detailed proof is deferred to the full version of the paper. It can be
shown that p has the following properties.

• Let R def
= ∪n1/6

i=1 [npi + n1/6, npi + 2n1/6]. For every µ ∈ R, E[Φµ] = Θ̃(n1/3).

• Since the probabilities are Θ̃
(
n1/3

n

)
, symbols occur with multiplicity Θ̃(n1/3) with

high probability.

• The distribution is chosen such that both empirical and Good-Turing bounds in Lem-
mas 10 and 11 are tight.

Hence for each µ ∈ R, both the Good-Turing and empirical estimators makes an error
of

Ω̃

(
µ
√

E[Φµ]

n

)
= Ω̃

(√
µE[Φµ]

n

)
= Ω̃

(√
n1/3n1/3

n

)
= Ω̃

(
1

n1/2

)
.

Number of multiplicities in the range R is n1/6 · n1/6 = n1/3. Adding the error over all the

multiplicities yields an total error of Ω̃
(

1
n1/2

)
· n1/3 = Ω̃

(
1

n1/6

)
. �.

Appendix C. Prediction

In this section, we prove Corollary 4. By definition Pr(Ψn)
def
=
∑

xn|Ψ(xn)=Ψn Pr(xn). Let ψ
appear µ times in Ψn. Using the fact that sampling is i.i.d., and the definition of pattern,
each of the Φµ integers (in the pattern) are equally likely to appear as Ψn+1. This leads to,

P (Ψn+1,Ψn+1 = ψ) =
∑

xn|Ψ(xn)=Ψn

Pr(xn)
Mµ(xn)

Φµ
,

and hence

Pr(Ψn+1|Ψn) =

∑
xn|Ψ(xn)=Ψn Pr(xn)

Mµ(xn)
Φµ∑

xn|Ψ(xn)=Ψn Pr(xn)
.
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Proof [Corollary 4] Any label-invariant estimator including the proposed estimator assigns
identical values for F ′µ to all sequences with the same pattern. Hence

E

[∑
µ

Mµ log
Mµ

F ′µ

]
=
∑
xn

p(xn)
∑
µ

Mµ(xn) log
Mµ(xn)

F ′µ(xn)

=
∑
Ψn

∑
µ

∑
xn|Ψ(xn)=Ψn

p(xn)Mµ(xn) log
p(xn)Mµ(xn)

p(xn)F ′µ(xn)

(a)

≥
∑
Ψn

∑
µ

( ∑
xn|Ψ(xn)=Ψn

p(xn)Mµ(xn)
)

log

(∑
xn|Ψ(xn)=Ψn p(x

n)Mµ(xn)
)

(
(
∑

xn|Ψ(xn)=Ψn p(x
n))F ′µ(xn)

)
=
∑
Ψn

∑
µ

(
P (Ψn)P (Ψn+1|Ψn)

)
log

P (Ψn+1)

P (Ψn)F ′µ

= EΨn∼P

[ m+1∑
Ψn+1=1

P (Ψn+1|Ψn) log

(
P (Ψn+1|Ψn)

q(Ψn+1|Ψn)

)]
,

where in (a) we used the log-sum inequality and the fact that our estimator F ′µ is identical
for all sequences with the same pattern.

Appendix D. Label invariant classification

In this section, we extend the combined-probability estimator to joint-sequences and propose
a competitive classifier. First introduce profiles, a sufficient statistic for label-invariant clas-
sifiers. Then we relate the problem of classification to that of estimation in joint sequences.
Motivated by the techniques in probability estimation, we then develop a joint-sequence
probability estimator and prove its convergence rate, thus proving an upper bound on the
error of the proposed classifier. Finally we prove a non-tight lower bound of Ω̃(n−1/3).

D.1. Joint-profiles

Let the training sequences be Xn and Y n and the test sequence be Z1. It is easy to see
that a sufficient statistic for label invariant classifiers is the joint profile ϕ of Xn, Y n, Z1,
that counts how many elements appeared any given number of times in the three se-
quences (Acharya et al., 2011). For example, for X = aabcd, Y = bacde and Z = a,
the profiles are ϕ(X,Y ) = {(2, 1), (1, 1), (1, 1), (0, 1)} and
ϕ(X,Y , Z) = {(2, 1, 1), (1, 1, 0), (1, 1, 0), (1, 1, 0), (0, 1, 0)}. ϕ(X,Y ) indicates that there is
one symbol appearing twice in first sequence and once in second, two symbols appearing
once in both and so on. The profiles for three sequences can be understood similarly. Any
label invariant test is only a function of the joint profile.

By definition, the probability of a profile is the sum of the probabilities of all sequences
with that profile i.e., for profiles of (x, y, z), Pr(ϕ) =

∑
x,y,z|ϕ(x,y,z) Pr(x, y, z). Pr(ϕ) is

difficult to compute due to the permutations involved. Various techniques to compute
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profile probabilities are studied in Acharya et al. (2010). Still the proposed classifier we
derive runs in linear time.

D.2. Classification via estimation

Let µx(x, y) denote the number of multiplicities symbol x in (x, y). Let

Mp
µ,µ′(x, y)

def
=

∑
x:µx(x,y)=(µ,µ′)

px

be the sum of the probabilities of all elements in p such that µx(x, y) = (µ, µ′). M q
µ,µ′(x, y)

is defined similarly.
Let ϕ = ϕ(x, y) be the joint profile of (x, y). If z is generated according to p, then the

probability of observing the joint profile ϕ(x, y, z), where z is an element appearing µ and
µ′ times respectively in x and y is

Pr p(ϕ(x, y, z)) =
∑

x,y|ϕ(x,y)=ϕ

P (x)Q(y)Mp
µ,µ′(x, y),

= Pr(ϕ(x, y))Eϕ[Mp
µ,µ′ ],

where Eϕ[Mp
µ,µ′ ]

def
= E[Mp

µ,µ′ |Φ = ϕ] is the expected value of Mp
µ,µ′ given that ϕ is the profile.

When the two distributions are known and the observed joint profile is ϕ(x, y, z), then
the classification problem becomes a hypothesis testing problem. The optimal solution to
the hypothesis testing when both hypotheses are equally likely is the one that assigns higher
probability to the observation (joint profile in our case). So the optimal classifier is

Pr p(ϕ(x, y, z))
p

q

>< Pr q(ϕ(x, y, z))

⇒ Eϕ[Mp
µ,µ′ ]

p

q

>< Eϕ[M q
µ,µ′ ].

We will develop variants of F ′µ for joint profiles, denoted by F ′pµ,µ′ , and F ′qµ,µ′ . We use these

estimators in place of the expected values. Our classifier S assigns z to x if F ′pµ,µ′ > F ′qµ,µ′ and

to y if F ′pµ,µ′ < F ′qµ,µ′ . Ties are broken at random. There is an additional error in classification

with respect to the optimal label-invariant classifier when Eϕ[Mp
µ,µ′ ] < Eϕ[M q

µ,µ′ ] but F ′pµ,µ′ ≥
F ′qµ,µ′ or vice versa.

Let 1εµ,µ′ be an indicator random variable that is 1 if

|Eϕ[Mp
µ,µ′ ]− Eϕ[M q

µ,µ′ ]| ≤
∑

s∈{p,q}

|F ′sµ,µ′ − Eϕ[M s
µ,µ′ ]|. (7)

It is easy to see that if there is an additional error, then 1εµ,µ′ = 1. Using these conditions
the following lemma provides a bound on the additional error with respect to the optimal.

Lemma 27 (Classification via estimation) For every (p, q) and every classifier S,

ES
p,q

(n) ≤ ESp,q
p,q

(n) +
∑
µ,µ′

∑
t∈{p,q}

E[1εµ,µ′ |F ′tµ,µ′ −M t
µ,µ′ |].
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Proof For a joint profile ϕ, S assigns z to the wrong hypothesis, if F ′pµ,µ′ > F ′qµ,µ′ and

Eϕ[Mp
µ,µ′ ] < Eϕ[M q

µ,µ′ ] or vice versa. Hence 1εµ,µ′ = 1. If 1εµ,µ′ = 1, then the increase in

error is Pr(ϕ)1εµ,µ′ |Eϕ[Mp
µ,µ′ ]−Eϕ[M q

µ,µ′ ]|. Using Equation (7) and summing over all profiles
results in the lemma.

In the next section we develop estimators for Mp
µ,µ′ and M q

µ,µ′ .

D.3. Conventional estimation and the proposed approach

Empirical and Good-Turing estimators can be naturally extended to joint sequences as

Epµ,µ′
def
= Φµ,µ′

µ
n and Gpµ,µ′

def
= Φµ+1,µ′

µ+1
n . As with probability estimation, it is easy to come

up with examples where the rate of convergence of these estimates is not optimal. The rate
of convergence of Good-Turing and empirical estimators are quantified in the next lemma.

Lemma 28 (Empirical and Good-Turing for joint sequences) For every (p, q) and
µ and µ′, ∣∣∣Mp

µ,µ′ −G
p
µ,µ′

∣∣∣ =
n−4
O
(√

E[Φµ+1,µ′ ] + 1
(µ+ 1) log2 n

n

)
,

and if max(µ, µ′) > 0, then∣∣∣Mp
µ,µ′ − E

p
µ,µ′

∣∣∣ =
n−4
O
(
Φµ,µ′

√
µ+ 1 log n

n

)
.

Similar results hold for M q
µ,µ′.

The proof of the above lemma is similar to those of Lemmas 10 and 11 and hence omitted.
Note that the error probability in the above lemma can be any polynomial in 1/n. n−4 has
been chosen to simplify the analysis. Motivated by combined probability estimation, we
propose F pµ0 ,µ′0

for joint sequences as

F pµ0 ,µ′0
= Φµ0 ,µ′0

µ0 + 1

n

̂E[Φµ0+1,µ′
0
]

̂E[Φµ0 ,µ′0
]
,

where ̂E[Φµ0 ,µ′0
] and ̂E[Φµ0+1,µ′

0
] are estimators for E[Φµ0 ,µ′0

] and E[Φµ0+1,µ′
0
] respectively.

Let S
µ0 ,µ

′
0

r = {(µ, µ′) | |µ − µ0 | ≤ r, |µ′ − µ′
0
| ≤ r} and rµ0 =

⌊ √
µ0

(µ0Φµ0 ,µ
′
0

)1/12 logn

⌋
. The

estimators ̂E[Φµ0 ,µ′0
] and ̂E[Φµ0+1,µ′

0
] are given by

̂E[Φµ0 ,µ′0
] =

∑
µ,µ′∈S

µ0 ,µ
′
0

rµ0

cµ,µ′Φµ,µ′ , and ̂E[Φµ0+1,µ′
0
] =

∑
µ,µ′∈S

µ0+1,µ′
0

rµ0

dµ,µ′Φµ,µ′ ,

where cµ,µ′ = γrµ0 (|µ − µ0 |)γrµ0 (|µ′ − µ′
0
|)aµ0µ a

µ′
0
µ′ and dµ,µ′ = γrµ0 (|µ − µ0 − 1|)γrµ0 (|µ′ −

µ′
0
|) µ0

µ0+1a
µ0
µ a

µ′
0
µ′ . γr and a

µ0
µ are defined in Section 5. The estimatorF qµ0 ,µ′0

can be obtained

similarly.
The next lemma shows that the estimate for the ratio of E[Φµ0+1,µ′

0
] and E[Φµ0 ,µ′0

] is
close to the actual ratio. The proof is similar to that of Lemma 15 and hence omitted.
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Lemma 29 For every (p, q) and every µ0 ≥ log2 n, if 1
µ0

(
µ0

log2 n

)6
≥ E[Φµ0 ,µ′0

] ≥ log2 n,

then ∣∣∣∣∣∣
̂E[Φµ0+1,µ′

0
]

̂E[Φµ0 ,µ′0
]
−

E[Φµ0+1,µ′
0
]

E[Φµ0 ,µ′0
]

∣∣∣∣∣∣ =
n−4
O

(
log3 n

√
µ0(E[Φµ0 ,µ′0

]µ0)1/3

)
,

and if E[Φµ0 ,µ′0
] ≥ 1

µ0

(
µ0

log2 n

)6
, then∣∣∣∣∣∣

̂E[Φµ0+1,µ′
0
]

̂E[Φµ0 ,µ′0
]
−

E[Φµ0+1,µ′
0
]

E[Φµ0 ,µ′0
]

∣∣∣∣∣∣ =
n−4
O

 log3 n√
E[Φµ0 ,µ′0

]

 .

Using the previous lemma, we bound the error of F pµ,µ′ in the next lemma. The proof is
similar to that of Lemma 26 and hence omitted.

Lemma 30 For every (p, q) and µ ≥ log2 n, if 1
µ

(
µ

log2 n

)6
≥ E[Φµ,µ′ ] ≥ log2 n, then

∣∣∣Mp
µ,µ′ − F

p
µ,µ′

∣∣∣ =
2n−4

O

(
(E[Φµ,µ′ ]

2/3µ1/6 log3 n

n
+

√
E[Φµ,µ′ ]µ log2 n

n

)
,

and if E[Φµ,µ′ ] >
1
µ

(
µ

log3 n

)6
, then

∣∣∣Mp
µ,µ′ − F

p
µ,µ′

∣∣∣ =
2n−4

O

(
µ
√
E[Φµ,µ′ ] log3 n

n
+

√
E[Φµ,µ′ ]µ log2 n

n

)
.

Similar results hold for M q
µ,µ′.

D.4. Competitive classifier

The proposed classifier is given below. It estimates Mp
µ,µ′ (call it F ′pµ,µ′) and M q

µ,µ′ (call

it F ′qµ,µ′) and assigns z to the hypothesis that has the higher estimate. Let µ and µ′ be

the multiplicities of the z in x and y respectively. If |µ − µ′| ≥
√
µ+ µ′ log2 n, then the

classifier uses empirical estimates. Since µ and µ′ are far apart, by the Chernoff bound such
an estimate provides us good bounds for the purposes of classification. In other cases, it
uses the estimate with the lowest error bounds, given by Lemma 28 for Epµ,µ′ , G

p
µ,µ′ , and

Lemma 30 for F pµ,µ′ . We also set F ′pµ,µ′ = min(F ′pµ,µ′ , 1) and F ′qµ,µ′ = min(F ′qµ,µ′ , 1), to help in
the analysis and ensure that the estimates are always ≤ 1.

Classifier S(x, y, z)
Input: Two sequences x and y and a symbol z.
Output: x or y.

1. Let µ = µz(x) and µ′ = µz(y).

2. If max(µ, µ′) = 0, then F ′pµ,µ′ = Gpµ,µ′ and F ′qµ,µ′ = Gqµ,µ′ .
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3. If max(µ, µ′) > 0 and |µ − µ′| ≥
√
µ+ µ′ log2 n or Φµ,µ′ ≤ log2 n, then F ′pµ,µ′ = Epµ,µ′

and F ′qµ,µ′ = Eqµ,µ′ .

4. If max(µ, µ′) > 0, |µ− µ′| <
√
µ+ µ′ log2 n, and Φµ,µ′ > log2 n, then

(a) If µ ≥ 4 log4 n, then F ′pµ,µ′ = F pµ,µ′ and F ′qµ,µ′ = F qµ,µ′ .

(b) If µ < 4 log4 n, then F ′pµ,µ′ = Gpµ,µ′ and F ′qµ,µ′ = Gqµ,µ′ .

5. Set F ′pµ,µ′ = min(F ′pµ,µ′ , 1) and F ′qµ,µ′ = min(F ′qµ,µ′ , 1).

6. If F ′pµ,µ′ > F ′qµ,µ′ , then return x. If F ′pµ,µ′ < F ′qµ,µ′ , then return y. If F ′pµ,µ′ = F ′qµ,µ′ return
x or y with equal probability.

D.5. Proof of Theorem 6

The analysis of the classifier is similar to that of the combined probability estimation, and
we outline few key steps. The error in estimating Mp

µ,µ′ (and M q
µ,µ′) is quantified in the

following lemma.

Lemma 31 For every (p, q), |Mp
0,0 − F ′p0,0| =

10n−3
Õ
(

1√
n

)
and for (µ, µ′) 6= (0, 0) and

|µ− µ′| ≤
√
µ+ µ′ log2 n,

|Mp
µ,µ′ − F

′p
µ,µ′ | =

10n−3
Õ

min
(
Φ

2/3
µ,µ′
√
µ+ 1, Φ

1/2
µ,µ′(µ+ 1)

)
n

 .

Similar results hold for M q
µ,µ′.

The analysis of the lemma is similar to that of Lemma 16 and hence omitted. We now
prove Theorem 6 using the above set of results.
Proof [Theorem 6] Let R = {(µ, µ′) | |µ− µ′| ≤

√
µ+ µ′ log2 n}. By Lemma 27,

ES
p,q

(n) ≤ ESp,q
p,q

(n)+2 max
p

 ∑
(µ,µ′)∈R

E[1εµ,µ′ |F
′p
µ,µ′ −M

p
µ,µ′ |] +

∑
(µ,µ′)∈Rc

E[1εµ,µ′ |F
′p
µ,µ′ −M

p
µ,µ′ |]

 .

We first show that the second term is O(n−1.5). By Lemma 28,

|Mp
µ,µ′ − E

p
µ,µ′ | =

n−4
O
(
Φµ,µ′

√
µ log n

n

)
and |M q

µ,µ′ − E
q
µ,µ′ | =

n−4
O
(
Φµ,µ′

√
µ′ log n

n

)
.

If |µ− µ′| ≥
√
µ+ µ′ log2 n, then

|Mp
µ,µ′ −M

q
µ,µ′ | ≥

Φµ,µ′
√
µ+ µ′ log2 n

n
.

Hence 1εµ,µ′ =
2n−4

0. Since with Poi(n) samples, the bounds hold with probability 1−O(n−4),

by Lemma 8, with exactly n samples, they hold with probability 1 − O(n−3.5). Observe
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that (µ, µ′) takes at most n ·n = n2 values. Therefore, by the union bound Pr(1εµ,µ′ = 1) ≤
O(n−1.5). Hence maxp

∑
(µ,µ′)∈Rc E[|F ′pµ,µ′ −M

p
µ,µ′ |] = O(n−1.5).

We now consider the case (µ, µ′) ∈ R. In Lemma 31, the bounds on |F ′pµ,µ′ −M
p
µ,µ′ |

hold with probability ≥ 1 − O(n−3), with Poi(n) samples. Therefore by Lemma 8, with
exactly n samples, they hold with probability ≥ 1 − O(n−2.5), i.e., |F ′pµ,µ′ −M

p
µ,µ′ | =

O(n−2.5)

Õ
(
Φ
2/3

µ,µ′ (µ+µ′)1/2

n

)
. Observe that (µ, µ′) takes at most n · n = n2 values, hence by the

union bound, the probability that the above bound holds for all (µ, µ′) ∈ R is at least
1−O(n−0.5). Since |F ′pµ,µ′ −M

p
µ,µ′ | ≤ 1, we get

max
p

∑
(µ,µ′)∈R

E[|F ′pµ,µ′ −M
p
µ,µ′ |] ≤

∑
(µ,µ′)∈R

Õ

Φ2/3
µ,µ′(µ+ µ′)1/2

n

+O
(

1

n1/2

)
.

Using techniques similar to those in the proofs Lemma 17 and Theorem 2, it can be shown
that the above quantity is ≤ Õ(n−1/5), thus proving the theorem.

D.6. Lower bound for classification

We prove a non-tight converse for the additional error in this section.

Theorem 32 For any classifier S there exists (p, q) such that

ES
p,q

(n) = ESp,q
p,q

(n) + Ω̃

(
1

n1/3

)
.

We construct a distribution q and a collection of distributions P such that for any dis-

tribution p ∈ P, the optimal label-invariant classification error for (p, q) is 1
2−Θ

(
1

n1/3 logn

)
.

We then show that any label-invariant classifier incurs an additional error of Ω̃(n−1/3) for
at least one pair (p′, q), where p′ ∈ P. Similar arguments have been used in LeCam (1986);
Paninski (2008).

Let q be a distribution over i = 1, 2, . . . , n
1/3

logn such that qi = 3i2 log3 n
cn , and c ≤ 2 is the

normalization factor.

Let P to be a collection of 2
n1/3

2 logn distributions. For every p ∈ P, for all odd i, pi =
qi ± i logn

n and pi+1 = qi+1 ∓ i logn
n , such that, pi + pi+1 = qi + qi+1. For every p ∈ P.

||p − q||1 = Θ
(

1
n1/3 logn

)
. The next lemma, proved in the full version of the paper states

that every distribution p ∈ P and q can be classified by a label-invariant classifier with error
1
2 −Θ

(
1

n1/3 logn

)
.

Lemma 33 For every p ∈ P and q,

ESp,q
p,q

(n) =
1

2
−Θ

(
1

n1/3 log n

)
.
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Proof [sketch of Theorem 32] We show that for any classifier S, maxp∈P ESp,q(n) = ESp,q
p,q

(n)+

Ω̃(n−1/3) for some p ∈ P, thus proving the theorem. Since extra information reduces the
error probability, we aid the classifier with a genie that associates the multiplicity with the
probability of the symbol. Using ideas similar to LeCam (1986); Acharya et al. (2012a),
one can show that the worst error probability of any classifier between q and the set of
distribution P is lower bounded by error probability between q and any mixture on P. We
choose the mixture p0 such that each p ∈ P is chosen uniformly at random. Therefore for
any classifier S,

max
p
ES
p,q

(n) ≥
∑
x,y,z

min (q(x)p0(y, z), p0(y)q(x, z))

2
.

Using techniques similar to Acharya et al. (2012a), it can be shown that difference between
above error and ESp,q

p,q
(n) is Ω̃(n−1/3). The complete analysis is deferred to the full version

of the paper.

33


	Introduction
	Probability estimation
	Background
	Previous results
	New results

	Prediction
	Background
	Previous results
	New results

	Classification
	Background
	Previous results
	New results

	Analysis of probability estimation
	Poisson sampling
	Limitations of Good-Turing and empirical estimators
	A genie-aided estimator
	Estimating the ratio of expected values
	Proposed estimator
	Proof sketch of Theorem 2
	Lower bounds on estimation

	Useful facts
	Concentration inequalities
	Bounds on linear estimators

	Proofs of results in Section 5
	Proof of Lemma 8
	Proof of Claim 9
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Lemma 13
	Proof of Lemma 14
	Proof of Lemma 15
	Proof of Lemma 16
	Proof of Lemma 17
	Proof of Theorem 2
	Lower bounds on Good-Turing and empirical estimates

	Prediction
	Label invariant classification
	Joint-profiles
	Classification via estimation
	Conventional estimation and the proposed approach
	Competitive classifier
	Proof of Theorem 6
	Lower bound for classification


