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Abstract

We show an efficient algorithm for the following problem: Given uniformly random points
from an arbitrary n-dimensional simplex, estimate the simplex. The size of the sample and
the number of arithmetic operations of our algorithm are polynomial in n. This answers
a question of Frieze, Jerrum and Kannan Frieze et al. (1996). Our result can also be
interpreted as efficiently learning the intersection of n + 1 half-spaces in Rn in the model
where the intersection is bounded and we are given polynomially many uniform samples
from it. Our proof uses the local search technique from Independent Component Analysis
(ICA), also used by Frieze et al. (1996). Unlike these previous algorithms, which were
based on analyzing the fourth moment, ours is based on the third moment.

We also show a direct connection between the problem of learning a simplex and ICA:
a simple randomized reduction to ICA from the problem of learning a simplex. The con-
nection is based on a known representation of the uniform measure on a simplex. Similar
representations lead to a reduction from the problem of learning an affine transformation
of an n-dimensional `p ball to ICA.

Keywords: independent component analysis, randomized reductions, learning convex
bodies, method of moments

1. Introduction

We are given uniformly random samples from an unknown convex body in Rn, how many
samples are needed to approximately reconstruct the body? It seems intuitively clear,
at least for n = 2, 3, that if we are given sufficiently many such samples then we can
reconstruct (or learn) the body with very little error. For general n, it is known to require
2Ω(
√
n) samples Goyal and Rademacher (2009) (see also Klivans et al. (2008) for a similar

lower bound in a different but related model of learning). This is an information-theoretic
lower bound and no computational considerations are involved. As mentioned in Goyal
and Rademacher (2009), it turns out that if the body has few facets (e.g. polynomial
in n), then polynomial in n samples are sufficient for approximate reconstruction. This
is an information-theoretic upper bound and no efficient algorithms (i.e., with running
time poly(n)) are known. (We remark that to our knowledge the same situation holds for
polytopes with poly(n) vertices.) In this paper we study the reconstruction problem for
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the special case when the input bodies are restricted to be (full-dimensional) simplices.
We show that in this case one can in fact learn the body efficiently. More precisely, the
algorithm knows that the input body is a simplex but only up to an affine transformation,
and the problem is to recover this affine transformation. This answers a question of (Frieze
et al., 1996, Section 6).

The problem of learning a simplex is also closely related to the well-studied problem
of learning intersections of half-spaces. Suppose that the intersection of n + 1 half-spaces
in Rn is bounded, and we are given poly(n) uniformly random samples from it. Then our
learning simplices result directly implies that we can learn the n+ 1 half-spaces. This also
has the advantage of being a proper learning algorithm, meaning that the output of the
algorithm is a set of n+ 1 half-spaces, unlike many of the previous algorithms.

Previous work. Perhaps the first approach to learning simplices that comes to mind is
to find a minimum volume simplex containing the samples. This can be shown to be a good
approximation to the original simplex. (Such minimum volume estimators have been studied
in machine learning literature, see e.g. Schölkopf et al. (2001) for the problem of estimating
the support of a probability distribution. We are not aware of any technique that applies
to our situation and provides theoretical guarantees.) However, the problem of finding a
minimum volume simplex is in general NP-hard Packer (2002). This hardness is not directly
applicable for our problem because our input is a random sample and not a general point set.
Nevertheless, we do not have an algorithm for directly finding a minimum volume simplex;
instead we use ideas similar to those used in Independent Component Analysis (ICA). ICA
studies the following problem: Given a sample from an affine transformation of a random
vector with independently distributed coordinates, recover the affine transformation (up
to some unavoidable ambiguities). Frieze et al. (1996) gave an efficient algorithm for this
problem (with some restrictions on the allowed distributions, but also with some weaker
requirements than full independence) along with most of the details of a rigorous analysis
(a complete analysis of a special case can be found in Arora et al. (2012); see also Vempala
and Xiao (2011) for a generalization of ICA to subspaces along with a rigorous analysis).
The problem of learning parallelepipeds from uniformly random samples is a special case
of this problem. Frieze et al. (1996) asked if one could learn other convex bodies, and in
particular simplices, efficiently from uniformly random samples. Nguyen and Regev (2009)
gave a simpler and rigorous algorithm and analysis for the case of learning parallelepipeds
with similarities to the popular FastICA algorithm of Hyvärinen (1999). The algorithm
in Nguyen and Regev (2009) is a first order algorithm unlike Frieze et al.’s second order
algorithm.

The algorithms in both Frieze et al. (1996); Nguyen and Regev (2009) make use of
the fourth moment function of the probability distribution. Briefly, the fourth moment in
direction u ∈ Rn is E(u ·X)4, where X ∈ Rn is the random variable distributed according
to the input distribution. The moment function can be estimated from the samples. The
independent components of the distribution correspond to local maxima or minima of the
moment function, and can be approximately found by finding the local maxima/minima of
the moment function estimated from the sample.

More information on ICA including historical remarks can be found in Hyvärinen et al.
(2001); Comon and Jutten (2010). Ideas similar to ICA have been used in statistics in
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the context of projection pursuit since the mid-seventies. It is not clear how to apply
ICA to the simplex learning problem directly as there is no clear independence among the
components. Let us note that Frieze et al. (1996) allow certain kinds of dependencies among
the components, however this does not appear to be useful for learning simplices.

Learning intersections of half-spaces is a well-studied problem in learning theory. The
problem of PAC-learning intersections of even two half-spaces is open, and there is evidence
that it is hard at least for sufficiently large number of half-spaces: E.g., Klivans and Sherstov
(2009) prove that learning intersections of nε half-spaces in Rn (for constant ε > 0) is
hard under standard cryptographic assumptions (PAC-learning is possible, however, if one
also has access to a membership oracle in addition to random samples Kwek and Pitt
(1998)). Because of this, much effort has been expended on learning when the distribution of
random samples is some simple distribution, see e.g. Klivans and Sherstov (2007); Vempala
(2010a,b) and references therein. This line of work makes substantial progress towards the
goal of learning intersections of k half-spaces efficiently, however it falls short of being able
to do this in time polynomial in k and n; in particular, these algorithms do not seem to be
able to learn simplices. The distribution of samples in these works is either the Gaussian
distribution or the uniform distribution over a ball. Frieze et al. (1996) and Goyal and
Rademacher (2009) consider the uniform distribution over the intersection. Note that this
requires that the intersection be bounded. Note also that one only gets positive samples in
this case unlike other work on learning intersections of half-spaces. The problem of learning
convex bodies can also be thought of as learning a distribution or density estimation problem
for a special class of distributions.

Gravin et al. (2012) show how to reconstruct a polytope with N vertices in Rn, given
its first O(nN) moments in (n+ 1) random directions. In our setting, where we have access
to only a polynomial number of random samples, it’s not clear how to compute moments
of such high orders to the accuracy required for the algorithm of Gravin et al. (2012) even
for simplices.

As was pointed out by a COLT referee, efficient learnability of a simplex follows from
the recent work on learning latent Dirichlet allocations Anandkumar et al. (2012b). That
as well as the current paper use low-degree moments although the way the structure is
extracted from the moments is different: Anandkumar et al. (2012b) use eigenvalue decom-
positions. The more recent work of Anandkumar et al. (2012a) uses symmetric orthogonal
tensor decompositions to learn various latent variable models and in particular Dirichlet
allocations. Anandkumar et al. (2012a) use a fixed-point iteration similar to the one we
use in our first method for learning simplices. Anandkumar et al. (2012a) and our work are
independent.

Our results For clarity of the presentation, we use the following machine model for the
running time: a random access machine that allows the following exact arithmetic operations
over real numbers in constant time: addition, subtraction, multiplication, division and
square root.

The estimation error is measured using total variation distance, denoted dTV (see Section
2).

Theorem 1 There is an algorithm (Algorithm 1 below) such that given access to random
samples from a simplex SINPUT ⊆ Rn, with probability at least 1 − δ over the sample and
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the randomness of the algorithm, it outputs n+ 1 vectors that are the vertices of a simplex
S so that dTV (S, SINPUT ) ≤ ε. The algorithm runs in time polynomial in n, 1/ε and 1/δ.

As mentioned earlier, our algorithm uses ideas from ICA. Our algorithm uses the third
moment instead of the fourth moment used in certain versions of ICA. The third moment is
not useful for learning symmetric bodies such as the cube as it is identically 0. It is however
useful for learning a simplex where it provides useful information, and is easier to handle
than the fourth moment. One of the main contributions of our work is the understanding of
the third moment of a simplex and the structure of local maxima. This is more involved than
in previous work as the simplex has no obvious independence structure, and the moment
polynomial one gets has no obvious structure unlike for ICA.

The probability of success of the algorithm can be “boosted” so that the dependence of
the running time on δ is only linear in log(1/δ), see Appendix C.

While our algorithm for learning simplices uses techniques for ICA, we have to do
substantial work to make those techniques work for the simplex problem. We also show a
more direct connection between the problem of learning a simplex and ICA: a randomized
reduction from the problem of learning a simplex to ICA. The connection is based on a
known representation of the uniform measure on a simplex as a normalization of a vector
having independent coordinates. Similar representations are known for the uniform measure
in an n-dimensional `p ball (denoted `np ) Barthe et al. (2005) and the cone measure on the
boundary of an `np ball Schechtman and Zinn (1990); Rachev and Ruschendorf (1991);
Song and Gupta (1997) (see Appendix A for the definition of the cone measure). These
representations lead to a reduction from the problem of learning an affine transformation
of an `np ball to ICA. These reductions show connections between estimation problems with
no obvious independence structure and ICA. They also make possible the use of any off-
the-shelf implementation of ICA. However, the results here do not supersede our result for
learning simplices because to our knowledge no rigorous analysis is available for the ICA
problem when the distributions are the ones in the above reductions.

Idea of the algorithm. The new idea for the algorithm is that after putting the samples
in a suitable position (see below), the third moment of the sample can be used to recover
the simplex using a simple FastICA-like algorithm. We outline our algorithm next.

As any full-dimensional simplex can be mapped to any other full-dimensional simplex
by an invertible affine transformation, it is enough to determine the translation and linear
transformation that would take the given simplex to some canonical simplex. As is well-
known for ICA-like problems (see, e.g., Frieze et al. (1996)), this transformation can be
determined up to a rotation from the mean and the covariance matrix of the uniform
distribution on the given simplex. The mean and the covariance matrix can be estimated
efficiently from a sample. A convenient choice of an n-dimensional simplex is the convex
hull of the canonical vectors in Rn+1. We denote this simplex ∆n and call it the standard
simplex. So, the algorithm begins by picking an arbitrary invertible affine transformation T
that maps Rn onto the hyperplane {x ∈ Rn+1 : 1 ·x = 1}. We use a T so that T−1(∆n) is an
isotropic1 simplex. In this case, the algorithm brings the sample set into isotropic position
and embeds it in Rn+1 using T . After applying these transformations we may assume (at

1. See Section 2.
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the cost of small errors in the final result) that our sample set is obtained by sampling from
an unknown rotation of the standard simplex that leaves the all-ones vector (denoted 1

from now on) invariant (thus this rotation keeps the center of mass of the standard simplex
fixed), and the problem is to recover this rotation.

To find the rotation, the algorithm will find the vertices of the rotated simplex approxi-
mately. This can be done efficiently because of the following characterization of the vertices:
Project the vertices of the simplex onto the hyperplane through the origin orthogonal to
1 and normalize the resulting vectors. Let V denote this set of n + 1 points. Consider
the problem of maximizing the third moment of the uniform distribution in the simplex
along unit vectors orthogonal to 1. Then V is the complete set of local maxima and the
complete set of global maxima (Theorem 11). A fixed point-like iteration (inspired by the
analysis of FastICA Hyvärinen (1999) and of gradient descent in Nguyen and Regev (2009))
starting from a random point in the unit sphere finds a local maximum efficiently with high
probability. By the analysis of the coupon collector’s problem, O(n log n) repetitions are
highly likely to find all local maxima.

Idea of the analysis. In the analysis, we first argue that after putting the sample in
isotropic position and mapping it through T , it is enough to analyze the algorithm in the
case where the sample comes from a simplex S that is close to a simplex S′ that is the
result of applying a rotation leaving 1 invariant to the standard simplex. The closeness
here depends on the accuracy of the sample covariance and mean as an estimate of the
input simplex’s covariance matrix and mean. A sample of size O(n) guarantees ((Adam-
czak et al., 2010, Theorem 4.1), (Srivastava and Vershynin, 2011, Corollary 1.2)) that the
covariance and mean are close enough so that the uniform distributions on S and S′ are
close in total variation. We show that the subroutine that finds the vertices (Subroutine
1), succeeds with some probability when given a sample from S′. By definition of total
variation distance, Subroutine 1 succeeds with almost as large probability when given a
sample from S (an argument already used in Nguyen and Regev (2009)). As an additional
simplifying assumption, it is enough to analyze the algorithm (Algorithm 1) in the case
where the input is isotropic, as the output distribution of the algorithm is equivariant with
respect to affine invertible transformations as a function of the input distribution.

Organization of the paper. We start with some preliminaries in Sec. 2. In Sec. 3 we
give an algorithm that estimates individual vertices of simplices in a special position; using
this algorithm as a subroutine in Sec. 4 we give the algorithm for the general case. Sec. 5
gives the probabilistic results underlying the reductions from learning simplices and `np balls
to ICA. Sec. 6 explains those reductions.

2. Preliminaries

An n-simplex is the convex hull of n+1 points in Rn that do not lie on an (n−1)-dimensional
affine hyperplane. It will be convenient to work with the standard n-simplex ∆n living in
Rn+1 defined as the convex hull of the n+ 1 canonical unit vectors e1, . . . , en+1; that is

∆n = {(x0, . . . , xn) ∈ Rn+1 : x0 + · · ·+ xn = 1 and xi ≥ 0 for all i}.
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The canonical simplex Ωn living in Rn is given by

{(x0, . . . , xn−1) ∈ Rn : x0 + · · ·+ xn−1 ≤ 1 and xi ≥ 0 for all i}.

Note that ∆n is the facet of Ωn+1 opposite to the origin.
The total variation distance between two probability measures is dTV (µ, ν) = supA|µ(A)−

ν(A)| for measurable A. For two compact sets K,L ⊆ Rn, we define the total variation
distance dTV (K,L) as the total variation distance between the corresponding uniform dis-
tributions on each set. It can be expressed as

dTV (K,L) =

{
volK\L

volK if volK ≥ volL,
volL\K

volL if volL > volK.

Define the d-th power sum as

pd(u0, . . . , un) = ud0 + . . .+ udn.

For a vector u = (u0, u1, . . . , un), we define

u(2) = (u2
0, u

2
1, . . . , u

2
n).

Vector 1 denotes the all ones vector (the dimension of the vector will be clear from the
context).

A random vector X ∈ Rn is isotropic if E(X) = 0 and E(XXT ) = I. A compact set in
Rn is isotropic if a uniformly distributed random vector in it is isotropic. The inradius of
an isotropic n-simplex is

√
(n+ 2)/n, the circumradius is

√
n(n+ 2).

For a point x ∈ Rn, ‖x‖p = (
∑n

i=1 |xi|p)1/p is the standard `p norm. The unit `np ball is
defined by

Bn
p = {x ∈ Rn : ‖x‖p ≤ 1}.

The Gamma distribution is denoted as Gamma(α, β) and has density f(x;α, β) =
βα

Γ(α)x
α−1e−βx1x≥0, with shape parameters α, β > 0. Gamma(1, λ) is the exponential dis-

tribution, denoted Exp(λ). The Gamma distribution also satisfies the following additivity
property: If X is distributed as Gamma(α, β) and Y is distributed as Gamma(α′, β), then
X + Y is distributed as Gamma(α+ α′, β).

3. Subroutine for finding the vertices of a rotated standard simplex

In this section we solve the following simpler problem: Suppose we have poly(n) samples
from a rotated copy S of the standard simplex, where the rotation is such that it leaves
1 invariant. The problem is to approximately estimate the vertices of the rotated simplex
from the samples.

We will analyze our algorithm in the coordinate system in which the input simplex is
the standard simplex. This is only for convenience in the analysis and the algorithm itself
does not know this coordinate system.

As we noted in the introduction, our algorithm is inspired by the algorithm of Nguyen
and Regev (2009) for the related problem of learning hypercubes and also by the FastICA
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algorithm in Hyvärinen (1999). New ideas are needed for our algorithm for learning sim-
plices; in particular, our update rule is different. With the right update rule in hand the
analysis turns out to be quite similar to the one in Nguyen and Regev (2009).

We want to find local maxima of the sample third moment. A natural approach to do
this would be to use gradient descent or Newton’s method (this was done in Frieze et al.
(1996)). Our algorithm, which only uses first order information, can be thought of as a
fixed point algorithm leading to a particularly simple analysis and fast convergence. Before
stating our algorithm we describe the update rule we use.

The k-th moment mk(u) over ∆n is the function u 7→ EX∈∆n((u ·X)k). In Appendix F
we show:

m3(u) =
(p1(u)3 + 3p1(u)p2(u) + 2p3(u))

(n+ 1)(n+ 2)(n+ 3)
.

We will use the abbreviation Cn = (n+ 1)(n+ 2)(n+ 3)/6. Then, from the expression
for m3(u) we get

∇m3(u) =
1

6Cn

(
3p1(u)2

1 + 3p2(u)1 + 6p1(u)u+ 6u(2)
)
.

Solving for u(2) we get

u(2) = Cn∇m3(u)− 1

2
p1(u)2

1− 1

2
p2(u)1− p1(u)u

= Cn∇m3(u)− 1

2
(u · 1)2

1− 1

2
(u · u)2

1− (u · 1)u. (1)

While the above expressions are in the coordinate system where the input simplex is
the canonical simplex, the important point is that all terms in the last expression can be
computed in any coordinate system that is obtained by a rotation leaving 1 invariant. Thus,
we can compute u(2) as well independently of what coordinate system we are working in.
This immediately gives us the algorithm below. We denote by m̂3(u) the sample third
moment, i.e., m̂3(u) = 1

t

∑t
i=1(u · ri)3 for t samples. This is a polynomial in u, and the

gradient is computed in the obvious way. Moreover, the gradient of the sample moment is
clearly an unbiased estimator of the gradient of the moment; a bound on the deviation is
given in the analysis (Lemma 2). For each evaluation of the gradient of the sample moment,
we use a fresh sample.

It may seem a bit alarming that the fixed point-like iteration is squaring the coordinates
of u, leading to an extremely fast growth (see Equation 1 and Subroutine 1). But, as in
other algorithms having quadratic convergence like certain versions of Newton’s method,
the convergence is very fast and the number of iterations is small. We show below that it
is O(log(n/δ)), leading to a growth of u that is polynomial in n and 1/δ. The boosting
argument described in the introduction makes the final overall dependence in δ to be only
linear in log(1/δ).

We state the following subroutine for Rn instead of Rn+1 (thus it is learning a rotated
copy of ∆n−1 instead of ∆n). This is for notational convenience so that we work with n
instead of n+ 1.
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Subroutine 1 Find one vertex of a rotation of the standard simplex ∆n−1 via a fixed point
iteration-like algorithm

Input: Samples from a rotated copy of the n-dimensional standard simplex (for a rotation
that leaves 1 invariant).
Output: An approximation to a uniformly random vertex of the input simplex.

Pick u(1) ∈ Sn−1, uniformly at random.
for i = 1 to r do

u(i+ 1) :=Cn−1∇m̂3(u(i))− 1

2
(u(i) · 1)2

1− 1

2
(u(i) · u(i))2

1− (u(i) · 1)u(i).

Normalize u(i+ 1) by dividing by ‖u(i+ 1)‖2.
end for
Output u(r + 1).

Lemma 2 Let c > 0 be a constant, n > 20, and 0 < δ < 1. Suppose that Subroutine 1 uses
a sample of size t = 217n2c+22(1

δ )2 ln 2n5r
δ for each evaluation of the gradient and runs for

r = log 4(c+3)n2 lnn
δ iterations. Then with probability at least 1 − δ Subroutine 1 outputs a

vector within distance 1/nc from a vertex of the input simplex. With respect of the process
of picking a sample and running the algorithm, each vertex is equally likely to be the nearest.

See Appendix D for the proof.

4. Learning simplices

In this section we give our algorithm for learning general simplices, which uses the subroutine
from the previous section. The learning algorithm uses an affine map T : Rn → Rn+1 that
maps some isotropic simplex to the standard simplex. We describe now a way of constructing
such a map: Let A be a matrix having as columns an orthonormal basis of 1⊥ in Rn+1. To
compute one such A, one can start with the (n + 1)-by-(n + 1) matrix B that has ones in
the diagonal and first column, everything else is zero. Let QR = B be a QR-decomposition
of B. By definition we have that the first column of Q is parallel to 1 and the rest of the
columns span 1

⊥. Given this, let A be the matrix formed by all columns of Q except the
first. We have that the set {AT ei} is the set of vertices of a regular n-simplex. Each vertex
is at distance √(

1− 1

n+ 1

)2

+
n

(n+ 1)2
=

√
n

n+ 1

from the origin, while an isotropic simplex has vertices at distance
√
n(n+ 2) from the

origin. So an affine transformation that maps an isotropic simplex in Rn to the standard
simplex in Rn+1 is T (x) = 1√

(n+1)(n+2)
Ax+ 1

n+11n+1.

To simplify the analysis, we pick a new sample r(1), . . . , r(t3) to find every vertex, as
this makes every vertex equally likely to be found when given a sample from an isotropic
simplex. (The core of the analysis is done for an isotropic simplex; this is enough as
the algorithm’s first step is to find an affine transformation that puts the input simplex
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Algorithm 1 Learning a simplex.

Input: Error parameter ε > 0. Probability of failure parameter δ > 0. Oracle access to
random points from some n-dimensional simplex SINPUT .
Output: V = {v(1), . . . , v(n+ 1)} ⊆ Rn (approximations to the vertices of the simplex).

Estimate the mean and covariance using t1 = poly(n, 1/ε, 1/δ) samples p(1), . . . , p(t1):

µ =
1

t1

∑
i

p(i), Σ =
1

t1

∑
i

(p(i)− µ)(p(i)− µ)T .

Compute a matrix B so that Σ = BBT (say, Cholesky decomposition).
Let U = ∅.
for i = 1 to m (with m = poly(n, log 1/δ)) do

Get t3 = poly(n, 1/ε, log 1/δ) samples r(1), . . . r(t3) and use µ,B to map them to
samples s(i) from a nearly-isotropic simplex: s(i) = B−1(r(i)− µ).

Embed the resulting samples in Rn+1 as a sample from an approximately rotated
standard simplex: Let l(i) = T (s(i)).

Invoke Subroutine 1 with sample l(1), . . . , l(t3) to get u ∈ Rn+1.
Let ũ be the nearest point to u in the affine hyperplane {x : x · 1 = 1}. If ũ is not

within 1/
√

2 of a point in U , add ũ to U . (Here 1/
√

2 is half of the edge length of the
standard simplex.)
end for
Let

V = BT−1(U) + µ =
√

(n+ 1)(n+ 2)BAT
(
U − 1

n+ 1
1

)
+ µ.

in approximately isotropic position. The fact that this approximation is close in total
variation distance implies that it is enough to analyze the algorithm for the case of exact
isotropic position, the analysis carries over to the approximate case with a small loss in the
probability of success. See the proof below for the details.) A practical implementation may
prefer to select one such sample outside of the for loop, and find all the vertices with just
that sample—an analysis of this version would involve bounding the probability that each
vertex is found (given the sample, over the choice of the starting point of gradient descent)
and a variation of the coupon collector’s problem with coupons that are not equally likely.

See Appendix E for the proof of Theorem 1.

5. Probabilistic Results

In this section we show the probabilistic results underlying the reductions from learning
simplices and `np balls to ICA. The results are Theorems 4 and 6. They each show a simple
non-linear rescaling of the respective uniform distributions that gives a distribution with
independent components (Definition 3).
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Theorem 4 below gives us, in a sense, a “reversal” of the representation of the cone
measure on ∂Bn

p , see in Theorem 9. Given any random point in the standard simplex, we can
apply a simple non-linear scaling and recover a distribution with independent components.

Definition 3 We say that a random vector X has independent components if it is an affine
transformation of a random vector having independent coordinates.

Theorem 4 Let X be a uniformly random vector in the (n− 1)-dimensional standard sim-
plex ∆n−1. Let T be a random scalar distributed as Gamma(n, 1). Then the coordinates of
TX are iid as Exp(1).

Moreover, if A : Rn → Rn is an invertible linear transformation, then the random vector
TA(X) has independent components.

The proof of this theorem and others in this Section can be found in Appendix G.
The next lemma complements the main result in Barthe et al. (2005), Theorem 1 (The-

orem 10 in Appendix A). They show a representation of the uniform distribution in Bn
p ,

but they do not state the independence that we need for our reduction to ICA.

Lemma 5 Let p ∈ [1,∞). Let G = (G1, . . . , Gn) be iid random variables with density
proportional to exp(−|t|p). Let W be a nonnegative random variable with distribution Exp(1)
and independent of G. Then the random vector

G

(‖G‖pp +W )1/p

is independent of (‖G‖pp +W )1/p.

Proof idea. We aim to compute the join density, showing that it is a product of individual
densities. To avoid complication, we raise everything to the pth power, which eliminates
extensive use of the chain rule involved in the change of variables. �

With this in mind, we show now our analog of Theorem 4 for Bn
p .

Theorem 6 Let X be a uniformly random vector in Bn
p . Let T be a random scalar dis-

tributed as Gamma((n/p) + 1, 1). Then the coordinates of T 1/pX are iid, each with density
proportional to exp(−|t|p). Moreover, if A : Rn → Rn is an invertible linear transformation,
then the random vector given by T 1/pA(X) has independent components.

This result shows that one can obtain a vector with independent components from a
sample in a linearly transformed `p ball. In Section 6 we show that they are related in such
as way that one can recover the linear transformation from the independent components
via ICA.

6. Learning problems that reduce to ICA

Independent component analysis is a certain computational problem and an associated fam-
ily of algorithms. Suppose that X is a random n-dimensional vector whose coordinates are
independently distributed. The coordinates’ distributions are unknown and not necessarily
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identical. The ICA problem can be stated as follows: given samples from an affine trans-
formation Y = AX + b of X, estimate A and b (up to a certain intrinsic indeterminacy:
permutation and scaling of the columns of A). We will state more precisely below what is
expected of a an ICA algorithm.

We show randomized reductions from the following two natural statistical estimation
problems to ICA:

Problem 1 (simplex) Given uniformly random points from an n-dimensional simplex,
estimate the simplex.

This is the same problem of learning a simplex as in the rest of the paper, we just restate
it here for clarity.

To simplify the presentation for the second problem, we ignore the estimation of the
mean of an affinely transformed distribution. That is, we assume that the `np ball to be
learned has only been linearly transformed.

Problem 2 (linearly transformed `np balls) Given uniformly random points from a lin-
ear transformation of the `np -ball, estimate the linear transformation.

These problems do not have an obvious independence structure. Nevertheless, known
representations of the uniform measure in an `np ball and the cone measure (defined in
Appendix A) on the surface of an `np ball can be slightly extended to map a sample from
those distributions into a sample with independent components by a non-linear scaling step.
The use of a non-linear scaling step to turn a distribution into one having independent
components has been done before Sinz and Bethge (2010, 2008), but there it is applied
after finding a transformation that makes the distribution axis-aligned. This alignment is
attempted using ICA (or variations of PCA) on the original distribution Sinz and Bethge
(2010, 2008), without independent components, and therefore the use of ICA is somewhat
heuristic. One of the contributions of our reduction is that the rescaling we apply is “blind”,
namely, it can be applied to the original distribution. In fact, the distribution does not
even need to be isotropic (“whitened”). The distribution resulting from the reduction has
independent components and therefore the use of ICA on it is well justified.

The reductions are given in Algorithms 2 and 3. To state the reductions, we denote
by ICA(s(1), s(2), . . .) the invocation of an ICA routine. It takes samples s(1), s(2), . . . of
a random vector Y = AX + µ, where the coordinates of X are independent, and returns
an approximation to a square matrix M such that M(Y − E(Y )) is isotropic and has
independent coordinates. The theory of ICA (Comon, 1994, Theorem 11) implies that if
X is isotropic and at most one coordinate is distributed as a Gaussian, then such an M
exists and it satisfies MA = DP , where P is a permutation matrix and D is a diagonal
matrix with diagonal entries in {−1, 1}. We thus need the following definition to state
our reduction: Let cp,n = (EX∈Bnp (X2

1 ))1/2. That is, the uniform distribution in Bn
p /cp,n is

isotropic.
As we do not state a full analysis of any particular ICA routine, we do not state explicit

approximation guarantees.
Algorithm 2 works as follows: Let X be an (n + 1)-dimensional random vector with

iid coordinates distributed as Exp(1). Let V be the matrix having columns (v(i), 1) for

11
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Algorithm 2 Reduction from Problem 1 to ICA

Input: A uniformly random sample p(1), . . . , p(t) from an n-dimensional simplex S.
Output: Vectors ṽ(1), . . . , ṽ(n+ 1) such that their convex hull is close to S.

Embed the sample in Rn+1: Let p′(i) = (p(i), 1).
For every i = 1, . . . , t, generate a random scalar T (i) distributed as Gamma(n + 1, 1).
Let q(i) = p′(i)T (i).
Invoke ICA(q(1), . . . , q(t)) to obtain a approximately separating matrix M̃ .
Compute the inverse of M̃ and multiply every column by the sign of its last entry to get
a matrix Ã.
Remove the last row of Ã and return the columns of the resulting matrix as ṽ(1), . . . , ṽ(n+
1).

i = 1, . . . , n+ 1. Let Y be random according to the distribution that results from scaling in
the algorithm. Theorem 4 implies that Y and V X have the same distribution. Also, X −1
is isotropic and Y and V (X − 1) + V 1 have the same distribution. Thus, the discussion
about ICA earlier in this section gives that the only separating matrices M are such that
MV = DP where P is a permutation matrix and D is a diagonal matrix with diagonal
entries in {−1, 1}. That is, V P T = M−1D. As the last row of V is all ones, the sign change
step in Algorithm 2 undoes the effect of D and recovers the correct orientation.

Algorithm 3 Reduction from Problem 2 to ICA

Input: A uniformly random sample p(1), . . . , p(t) from A(Bn
p ) for a known parameter

p ∈ [1,∞), where A : Rn → Rn is an unknown invertible linear transformation.
Output: A matrix Ã such that ÃBn

p is close to A(Bn
p ).

For every i = 1, . . . , t, generate a random scalar T (i) distributed as Gamma((n/p)+1, 1).
Let q(i) = p(i)T (i)1/p.
Invoke ICA(q(1), . . . , q(t)) to obtain an approximately separating matrix M̃ .
Output Ã = c−1

p,nM̃
−1.

Similarly, Algorithm 3 works as follows: Let X be a random vector with iid coordinates,
each with density proportional to exp(−|t|p). Let Y be random according to the distribution
that results from scaling in the algorithm. Theorem 6 implies that Y and AX have the
same distribution. Also, X/cp,n is isotropic and we have Y and Acp,n(X/cp,n) have the
same distribution. Thus, the discussion about ICA earlier in this section gives that the only
separating matrices M are such that MAcp,n = DP where P is a permutation matrix and
D is a diagonal matrix with diagonal entries in {−1, 1}. That is, AP TD−1 = c−1

p,nM
−1. The

fact that Bn
p is symmetric with respect coordinate permutations and sign changes implies

that AP TD−1Bn
p = ABn

p and is the same as c−1
p,nM

−1. When p 6= 2, the assumptions in
the discussion above about ICA are satisfied and Algorithm 3 is correct. When p = 2, the
distribution of the scaled sample is Gaussian and this introduces ambiguity with respect to
rotations in the definition of M , but this ambiguity is no problem as it is counteracted by
the fact that the l2 ball is symmetric with respect to rotations.

12
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7. Conclusion

We showed, in two different ways, that the problem of learning simplices can be solved
efficiently using techniques for ICA. We also showed that when the sample is one that may
not satisfy the requirement of independent components, we can efficiently obtain from it
a sample that guarantees this property and from which the original distribution can be
estimated. Many questions remain: Can we do this for other polytopes? Can we do this
when the points come from the Gaussian distribution with labels instead of the uniform
distribution in the polytope? In particular, does any one of the two techniques that we
used in this paper for learning simplices extend to learning polytopes or to latent variable
models?

It is not clear how to extend our method to learn intersections of more than n + 1
half-spaces. The main hurdle seems to be that the nice symmetric form of the moment
polynomial that we get for the simplex is no longer there, and it’s not clear how the polyno-
mial is related to the features of the polytope. We don’t even know whether or not there is a
one-to-one correspondence between polytopes and the moment polynomials (of low constant
degree). Interestingly, it is also not clear how to learn intersections of n (or fewer, but not
much fewer) half-spaces, for similar reasons: First note that we cannot consider uniform
distributions over such sets because they are unbounded. As mentioned before, there is
considerable literature when one considers other distributions, such as the Gaussian distri-
bution. However, our moment-based method runs into the same difficulty as before, namely
the relation between the moment polynomial and the half-spaces defining the polyhedron
is not clear.

As pointed out by a COLT referee, our second method for learning simplices, namely
direct reduction to ICA, can possibly be used to learn the more general Dirichlet distribution
on the simplex when combined with the results of Barthe et al. (2010). This is an interesting
direction for future work.
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Appendix A. Additional preliminaries

Let Bn denote the n-dimensional Euclidean ball.
The complete homogeneous symmetric polynomial of degree d in variables u0, . . . , un,

denoted hn(u0, . . . , un), is the sum of all monomials of degree d in the variables:

hd(u0, . . . , un) =
∑

k0+···+kn=d

uk00 · · ·u
kn
n =

∑
0≤i0≤i1≤···≤id≤n

ui0ui1 · · ·uid .

Lemma 7 Let K,L be two compact sets in Rn. Let 0 < α ≤ 1 ≤ β such that αK ⊆ L ⊆
βK. Then dTV (K,L) ≤ 2 (1− (α/β)n).

Proof We have dTV (αK, βK) = 1 − (α/β)n. Triangle inequality implies the desired in-
equality.

Lemma 8 Consider the coupon collector’s problem with n coupons where every coupon
occurs with probability at least α. Let δ > 0. Then with probability at least 1− δ all coupons
are collected after α−1(log n+ log 1/δ) trials.

Proof The probability that a particular coupon is not collected after that many trials is
at most

(1− α)α
−1(logn+log 1/δ) ≤ e− logn−log 1/δ = δ/n.

The union bound over all coupons implies the claim.

The cone measure on the surface ∂K of centrally symmetric convex body K in Rn
Barthe et al. (2005); Schechtman and Zinn (1990); Rachev and Ruschendorf (1991); Song
and Gupta (1997) is defined by

µK(A) =
vol(ta; a ∈ A, 0 ≤ t ≤ 1)

vol(K)
.

It is easy to see that µBnp is uniform on ∂Bn
p for p ∈ {1, 2,∞}.

From Schechtman and Zinn (1990) and Rachev and Ruschendorf (1991) we have the
following representation of the cone measure on ∂Bn

p :

Theorem 9 Let G1, G2, . . . , Gn be iid random variables with density proportional to exp(−|t|p).
Then the random vector X = G/‖G‖p is independent of ‖G‖p. Moreover, X is distributed
according to µBnp .

From Barthe et al. (2005), we also have the following variation, a representation of the
uniform distribution in Bn

p :

Theorem 10 Let G = (G1, . . . , Gn) be iid random variables with density proportional to
exp(−|t|p). Let Z be a random variable distributed as Exp(1), independent of G. Then the
random vector

V =
G(∑n

i=1|Gi|p + Z
)1/p

is uniformly distributed in Bn
p .

See e.g. (Billingsley, 1995, Section 20) for the change of variable formula in probability.
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Appendix B. The local and global maxima of the 3rd moment of the
standard simplex and the isotropic simplex

In this section we study the structure of the set of local maxima of the third moment as
a function of the direction (which happens to be essentially u 7→

∑
u3
i as discussed in

Section F). This is not necessary for our algorithmic result, however it gives insight into the
geometry of the third moment (the location of local maxima/minima and stationary points)
and suggests that more direct optimization algorithms like gradient descent and Newton’s
method will also work, although we will not prove that.

Theorem 11 Let K ⊆ Rn be an isotropic simplex. Let X be random in K. Let V =
{xi}n+1

i=1 ⊆ Rn be the set of normalized vertices of K. Then V is a complete set of local
maxima and a complete set of global maxima of F : Sn−1 → R given by F (u) = E((u ·X)3).

Proof idea: Embed the simplex in Rn+1. Show that the third moment is proportional to the
complete homogeneous symmetric polynomial of degree 3, which for the relevant directions
is proportional to the sum of cubes. To conclude, use first and second order optimality
conditions to characterize the set of local maxima.
Proof Consider the standard simplex

∆n = conv{e1, . . . , en+1} ⊆ Rn+1

and identify it with V via a linear map A : Rn+1 → Rn so that A(∆n) = V . Let Y
be random in ∆n. Consider G : Sn → R given by G(v) = m3(v) = E((v · Y )3). Let
U = {v ∈ Rn+1 : v · 1 = 0, ‖v‖ = 1} be the equivalent feasible set for the embedded
problem. We have G(v) = cF (Av) for any v ∈ U and some constant c > 0 independent of
v. To get the theorem, it is enough to show that the local maxima of G in U are precisely
the normalized versions of the projections of the canonical vectors onto the hyperplane
orthogonal to 1 = (1, . . . , 1). According to Section F, for v ∈ U we have

G(v) ∝ p3(v).

Using a more convenient but equivalent constant, we want to enumerate the local maxima
of the problem

max
1

3
p3(v)

s.t. v · v = 1

v · 1 = 0

v ∈ Rn+1.

(2)

The Lagrangian function is

L(v, λ1, λ2) =
1

3

∑
i

v3
i − λ1

∑
i

vi − λ2
1

2

((∑
i

v2
i

)
− 1

)
.

The first order condition is ∇vL = 0, that is,

v2
i = λ1 + λ2vi for i = 1, . . . , n+ 1. (3)
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Consider this system of equations on v for any fixed λ1, λ2. Let f(x) = x2, g(x) = λ1 +λ2x.
The first order condition says f(vi) = g(vi), where f is convex and g is affine. That is, the
vis can take at most two different values. As our optimization problem (2) is symmetric
under permutation of the coordinates, we conclude that, after putting the coordinates of a
point v in non-increasing order, if v is a local maximum of (2), then v must be of the form

v = (a, . . . , a, b, . . . , b),

where a > 0 > b and there are exactly α as and β bs, for α, β ∈ {1, . . . , n}.
We will now study the second order necessary condition (SONC) to eliminate from

the list of candidates all vectors with α > 1. It is easy to see that the surviving vectors
are exactly the promised scaled projections of the canonical vectors. This vectors must
all be local and global maxima: At least one of them must be a global maximum as we
are maximizing a continuous function over a compact set and all of them have the same
objective value so all of them are local and global maxima.

The SONC at v asks for the Hessian of the Lagrangian to be negative semidefinite when
restricted to the tangent space to the constraint set at v (Luenberger and Ye, 2008, Section
11.5). We compute the Hessian (recall that v(2) is the vector of the squared coordinates of
v):

∇vL = v(2) − λ11− λ2v

∇2
vL = 2 diag(v)− λ2I

where diag(v) is the (n + 1)-by-(n + 1) matrix having the entries of v in the diagonal and
0 elsewhere.

A vector in the tangent space is any z ∈ Rn+1 such that z · 1 = 0, v · z = 0, and
definiteness of the Hessian is determined by the sign of zT∇2

vLz for any such z, where

zT∇2
vLz =

n+1∑
i=1

z2
i (2vi − λ2).

Suppose v is a critical point with α ≥ 2. To see that such a v cannot be a local maximum,
it is enough to show 2a > λ2, as in that case we can take z = (1,−1, 0, . . . , 0) to make the
second derivative of L positive in the direction z.

In terms of α, β, a, b, the constraints of (2) are αa + βb = 0, αa2 + βb2 = 1, and this

implies a =
√

β
α(n+1) , b = −

√
α

β(n+1) . The inner product between the first order condition

(3) and v implies λ2 =
∑
v3
i = αa3 +βb3. It is convenient to consider the change of variable

γ = α/(n+ 1), as now candidate critical points are parameterized by certain discrete values
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of γ in (0, 1). This gives β = (1− γ)(n+ 1), a =
√

(1− γ)/(γ(n+ 1)) and

λ2 = (n+ 1)

[
γ

(
1− γ

γ(n+ 1)

)3/2

− (1− γ)

(
γ

(1− γ)(n+ 1)

)3/2]
=

1√
(n+ 1)γ(1− γ)

[
(1− γ)2 − γ2

]
=

1√
(n+ 1)γ(1− γ)

[1− 2γ].

This implies

2a− λ2 =
1√

(n+ 1)γ(1− γ)
[2(1− γ)− 1 + 2γ]

=
1√

(n+ 1)γ(1− γ)
.

In (0, 1), the function given by γ 7→ 2a−λ2 = 1√
(n+1)γ(1−γ)

is convex and symmetric around

1/2, where it attains its global minimum value, 2/
√
n+ 1, which is positive.

Appendix C. Improving the dependence on the probability of success

The probability of success of the algorithm can be “boosted” so that the dependence of the
running time on δ is only linear in log(1/δ) as follows: The following discussion uses the
space of simplices with total variation distance as the underlying metric space. Let ε be the
target distance. Take an algorithm that succeeds with probability 5/6 and error parameter
ε′ to be fixed later (such as Algorithm 1 with δ = 1/6). Run the algorithm t = O(log 1/δ)
times to get t simplices. By a Chernoff-type argument, at least 2t/3 simplices are within ε′

of the input simplex with probability at least 1− δ/2.
By sampling, we can estimate the distances between all pairs of simplices with additive

error less than ε′/10 in time polynomial in t, 1/ε′ and log 1/δ so that all estimates are correct
with probability at least 1− δ/2. For every output simplex, compute the number of output
simplices within estimated distance (2 + 1/10)ε′. With probability at least 1− δ both of the
desirable events happen, and then necessarily there is at least one output simplex, call it
S, that has 2t/3 output simplices within estimated distance (2 + 1/10)ε′. Any such S must
be within (3 + 2/10)ε′ of the input simplex. Thus, set ε′ = ε/(3 + 2/10).

Appendix D. Proof of Lemma 2

Note that if we condition on the sample, different vertices are not equally likely over the
randomness of the algorithm. That is, if we try to find all vertices running the algorithm
multiple times on a fixed sample, different vertices will be found with different likelihoods.
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Proof Our analysis has the same outline as that of Nguyen and Regev (2009). This is
because the iteration that we get is the same as that of Nguyen and Regev (2009) except
that cubing is replaced by squaring (see below); however some details in our proof are
different. In the proof below, several of the inequalities are quite loose and are so chosen to
make the computations simpler.

We first prove the lemma assuming that the gradient computations are exact and then
show how to handle samples. We will carry out the analysis in the coordinate system where
the given simplex is the standard simplex. This is only for the purpose of the analysis, and
this coordinate system is not known to the algorithm. Clearly, u(i+ 1) = (u(i)2

1, . . . , u(i)2
n).

It follows that,
u(i+ 1) = (u(1)2i

1 , . . . , u(1)2i

n ).

Now, since we choose u(1) randomly, with probability at least (1 − (n2 − n)δ′) one of the
coordinates of u(1) is greater than all the other coordinates in absolute value by a factor
of at least (1 + δ′), where 0 < δ′ < 1. (A similar argument is made in Nguyen and Regev
(2009) with different parameters. We briefly indicate the proof for our case: The probability
that the event in question does not happen is less than the probability that there are two
coordinates u(1)a and u(1)b such that their absolute values are within factor 1 + δ′, i.e.
1/(1 + δ′) ≤ |u(1)a|/|u(1)b| < 1 + δ′. The probability that for given a, b this event happens
can be seen as the Gaussian area of the four sectors (corresponding to the four choices of
signs of u(1)a, u(1)b) in the plane each with angle less than 2δ′. By symmetry, the Gaussian
volume of these sectors is 2δ′/(π/2) < 2δ′. The probability that such a pair (a, b) exists
is less than 2

(
n
2

)
δ′.) Assuming this happens, then after r iterations, the ratio between the

largest coordinate (in absolute value) and the absolute value of any other coordinate is at
least (1 + δ′)2r . Thus, one of the coordinates is very close to 1 and others are very close to
0, and so u(r + 1) is very close to a vertex of the input simplex.

Now we drop the assumption that the gradient is known exactly. For each evaluation
of the gradient we use a fresh subset of samples of t points. Here t is chosen so that each
evaluation of the gradient is within `2-distance 1/nc1 from its true value with probability
at least 1− δ′′, where c1 will be set at the end of the proof. An application of the Chernoff
bound yields that we can take t = 200n2c1+4 ln 2n3

δ′′ ; we omit the details. Thus all the r
evaluations of the gradient are within distance 1/nc1 from their true values with probability
at least 1− rδ′′.

We assumed that our starting vector u(1) has a coordinate greater than every other
coordinate by a factor of (1 + δ′) in absolute value; let us assume without loss of generality
that this is the first coordinate. Hence |u(1)1| ≥ 1/

√
n. When expressing u(2) in terms of

the gradient, the gradient gets multiplied by Cn−1 < n3 (we are assuming n > 20), keeping
this in mind and letting c2 = c1 − 3 we get for j 6= 1

|u(i+ 1)1|
|u(i+ 1)j |

≥ u(i)2
1 − 1/nc2

u(i)2
j + 1/nc2

≥ u(i)2
1(1− n−(c2−1))

u(i)2
j + 1/nc2

.
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If u(i)2
j > 1/nc2−c3 , where 1 ≤ c3 ≤ c2 − 2 will be determined later, then we get

|u(i+ 1)1|/|u(i+ 1)j | >
1− 1/nc2−1

1 + 1/nc3
·
(
u(i)1

u(i)j

)2

> (1− 1/nc3)2

(
u(i)1

u(i)j

)2

. (4)

Else,

|u(i+ 1)1|/|u(i+ 1)j | >
1/n− 1/nc2

1/nc2−c3 + 1/nc2

>

(
1− 1

nc3

)2

· nc2−c3−1

>
1

2
nc2−c3−1,

where we used c3 ≥ 1 and n > 20 in the last inequality.
We choose c3 so that (

1− 1

nc3

)2

(1 + δ′) > (1 + δ′/2). (5)

For this, δ′ ≥ 32/nc3 or equivalently c3 ≥ (ln (32/δ′))/ lnn suffices.
For c3 satisfying (5) we have (1 − 1

nc3 )2(1 + δ′)2 > (1 + δ′). It then follows from (4)
that the first coordinate continues to remain the largest in absolute value by a factor of at
least (1 + δ′) after each iteration. Also, once we have |u(i)1|/|u(i)j | > 1

2n
c2−c3−1, we have

|u(i′)1|/|u(i′)j | > 1
2n

c2−c3−1 for all i′ > i.
(4) gives that after r iterations we have

|u(r + 1)1|
|u(r + 1)j |

> (1− 1/nc3)2+22+...+2r
(
u(1)1

u(1)j

)2r

≥ (1− 1/nc3)2r+1−2(1 + δ′)2r .

Now if r is such that (1−1/nc3)2r+1−2(1+δ′)2r > 1
2n

c2−c3−1, we will be guaranteed that

|u(r+1)1|/|u(r+1)j | > 1
2n

c2−c3−1. This condition is satisfied if we have (1−1/nc3)2r+1
(1+

δ′)2r > 1
2n

c2−c3−1, or equivalently ((1 − 1/nc3)2(1 + δ′))2r ≥ 1
2n

c2−c3−1. Now using (5) it
suffices to choose r so that (1 + δ′/2)2r ≥ 1

2n
c2−c3−1. Thus we can take r = log(4(c2 −

c3)(lnn)/δ′).
Hence we get |u(r + 1)1|/|u(r + 1)j | > 1

2n
c2−c3−1. It follows that for u(r + 1), the `2-

distance from the vertex (1, 0, . . . , 0) is at most 8/nc2−c3−2 < 1/nc2−c3−3 for n > 20; we
omit easy details.

Now we set our parameters: c3 = 1+(ln(32/δ′)/ lnn) and c2−c3−3 = c and c1 = c2+3 =
7+c+ln(32/δ′)/ lnn satisfies all the constraints we imposed on c1, c2, c3. Choosing δ′′ = δ′/r,
we get that the procedure succeeds with probability at least 1− (n2−n)δ′− rδ′′ > 1−n2δ′.
Now setting δ′ = δ/n2 gives the overall probability of error δ, and the number of samples
and iterations as claimed in the lemma.
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Appendix E. Proof of Theorem 1

Proof [Proof of Theorem 1] As a function of the input simplex, the distribution of the
output of the algorithm is equivariant under invertible affine transformations. Namely, if
we apply an affine transformation to the input simplex, the distribution of the output is
equally transformed.2 The notion of error, total variation distance, is also invariant under
invertible affine transformations. Therefore, it is enough to analyze the algorithm when the
input simplex is in isotropic position. In this case ‖p(i)‖ ≤ n+ 1 (see Section 2) and we can
set t1 ≤ poly(n, 1/ε′, log(1/δ)) so that ‖µ‖ ≤ ε′ with probability at least 1 − δ/10 (by an
easy application of Chernoff’s bound), for some ε′ to be fixed later. Similarly, using results
from (Adamczak et al., 2010, Theorem 4.1), a choice of t1 ≤ nε′−2 polylog(1/ε′) polylog(1/δ)
implies that the empirical second moment matrix

Σ̄ =
1

t1

∑
i

p(i)p(i)T

satisfies ‖Σ̄− I‖ ≤ ε′ with probability at least 1 − δ/10. We have Σ = Σ̄ − µµT and this
implies ‖Σ− I‖ ≤ ‖Σ̄− I‖ + ‖µµT ‖ ≤ 2ε′. Now, s(1), . . . , s(t3) is an iid sample from a
simplex S′ = B−1(SINPUT − µ). Simplex S′ is close in total variation distance to some
isotropic simplex3 SISO. More precisely, Lemma 12 below shows that

dTV (S′, SISO) ≤ 12nε′, (6)

with probability at least 1− δ/5.
Assume for a moment that s(1), . . . , s(t3) are from SISO. The analysis of Subroutine

1 (fixed point-like iteration) given in Lemma 2 would guarantee the following: Successive
invocations to Subroutine 1 find approximations to vertices of T (SISO) within Euclidean
distance ε′′ for some ε′′ to be determined later and t3 = poly(n, 1/ε′′, log 1/δ). We ask for
each invocation to succeed with probability at least 1−δ/(20m) withm = n(log n+log 20/δ).
Note that each vertex is equally likely to be found. The choice of m is so that, if all m
invocations succeed (which happens with probability at least 1 − δ/20), then the analysis
of the coupon collector’s problem, Lemma 8, implies that we fail to find a vertex with
probability at most δ/20. Overall, we find all vertices with probability at least 1− δ/10.

But in reality samples s(1), . . . , s(t3) are from S′, which is only close to SISO. The
estimate from (6) with appropriate ε′ = poly(1/n, ε′′, δ) gives

dTV (S′, SISO) ≤ δ

10

1

t3m
,

which implies that the total variation distance between the joint distribution of all t3m
samples used in the loop and the joint distribution of actual samples from the isotropic

2. To see this: the equivariance of the algorithm as a map between distributions is implied by the equiv-
ariance of the algorithm on any given input sample. Now, given the input sample, if we apply an
affine transformation to it, this transformation is undone except possibly for a rotation by the step
s(i) = B−1(r(i) − µ). A rotation may remain because of the ambiguity in the characterization of B.
But the steps of the algorithm that follow the definition of s(i) are equivariant under rotation, and the
ambiguous rotation will be removed at the end when B is applied again in the last step.

3. The isotropic simplex SISO will typically be far from the (isotropic) input simplex, because of the
ambiguity up to orthogonal transformations in the characterization of B.
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simplex SISO is at most δ/10, and this implies that the loop finds approximations to all
vertices of T (SISO) when given samples from S′ with probability at least 1 − δ/5. The
points in U are still within Euclidean distance ε′′ of corresponding vertices of T (SISO).

To conclude, we turn our estimate of distances between estimated and true vertices into
a total variation estimate, and map it back to the input simplex. Let S′′ = conv T−1U .
As T maps an isotropic simplex to a standard simplex, we have that

√
(n+ 1)(n+ 2)T is

an isometry, and therefore the vertices of S′′ are within distance ε′′/
√

(n+ 1)(n+ 2) of the
corresponding vertices of SISO. Thus, the corresponding support functions are uniformly
within

ε′′′ = ε′′/
√

(n+ 1)(n+ 2)

of each other on the unit sphere. This and the fact that SISO ⊇ Bn imply

(1− ε′′′)SISO ⊆ S′′ ⊆ (1 + ε′′′)SISO.

Thus, by Lemma 7, dTV (S′′, SISO) ≤ 1− (1−ε′′′
1+ε′′′ )

n ≤ 1− (1− ε′′′)2n ≤ 2nε′′′ ≤ 2ε′′ and this
implies that the total variation distance between the uniform distributions on conv V and
the input simplex is at most 2ε′′. Over all random choices, this happens with probability
at least 1− 2δ/5. We set ε′′ = ε/2.

Lemma 12 Let SINPUT be an n-dimensional isotropic simplex. Let Σ be an n-by-n positive
definite matrix such that ‖Σ− I‖ ≤ ε < 1/2. Let µ be an n-dimensional vector such
that ‖µ‖ ≤ ε. Let B be an n-by-n matrix such that Σ = BBT . Let S be the simplex
B−1(SINPUT − µ). Then there exists an isotropic simplex SISO such that dTV (S, SISO) ≤
6nε.

Proof We use an argument along the lines of the orthogonal Procrustes problem (nearest
orthogonal matrix to B−1, already in (Nguyen and Regev, 2009, Proof of Theorem 4)): Let
UDV T be the singular value decomposition of B−1. Let R = UV T be an orthogonal matrix
(that approximates B−1). Let SISO = RSINPUT .

We have S = UDV T (SINPUT − µ). Let σmin, σmax be the minimum and maximum
singular values of D, respectively. This implies:

σminUV
T (SINPUT − µ) ⊆ S ⊆ σmaxUV T (SINPUT − µ),

σmin(SISO −Rµ) ⊆ S ⊆ σmax(SISO −Rµ). (7)

As SISO ⊇ Bn, ‖µ‖ ≤ 1, R is orthogonal and SISO is convex, we have

SISO −Rµ ⊇ (1− ‖µ‖)SISO.

Also,

SISO −Rµ ⊆ SISO + ‖µ‖Bn
⊆ SISO(1 + ‖µ‖).

This in (7) gives
σmin(1− ‖µ‖)SISO ⊆ S ⊆ σmax(1 + ‖µ‖)SISO.
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This and Lemma 7 imply

dTV (S, SISO) ≤ 2

(
1−

(
σmin(1− ‖µ‖)
σmax(1 + ‖µ‖)

)n)
.

The estimate on Σ gives σmin ≥
√

1− ε, σmax ≤
√

1 + ε. Thus

dTV (S, SISO) ≤ 2

(
1−

(
1− ε
1 + ε

)3n/2
)

≤ 2
(

1− (1− ε)3n
)

≤ 6nε.

Appendix F. Computing the moments of a simplex

In this section we present a formula for the moment over ∆n. Similar more general for-
mulas appear in Lasserre and Avrachenkov (2001). We will use the following result from
Grundmann and Moeller (1978) for αi ≥ 0:∫

Ωn+1

xα0
0 · · ·x

αn
n dx =

α0! · · ·αn!

(n+ 1 +
∑

i αi)!
.

From the above we can easily derive a formula for integration over ∆n:∫
∆n

xα0
0 · · ·x

αn
n dx =

√
n+ 1 · α0! · · ·αn!

(n+
∑

i αi)!
.

Now ∫
∆n

(x0u0 + . . .+ xnun)kdx

=
∑

k0+···+kn=k

(
k

k0!, . . . , kn!

)
uk00 . . . uknn

∫
∆n

xk00 . . . xknn dx

=
∑

k0+···+kn=k

(
k

k0!, . . . , kn!

)
uk00 u

k0
0 . . . uknn

√
n+ 1 · k0! . . . kn!

(n+
∑

i ki)!

=
k!
√
n+ 1

(n+ k)!

∑
k0+···+kn=k

uk00 . . . uknn

=
k!
√
n+ 1

(n+ k)!
hk(u).

The variant of Newton’s identities for the complete homogeneous symmetric polynomial
gives the following relations which can also be verified easily by direct computation:

3h3(u) = h2(u)p1(u) + h1(u)p2(u) + p3(u),
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2h2(u) = h1(u)p1(u) + p2(u) = p1(u)2 + p2(u).

Divide the above integral by the volume of the standard simplex |∆n| =
√
n+ 1/n! to

get the moment:

m3(u) =
3!
√
n+ 1

(n+ 3)!
h3(u)/|∆n|

=
2(h2(u)p1(u) + h1(u)p2(u) + p3(u))

(n+ 1)(n+ 2)(n+ 3)

=
(p1(u)3 + 3p1(u)p2(u) + 2p3(u))

(n+ 1)(n+ 2)(n+ 3)
.

Appendix G. Proofs of probabilistic results

Proof In the case where p = 1, Theorem 9 restricted to the positive orthant implies that for
random vector G = (G1, . . . , Gn), if each Gi is an iid exponential random variable Exp(1),
then (G/‖G‖1, ‖G‖1) has the same (joint) distribution as (X,T ). Given the measurable
function f(x, t) = xt, f(X,T ) has the same distribution as f(G/‖G‖1, ‖G‖1). That is, XT
and G have the same distribution4.

For the second part, we know TA(X) = A(TX) by linearity. By the previous argument
the coordinates of TX are independent. This implies that A(TX) has independent compo-
nents.

Proof [of Lemma 5] It is enough to show the claim conditioning on the orthant in which
G falls, and by symmetry it is enough to prove it for the positive orthant. Let random
variable H = (Gp1, G

p
2, . . . , G

p
n). Since raising (strictly) positive numbers to the pth power

is injective, it suffices to show that the random vector

X =
H∑n

i=1Hi +W

is independent of the random vector Y =
∑n

i=1Hi +W .
First, let U be the interior of the support of (X,Y ), that is U = {x ∈ Rn : xi >

0,
∑

i xi < 1} × {y ∈ R : y > 0} and consider h : U → Rn and w : U → R where

h(x, y) = xy

and

w(x, y) = y −
n∑
i=1

h(x, y)i = y −
n∑
i=1

xi · y = y

(
1−

n∑
i=1

xi

)
.

The random vector (H,W ) has a density fH,W supported on V = intRn+1
+ and

(x, y) 7→ (h(x, y), w(x, y))

4. See (Gupta and Song, 1997, Theorem 1.1) for a similar argument in this context.
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is one-to-one from U onto V . Let J(x, y) be the determinant of its Jacobian. This Jacobian
is 

y 0 · · · 0 x1

0 y · · · 0 x2
...

...
0 0 · · · y xn
−y −y · · · −y 1−

∑n
i=1 xi


which, by adding each of the first n rows to the last row, reduces to

y 0 · · · 0 x1

0 y · · · 0 x2
...

...
0 0 · · · y xn
0 0 · · · 0 1

 ,

the determinant of which is trivially J(x, y) = yn.
We have that J(x, y) is nonzero in U . Thus, (X,Y ) has density fX,Y supported on U

given by

fX,Y (x, y) = fH,W
(
h(x, y), w(x, y)

)
· |J(x)|.

It is easy to see5 that each Hi = Gpi has density Gamma(1/p, 1) and thus
∑n

i=1Hi has
density Gamma(n/p, 1) by the additivity of the Gamma distribution. We then compute the
joint density

fX,Y (x, y) = fH,W
(
h(x, y), w(x, y)

)
· yn

= fH,W

(
xy, y(1−

n∑
i=1

xi)
)
· yn.

Since W is independent of H,

fX,Y (x, y) = fW

(
y
(

1−
n∑
i=1

xi

))
· yn

n∏
i=1

fHi(xiy)

where

n∏
i=1

(
fHi(xiy)

)
· fW

(
y
(

1−
n∑
i=1

xi

))
· yn ∝

n∏
i=1

[
e−xiy(xiy)

1
p
−1
]

exp

(
−y(1−

n∑
i=1

xi)

)
yn

∝
( n∏
i=1

x
1
p
−1

i

)
yn/p.

The result follows.

5. See for example (Barthe et al., 2005, proof of Theorem 3).

26


	Introduction
	Preliminaries
	Subroutine for finding the vertices of a rotated standard simplex
	Learning simplices
	Probabilistic Results
	Learning problems that reduce to ICA
	Conclusion
	Additional preliminaries
	The local and global maxima of the 3rd moment of the standard simplex and the isotropic simplex
	Improving the dependence on the probability of success
	Proof of Lemma 2
	Proof of Theorem 1
	Computing the moments of a simplex
	Proofs of probabilistic results

