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Abstract
We consider supervised learning problems within the pasttiefinite kernel framework, such as
kernel ridge regression, kernel logistic regression ostimport vector machine. With kernels lead-
ing to infinite-dimensional feature spaces, a common graldimiting difficulty is the necessity of
computing the kernel matrix, which most frequently leadalgmorithms with running time at least
quadratic in the number of observationsi.e., O(n?). Low-rank approximations of the kernel
matrix are often considered as they allow the reduction nhing time complexities t@(p?n),
wherep is the rank of the approximation. The practicality of suchtmes thus depends on the
required rankp. In this paper, we show that in the context of kernel ridgeassgion, for approx-
imations based on a random subset of columns of the origaralek matrix, the rank may be
chosen to be linear in thdegrees of freedorassociated with the problem, a quantity which is
classically used in the statistical analysis of such methadd is often seen as the implicit num-
ber of parameters of non-parametric estimators. This tresables simple algorithms that have
sub-quadratic running time complexity, but provably exttite samepredictive performancthan
existing algorithms, for any given problem instance, andamdy for worst-case situations.

1. Introduction

Kernel methods, such as the support vector machine or kedg® regression, are now widely
used in many areas of science and engineering, such as amvmion or bioinformatics (see,
e.g.,Scholkopf et al.2004 Zhang et al.2007). Their main attractive features are that (1) they al-
low non-linear predictions through the same algorithms tfwa linear predictions, owing to the
kernel trick; (2) they allow the separation of the repreatan problem (designing good kernels
for non-vectorial data) and the algorithmic/theoreticablpjems (given a kernel, how to design,
run efficiently and analyze estimation algorithms). Morm\3) their applicability goes beyond
supervised learning problems, through the kernelizatibnlassical unsupervised learning tech-
niques such as principal component analysis or K-meansallfzirg4) probabilistic Bayesian in-
terpretations through Gaussian processes allow theirlsioge within larger probabilistic mod-
els. For more details, see, e.Rasmussen and William&006; Scholkopf and Smol2002);
Shawe-Taylor and Cristianii2004).

However, kernel methods typically suffer from at least qa#id running-time complexity in
the number of observations, as this is the complexity of computing the kernel matrix.ldrge-
scale settings whene may be large, this is usually not acceptable. In these sigivhere plain
kernel methods cannot be run, practitioners would commg)lyurn to methods such as boosting,
decision trees or random forests, which have both good mgntime complexity and predictive
performance. However, these methods are typically run tanaaning as vectors and usually put a
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strong emphasis on a sequence of decisions based on singleles. Another common solution is
(b) to stop using infinite-dimensional kernels and resthietkernels to be essentially linear kernels
(i.e., by choosing an explicit representation of the dat@sehsize is independent of the number
of observations) where the non-parametric kernel machi(er adapting the complexity of the
underlying predictor to the size of the dataset) is lost, thednethods may thamderfit

In this paper, we consider the traditional kernel set-upstgervised learning, where the input
data are only known through (portions of) the kernel matfixie main question we try to tackle
is the following: Is it possible to run supervised learningthods with positive-definite kernels in
time which is subquadratic in the number of observationfiavit losing predictive performance?
Of course, if adaptation is desired, linear complexity se@mpossible, and therefore we should
expect (hopefully slightly) super-linear algorithms. t&tically, a quantity that characterizes the
non-parametric nature of kernel method is degrees of freedomvhich play the role of an implicit
number of parameters and which we define and review in Sedtibn This quantity allows to
go beyond worst-case analyses which are common in statitg&rning theory: our generalization
bounds will then depend on problem-dependent quantitieshwhay not be known at training time,
but that characterize finely the behavior on any given prolilestance, and not only for the worst
case over a large class of problems. In this paper, we tryctdetdhe following specific question:
Do the degrees of freedom play a role in the computationglgaties of kernel methods?

An important feature of kernel matrices is that they are tp@ssemidefinite, and thus they
may well be approximated from a random subsep of their columns, in running-time complex-
ity O(p*n) and with a computable bound on the error (see details in @e8}i This appears
through different formulations within numerical lineagabra or machine learning, e.g., Nystrom
method Williams and SeegeR001), sparse greedy approximatiordniola and Scholkop2000),
incomplete Cholesky decompositioRifie and Scheinber@001; Bach and Jordar2005, Gram-
Schmidt orthonormalizationShawe-Taylor and CristianinP004 or CUR matrix decompositions
(Mahoney and Drinea2009. It has been thoroughly analyzed in contexts where theigdarnel
matrix approximation or approximate eigenvalue decomjorsisee, e.g.Boutsidis et al. 2009
Mahoney and Drineag2009 Kumar et al, 2012 Gittens 2011). Such bounds have also been sub-
sequently used to characterize the approximation of piedik made from these low-rank decom-
positions Cortes et al.2010 Jin et al, 2001), but these two-stage analyses do not lead to guaran-
tees that reflect the good observed practical behavior.idrptiper, our analysis aims at answering
explicitly the simple question: how big shoylbe to incur no loss of predictive performance com-
pared to the full kernel matrix? The key insight of this paigamot to try to approximate the kernel
matrix well, but to predict well from the approximation. Bhiequires a sharper analysis of the
approximation properties of the column sampling approach.

We make the following contributions:

— In the fixed design least-squares regression setting, o shSectiond.2 that the rankp can
be chosen to be linear in tlegrees of freedomssociated with the problem, a quantity which
is classically used in the statistical analysis of such wathNote that our results hold for any
problem instance, and not only in a worst-case regime.

— We present in Sectiof.4 simple algorithms that have sub-quadratic running timeenrity,
and, for the square loss, provably exhibit the saretlictive performanceas classical algo-
rithms than run in quadratic time (or more).
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— We provide in Sectiod.3explicit examples of optimal values of the regularizati@mgmeters
and the resulting degrees of freedom, as functions of thaydetthe eigenvalues of the ker-
nel matrix, shedding some light in the joint computatiostatistical trade-offs for choosing a
good kernel. In particular, we show that with kernels withtfapectrum decays (such as the
Gaussian kernel), computational limitations may preveptaring the relevant portions of the
regularization paths, leading to underfitting.

2. Supervised learning with positive-definite kernels

In this section, we present the problem we try to solve, a$ asekeveral areas of the machine
learning and statistics literatures our method relates to.

2.1. Equivalent formulations
Let (x;,9:), 7 = 1,...,n, ben pairs of points inX’ x ), whereX’ is the input space, anl is the
set of outputs/labels. In this paper, we consider the proeldEminimizing

wmin LS s, £(2) + 117, @
=1

where F is a reproducing kernel Hilbert space with feature mapX — F, and positive-definite
kernelk : X x X — R. While this problem is formulated as an optimization probl@ a Hilbert
space, it may be formulated as the optimization d&®iin two different ways.

First, using the representer theorem, the unique solutioray be found ag = >~ | a;¢(z;)
(see, e.g.\WWahba 199Q Scholkopf and Smola2002 Shawe-Taylor and Cristianin2004). Thus,
by replacing the expression ¢fin Eq. (1), « is a solution of the following optimization problem:

1 A
in =Y ly;, (Ka))+ 2a Ka, 2
féﬁ{in;(y’( a)i) + 5o’ Ka 2)
whereK € R™*" is thekernel matrix defined ad<;; = k(x;, x;).

Second, for convex losses only, an equivalent dual probsectassically obtained as (see proof
in AppendixA):

max —g(—Aa) — éozTKoz, 3
acR? 2

whereg(z) = maxyern —% o, Uy, u;) + uiz; is the Fenchel-conjugate of the empirical risk
(for the hinge loss, EqJ3j is exactly the classical dual formulation of the SVM). Agabne may
express the primal solution gs= >_"" | a;¢(z;). In many situations (such as with the square loss
or logistic loss), then the solution of EgB)(is unique, and it is also a solution of E®) (note
however that the converse is not true).

2.2. Related work

Efficient optimization algorithms for kernel methods. In order to solve Eq.1), algorithms
typically consider a primal or a dual approach. Solving B§.i(e., the primal formulation after ap-
plication of the representer theorem, is typically ineéfiti because the problem is ill-conditiofed

1. The objective function in Eq2] is a function of K'/2«, with a kernel matrixk which is often ill-conditioned,
usually leading to ill-conditioning of the original prolte(Chapelle 2007).
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and thus second-order algorithms are typically usédapelle 2007). Alternatively, K is repre-
sented explicitly ag¢ = ®®' and a change of variable = ® "« is considered (note that when
the kernelk is linear, ® is simply the design matrix, and we are solving directly &dinsuper-
vised learning problem). Then, the classical battery ofvegroptimization algorithms may be
used, such as gradient descent, stochastic gradient déStatev-Shwartz et al2007) or cutting-
planes Joachims et al2009. However, in a kernel setting where a small matbiXi.e., with few
columns) is not known a priori, then they all exhibit at leqgtdratic complexity im, as the full
kernel matrix is used.

The dual problem in Eq3] is usually better-behaved (it has a better condition nui{hapelle
2007, and algorithms such as coordinate descent and its varsaich as sequential minimal opti-
mization may be usedP(att, 1999. Again, in general, the full kernel matrix is needed.

Some algorithms operate online and do not need to computealthernel matrix, such as the
“forgetron” (Dekel et al, 2005, the “projectron” Orabona et a|2008, BGSD (Wang et al,2012),
or LASVM (Bordes et al.2005, with typically a fixed computational budget and good picadt
performance. They often come with theoretical approxiomgyuarantees, which are either data-
dependent or based on worst-case analysis; however, tbeset ¢haracterize the required rank
which is needed to achieve the same accuracy than the protitbna full kernel matrix. In fact,
one of the main motivations for this work is to derive predisminds for reduced-set stochastic
gradient algorithms for supervised kernel problems.

Analysis of column sampling approximation. Given a positive semi-definite matrix of sizen,
many methods exist for approximating it with a low-rank {oglly also positive semidefinite)
matrix L. While the optimal approximation is obtained from the eigdue decomposition, it
is not computationally efficient as it has complexity at teqisadratic inn (since it requires the
knowledge ofK). In order to achieve linear complexity im, approximations from subsets of
columns are considered and appear under many names: Mystgthod (Villiams and Seeger
2001), sparse greedy approximatiorSngola and Scholkopf000, incomplete Cholesky decom-
position Fine and Scheinber@001), Gram-Schmidt orthonormalization or CUR matrix decompo-
sitions (Mahoney and Drinea2009. Note that reduced-set methods (see, &eggrthi et al, 2006
typically consider using a subset of columns after the ptedhas been estimated. These low-rank
methods are described in Sect®and have running time complexity(p?n) for an approximation
of rankp. Note that they may also be used in a Bayesian setting witls&au processes (see, e.g.,
Lawrence et a).2002.

Column sampling has been analyzed a Mtafoney and Drinea2009 Cortes et al.201Q
Kumar et al, 2012 Talwalkar and RostamizadeP01Q Gittens 2011); however, typically the anal-
ysis provides a high-probability bound on the erfidf — L|| for an appropriate norm (typically
operator, Frobenius or trace norm), but this is too pessitrasd does not really match with good
practical performance (see empirical evidence in FigreSome works do consider prediction
guaranteesortes et al.201Q Jin et al, 2001), but as shown in Sectioh 2, these are not sufficient
to reach sharp results depending on the degrees of freedooneoier, many analyses consider
situations where the matrik is close to low-rank, which is not the case with kernel masicin
this paper, the control oK — L is more precise and adapted to the usd<ofithin a supervised
learning method.

Randomized dimension reduction. The method presented in this paper, which considers ran-
dom columns from the original kernel matrix, is also relatedandom projection techniques used
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Figure 1: Comparison of relative errors of kernel approximation and prediction performance.
We consider a least-squares prediction problem with 400 and a decay of eigenvalues
of the kernel matrix which is the inverse of a low-order paymal (see examples in
Section5). We compare the decays to zero of the relative kernel mapproximation
| —L||/|| K|l (for the trace and operator norms) with the decay of theivelgrediction
performance (i.e., prediction fdr minus prediction for the full matrix<). Left: random
selection of columns, right: selection of columns by incéetgo Cholesky decomposition
with column pivoting. The prediction error (red curve) staphen the average prediction
error of the column sampling approach gets below the priedi@rror of the full kernel
matrix approach. As the rankincreases, the decay of the relative prediction error is
much faster than the error in matrix approximation, sugggshat relying on good kernel
matrix approximation may be suboptimal if the goal is simjplypredict well.

for linear prediction problemd{ahoney 2011; Maillard and Munos2009. These techniques are
not kernel methods per se, as they require the knowledge chtexnsquare root® (such that
K = ®®T"), which leads to complexity greater than quadratic. Fora@ekernel functions that can
be explicitly expressed as an expectation of dot-productsw-dimensional spaces, similar ran-
domized dimensionality reduction may be performRdlfimi and Rech2007). Note however that
the dimension reduction is then independent of the pasdidaiktributions of the input data points,
while the column sampling approach is; &g et al.(2012 for more discussion.

Theoretical analysis of predictive performance of kernel nethods. In order to assess the re-
quired precision in approximating the kernel matrix, it syko understand the typical predictive
performance of kernel methods. For the square loss, thiagsically obtained from a bias-variance
decomposition of this performance (see Sectibm key quantity is thelegrees of freedoymvhich
play the role of an implicit number of parameters and is ajablie to many non-parametric esti-
mation methods which consists in “smoothing” the resporesgor by a linear operator (see, e.g.,
Wahba 1990 Hastie and Tibshiranil990 Gu, 2002 Caponnetto and De Vitd2007 Hsu et al,
2017). See precise definitions in SectidriL

3. Approximation from subset of columns

In this section, given subsetsandB of V' = {1,...,n} and a matrixk’ € R"*", we denote by
K (A, B) the submatrix ofK” with rows in A and columns in3.
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Approximation from columns. Given a random subsétof V' = {1,...,n} of cardinality p,
we simply consider the approximation of the kernel mattiXxrom the knowledge of< (V, I) (the
columns ofK indexed byI), by the matrix

L=K(V,DK(I,DK(,V), (4)

where M denotes the pseudo-inversedf. As shown byBach and Jorda(R005), L is the only
symmetric matrix with column space spanned by the columrs@f, ), and such thaL(V,I) =
K(V,I). Alternatively, given thatX is the matrix of dot-products of points in a Hilbert space, it
may be seen as the kernel matrix of the orthogonal projextiball points onto the affine subspace
spanned by the points indexed byMahoney 2011).

Note that approximatinds by L also corresponds to creating an explicit feature map of dime
sionp, i.e., o(x) = K(I,1)~Y?(k(x;,z))icr € RP, and, this allows the application to test data
points (note that using such techniques also allows bitstingrunning time peformance).

Such a feature map may be efficiently obtained in running t@{g>n) using incomplete
Cholesky decomposition—often interpreted as partial G&uohmidt orthonormalization, with the
possibility of having an explicit online bound on the traaam of the approximation error (see,
e.g.,Shawe-Taylor and Cristianin2004).

Pivoting vs. random sampling. While selecting a random subset is computationally efficien
it may not lead to the best performance. For the task of apmating the kernel matrix, al-
gorithms such as the incomplete Cholesky decompositiith pivoting provide an approximate
greedy algorithm with the same complexity than random sup$iag (Smola and Scholkop200Q
Fine and Scheinber@001).

In Section5, we provide comparisons between the two approaches, spdhenpotential ad-
vantage of the greedy method over random subsampling. Hawe analysis of such algorithms
is harder, and, to the best of our knowledge, still remainsp®n problem.

4. Fixed design analysis for least-square regression (riégegression)

To simplify the analysis, we assume that thelata pointszy, ..., z, are deterministic and that
Y = R. In this setting, the classicgleneralization error(prediction error on unseen data points)
is replaced by théen-sample prediction errofprediction error on observed data points). This fixed
design assumption could be relaxed by using tools ftésn et al.(2011), as results for random
design settings are typically similar to the fixed desigmirsgs.

We assume that the logss the square loss, i.€/(y;, f(z:)) = 3(y; — f(;))*. By using the
representer theorem (see Sectol), we classically obtain:

f(z) =30 aik(z, z;) with a = (K +nAI)™ly.
This leads to a prediction vectdr= K(K + n\I)~'y € R, which is a linear function of the
output observationg, and is often referred to as a smoothed estimate of

4.1. Analysis of the in-sample prediction error

We denote by; = Ey; € R the expectation of;, and we denote by, = y; — z; = y; —Ey; € R
the noise variables; they have zero mean andahgassumed to have finite covariance matrix
(note that the noise may neither be independent nor iddgtdiatributed).
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Bias/variance decomposition of the generalization error. Following classical results from the
statistics literature (see, e.§Vahba 1990 Hastie and Tibshiranil99Q0 Gu, 2002, we obtain the
following expected prediction error:

L2 — 2l = LEes — 2] + L trvare(2)
= LI = K(K + 122 Y2|? + 2 tr OK2(K + nAI) 2
= nA%2 T (K 4+ nM) "2z + 2 tr CK*(K +nAI)~2

which may be classically decomposed in two terms:

bias(K) = n\2z" (K +nX\) "2z
variance(K) = 1trCK?*(K 4 n\l)~?

Note that the bias term is a matrix-decreasing functiorkgf\ (and thus an increasing function
of ), while the variance term is a matrix-increasing functidn//A and the noise covariance
matrix C'.

Degrees of freedom. Note that an assumption which is usually mad€'is= o21; the variance
term then takes the fory. tr K2(K +nAI)~2 andtr K2(K +nAI)~2 is referred to as theegrees
of freedom(Wahba 1990 Hastie and Tibshiranil990 Gu, 2002 Hsu et al, 2011) (note that an
alternative definition is often used, i.er, K (K + nAI)~!, and that as shown in Append they
often behave similarly). In ordinary least-squares edtondrom d variables, the variance term is
equal too2d/n, and thus the degrees of freedom play the role of an impligitimer of parameters.
In this paper, we show that a proxy to this statistical qugratiso plays a role in optimization: the
number of columns needed to approximate the kernel matagigely enough to incur no loss of
performance is linear in the degrees of freedom.
More precisely, we define theaximal marginal degrees of freedahas

dzn”diag (K (K +nAl)” )H (5)

We havetr K*(K +nAI)™? < tr K(K +nA)~! = || diag (K (K +nAI)~')||, < d, and thus?
provides an upper-bound on the regular degrees of freedomayl be significantly larger in situa-
tions where there may be outliers and the vediag (K(K+n)\l)‘1) is far from uniform—precise
results are out of the scope of this paper. Moreover, theodi@igelements of (K +nAI)~! are re-
lated to statistical leverage scores introduced for bast-approximationsMahoney and Drineas
2009; it would be interesting to see if this link could lead to ramiform sampling schemes with
better behavior.

In Section4.3, we study in detail how the degrees of freedom vary as a fomaif \ andn:
in order to minimize predictive performance, the best ch@t\ depends om (as a decreasing
function), typically smaller than a constant times/n, and the degrees of freedom typically grow
as a slow function of,, reflecting the non-parametric nature of kernel methods.

4.2. Predictive performance of column sampling

We consider sampling columns (without replacement) from the origimatolumns. We consider
the column sampling approximation defined in E4). dnd provide sufficient conditions (a lower-
bound orp) to obtain the same predictive performance than with thek&rhel matrix.
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Theorem 1 (Generalization performance of column sampling)Assume: € R” and K € R™"*"
are respectively a deterministic vector and a symmetrictipessemi-definite matrix, and > 0.
Letd = n|| diag (K (K +nA)~")||_ andR? = || diag(K )| -. Assume € R" is arandom vector
with finite variance and zero mean, and define the smoothedagstt; = (K + n\l) 'K (z +
). Assume thaf is a uniform random subset ¢f indices in{1,...,n} and considerL =
K(V,)K(I,I)'K(I,V), with the approximate smoothed estimate= (L + n\I)"'L(z + ¢).
Letd € (0,1). If

32d nR?
> (= +2) log —, 6
p (5 +2) log 5 (6)
then
1 . 9 1 . 9
SEE|2L — 2|7 < (14 40)~Eef[2x — 2" ()

Proof sketch. The proof relies on approximating the expected edipectly, and not through
bounding the errof|l K — L||. This is done by (a) considering a regularized version_of.e.,

L, = KWV,I)[K(I,I) + p'y[]_lK(I, V), (b) using a Bernstein inequality for an appropriately
rescaled covariance matrix and (c) using monotonicity meuts to obtain the required bound. See
more details in AppendiB. [ |

Sharp relative approximation. The bound in Eq.4) provides a relative approximation guaran-
tee: the predictions;, are shown to perform as well ag (no kernel matrix approximation). Small
values ofé impose no loss of performance, whife= 1/4 impose that the prediction errors have
a similar behavior (up to a factor @). Note that relative bounds may be more easily obtained
by eigenvalue thresholding of the kernel matrix, i.e., thylo replacing soft-shrinkage by hard-
thresholding Blanchard et a).2004 Dhillon et al, 2011). However, these bounds do not allow the
proportionality constant to go arbitrarily close to oneg éimey depend on the full knowledge of the
kernel matrix.

Lower bounds. The lower bound for the rank in Eq. (6) shows that the maximal marginal de-
grees of freedom provides a quantity which, up to logarithtarms, is sufficient to scale with, in
order to incur no loss of prediction performance. Note thatgrevious result also allows the deriva-
tion of an approximation guarant@egiven a rankp, by inverting Eq. §¢). Moreover, Theoreni
provides a sufficient lower-bound for the required ranloeriving precise necessary lower-bounds
is outside the scope of this paper. However, given that witedaced space gf dimensions,
we can achieve a prediction error ©fp/n) from ordinary least-squares, we should expetd

be larger than the known minimax rates of estimation for treblem at handJohnstong1994
Caponnetto and De Vit@007 Steinwart et al.2009. In Section4.3, we show that in some situa-
tions, it turns out that is of the order of the minimax rate; therefore, we could exgieat in certain
settings is also a necessary lower-bound@(up to constants and logarithms).

High-probability results.  The bound in Eq.®) provides a result in expectation, both with respect
to the data (i.e.E.) and the sampling of columns (i.€€;). While results in high probability with
respect td are readily obtained since the proof is based on such réseksEq. 13) in AppendixB

for details), doing so with respect towould require additional assumptions, which are standard i
the analysis in ridge regressioHgu et al, 2011; Arlot and Bach 2009, but that would make the
results significantly more complicated.
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Avoiding terms in 1/X. Theoreml focuses on average predictive performance; this is differe
from achieving a good approximation of the kernel matkaboney and Drinea2009. Previous
work (Cortes et al.2010 Jin et al, 2001) considers explicitly the use of kernel matrix approxima-
tion bounds within classifiers or regressors, but obtaingls that involve multiplicative terms of
the form1/\ or 1//\2, which, as we show in Sectich3, would grow as: grows. More precisely,
the bound fronCortes et al(201Q Eq. (5)) has a term of the foriy A, (K + A )?; however, for
the non-parametric problems we are considering in this pape lowest eigenvalue df is often
below machine precision and hence the bound behaveg)ds Moreover, the subsequent bound
of Cortes et al(201Q Theorem 2) has a term of the forivi(A\?p) which can only be small if is
larger thanl /A2, which, according to our analysis in Sectidr8, is typically larger tham since

A should typically decrease at leastlas/n (however, note that their bound has a stronger nature
than the one in Theoref as it states a guarantee in high probability).

Our proof technique, that focusdsectly on prediction performance and side-steps the explicit
approximation of the kernel matrix, avoids these terms/ik, and, beyond the dependence Jon
through the degrees of freedom (which we cannot avoid), epeddence is only logarithmic ik
(see details in the proof in Appends.

Instance-based guarantees. Theoreml shows that in the specific instance that we are faced with,
we do not lose any average predictive performance. As oppiséin et al.(2007), the bound is
not on the worst-case predictive performance (obtained tiptimizing over\, and with worst-case
analysis ovel), but for given\ and K (however, the bound afin et al.(2001) is a high-probability
result while ours is only in expectation). Moreover, evethis worst-case regimdijn et al.(2007)
state that for polynomial decays of the eigenvalueg<a$uch that the optimal prediction perfor-
mance is of the forn®(n~1n!'/(*+1) (and for binary classification rather than regression)aimé

to achieve this optimal prediction js= n2/*=1) which may be larger tham and is significantly

higher tham:!/(**1) (which corresponds to our result since the degrees of freaate then equal
to nl/O+D).

Link with eigenvalues. In the existing analysis of sampling techniques for kernethds, an-
other source of inefficiency which makes our result sharpeghé proof technique for bounding
||K — L||. Indeed, most analyses use a linear algebra lemma ffaimney and Drinea@009);
Boutsidis et al(2009), that relies on thép + 1)-th eigenvalue to be small; hence it is adapted to
matrices with sharp eigenvalue decrease, which is not deefoakernel matrices (see an illustrative
example in Figurd). We provide a new proof technique based on regularizingdhann sampling
approximation and optimizing the extra regularizationgpagter using a monotonicity argument.

Additional regularization effect. In our experiments, we have noticed that the low-rank approx
imation may have an additional regularizing effect leadm@ better prediction performance than
with the full kernel matrix.

Beyond square loss. The notion of degrees of freedom can be extended to smoatbddike the
logistic loss. However, the simple bias/variance decontipasonly holds asymptotically, forcing a
control of the two terms, which would lead to significant adildemplexity.

Beyond fixed design. In order to extend our analysis to random design settingsyovgd need to
additionally control the deviation between covariancerafms and empirical covariance operators,
with quantities like the degrees of freedom that depend erd#étay of non-zero eigenvalues and
not on their number. This could be done using tools fiésu et al.(2011, 2012).
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4.3. Optimal choice of the regularization parameter

As seen in Section4.1and4.2, the computational and statistical properties of kerrdgeiregres-
sion depend heavily on the choice of the regularizationmpatar\ asn increases, which we now
tackle.

For simplicity, in this section, we assume that the noiseaese are i.i.d. (i.e.C = ¢2I). Our
goal is to study simplified situations, where we can deriy@ie formulas for the bias, the variance,
and the optimal regularization parameter. Throughoutdbgtion, we will consider specific decays
of certain sequences, which we characterize with the wotatj = ©(v,,), which means that there
exist strictly positive constantd and B such thatdu,, < v, < Bu, for all n.

We assume that the kernel matfixhas eigenvalues of the for®(n;),7 =1, ..., n, for some
summable sequen¢g,)—so thattr X' = ©(n), and that the coordinates obn the eigenbasis df
have the asymptotic behavié¥(,/n1;) for a summable sequen¢e;)—so thati ="z = ©(1). In
Tablel, we provide asymptotic equivalents of all quantities foresal pairs of sequencég;) and
(v;) (see proofs in Appendi&), with polynomial or exponential decays.

Note that for decays af; which are polynomial, i.ey; = O(i=2?), then the best possible pre-
diction performance is known to i@(n!/2°~1) (Johnstong1994 Caponnetto and De Vi{®007)
and is achieved if the RKHS is large enough (lines 2 and 4 iheTAb For exponential decay, the
best performance i©(logn/n). See als®Gteinwart et al(2009.

Given a specific decafy;) for expected outputs = Ey, then depending on the decgy;) of
the eigenvalues of the kernel matrix, the final predictioriggenance and the optimal regularization
parameter may be different. Usually, the smaller the RKHS faster the decay of eigenvalues of
the kernel matrix<X —this is true for translation-invariant kernelBaholkopf and Smo|20032, and
the kernels considered in SectibnThus there are two regimes:

— The RKHS is too large, for lines 1 and 3 in Tabld.: the eigenvalues ok, which depend
linearly onp;, do not decay fast enough. In other words, the functions énRKHS are not
smooth enough. In this situation, the prediction perforoeais suboptimal (do not attain the
best possible rate).

— The RKHS is too small for lines 2, 4, and 6 in Tablé&: the eigenvalues of{ decay fast
enough to get an optimal prediction performance. In otherdaathe functions in the RKHS
are potentially smoother than what is necessary. In thigisdn however, the required value
of A may be very small (much smaller théx{(n—!)), leading to potentially harder optimization
problems (since the condition number that depends/drmay be very large).

There is thus a computational/statistical trade-off: & tRKHS is chosen too large, then the
prediction performance is suboptimal (i.e., even with tastipossible regularization parameter, the
resulting error is not optimal); if the RKHS is chosen too 8nthe prediction performance could
be optimal, but the optimization problems are harder, amdetsiones cannot be solved with the
classical precision of numerical techniques (see exangbkasch behavior in Sectids). Indeed, for
least-squares regression, where a positive semi-definéarlsystem has to be solved, its condition
number is proportional tb/\ and for the best choice ofin line 4 of Tablel, it grows exponentially
fast inn (if A is chosen larger, then the bias term will lead to sub-optinehlavior).

10
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(i) | (v) | var. bias optimal A pred. perf. | d.f. d,e | condition
i—28 | =20 | p—1\—1/28 | )2 p~1/(@+1/28) | p1/@AB+1)=1 | p1/(46+1) | if 26> 4841
P28 | 20 | pm1\—1/28 | \(20-1)/28 | ,,—B/0 nl/(26)—1 n1/(26) if 20 <45+1
i—28 | e=ri | p—1\—1/28 | )2 n—1/(2+1/28) | p1/(4B+1)—=1 | ,1/(4B+1)

e e | log§ (log %)1—25 exp(—nl/9) | p1/(20)-1 n1/(26)

e P | e | n~llog % A2 n~1/2 logn/n logn if k> 2p

e P | e | n~llog % P n=P/% logn/n logn if kK <2p

Table 1: Variance, bias, optimal regularization parameterresponding prediction performance
and degrees of freedoty,. = tr K2(K +n\I)~2, for several decays of eigenvalues and
signal coefficients (we always assume- 1/2, 5 > 1/2, p > 0, k > 0, to make the series
summable). All entries are functions §fn or A and are only asymptotically bounded
below and above, i.e., correspond to the asymptotic not&io).

4.4. Optimization algorithms with column sampling

Given a rankp and a regularization parametar we consider the following algorithm to solve
Eq. @) for twice differentiable convex losses:

1. Select at random columns ofK (without replacement).

2. Computed € R™*? such thatbd " = K(V,I)K(I,I)'K(I,V) using incomplete Cholesky
decomposition (see details 8hawe-Taylor and Cristianin2004).

3. Minimizeminyere 30 £(y;, (Pw);) + 3[|w||? using Newton’s method (i.e., a single linear

system for the square loss).

The complexity of step 2 is already(p?n), therefore using faster techniques for step 3 (e.g., accel-
erated gradient descent) does not change the overall crityplehich is thusO(p?n). Moreover,
since we use a second-order method for step 3, we are rohlistdaditioning and in particular to
small values of\ (though not below machine precision as seen in Se&jomhis is not the case for
algorithms that relies on the strong convexity of the oljectunction, whose convergence is much
slower when) is small (as seen in Sectigh3, whenn grows, the optimal value of can decay
very rapidly, making these traditional methods non robust)

According to Theorend, at least for the square loss, the dimensiomay be chosen to be
linear in the maximal marginal degrees of freed@ntefined in Eq.%); it is in practice close to the
traditional degrees of freedorh,,., which, as illustrated in Tablg, is typically smaller tham!/2.
Therefore, ifp is properly chosen, the complexity is subquadratic. Gived (and thusp) can be
estimated from a low-rank approximation &f. However, our current analysis assumes thé
given. Selecting the rankandthe regularization parametarin a data-driven way would make the
prediction method more robust, but this would require eaisumptions (see, e.gvlot and Bach
2009 and references therein).

5. Simulations

Synthetic examples. In order to study various behaviors of the regularizatiorapeeters\ and
the degrees of freedor) we consider periodic smoothing splines [6n1] and pointszy, ..., x,

11
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uniformly spread ovef0, 1], either deterministically or randomly. In order to generptoblems
with given sequenceg.;) and(v;), it suffices to choosé(z, y) = > 2, 2u; cos 2im(x — y), and a
functionf(z) = >°°, 21/2-1/2 cos 2imx. Forp; = i~2%, we havek(xz,y) = ﬁBzﬁ(fU—y— lz—y]),
whereByg is the (23)-th Bernoulli polynomial (see details in Appendiy.

Optimal values of . In a first experiment, we illustrate the results from Sectid) and compute
in Figure?2 the best value of the regularization parameter (left) aedotbtained predictive perfor-
mance (middle), for a problem with; = i=2% for § = 8, and for which we considered several
kernels, for whichu; = i=25,for =1, 8 =4 andg = 8.

— Forj = 1, the rate of convergence af/(#+t1)~1 happens to be achieved (line 1 in Talt)e
with a certain asymptotic decay of the regularization pastem and it is slower than!/(29)—1,

— Forf = 4, the optimal rate ofi!/(29)~-1 is achieved (line 2 in Tabl#), as expected.

— Forj = 8, the rate of convergence should k& (29~ (line 2 in Tablel), however, as seen in
the left plot, the regularization parameter saturates@®ws at the machine precision, leading,
because of numerical errors, to worse prediction perfoomamhe problem is so ill-conditioned
that the matrix inversion cannot be algorithmically robeisough.

Performance of low-rank approximations. In this series of experiments, we compute the rank
which is necessary to achieve a predictive performance at 6 worse than wittp = n, and
computé the ratio with the marginal degrees of freeddm= n|| diag (K (K + nAI)~!)|_ and
the traditional degrees of freedoty,. = tr K2(K + nAI)~2. In the right plot of Figure2,

we consider data randomly distributed [ih 1] with the same kernels and functions than above,
while in Figure 3, we considered three of theumadyndatasets from the UCI machine learn-
ing repository (there we compute the classical generaizgierformance on unseen data points
and estimate\ by cross-validation). For further experimental evaluagioseeCortes et al(2010);
Talwalkar and Rostamizad€R010).

On all datasets, the ratios stay relatively close to ongstilating the results from Theorein
Moreover, the two different versions and d,,. of degrees of freedom are within a factor of 2.
Moreover, using pivoting to select the columns does not gaasignificantly the results, but may
sometimes reduce the number of required columns by a cdrfatztor. Note that the sudden in-
crease (of magnitude less than 2 in the middle and right mibfigure 3) is due to the chosen
criterion (ratio of the sufficient rank to obtain 1% worse giotive performance), which may be
unstable.

6. Conclusion

In this paper, we have provided an analysis of column samitinkernel least-squares regression
that shows that the rank may be chosen proportional to proplefined degrees of freedom of
the problem, showing that the statistical quantity chaging prediction performance also plays
a computational role. The current analysis could be extridesarious ways: First, other col-
umn sampling schemes beyond uniform, such as presentBduigidis et al(2009; Kumar et al.
(2012, could be considered with potentially better behavior. rédbwer, while we have focused

2. Note that in practice, computing the degrees of freedoactéxrequires to know the full matrix. However, it could
also be approximated efficiently, following for examjeineas et al(2012).

12
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rank / degrees of freedom

Ioglo(regularization parameter)

Ioglo(generalization performance)

4

2 3 2 3
log, ,(n) log, ,(n)

Figure 2: Left and middle: Effect of size of RKHS in prediaiperformance. Right: Ratio of
the sufficient rank to obtaih% worse predictive performance, over the degrees of free-
dom (plain: random column sampling, dashed: incompletdeskyg decomposition with
column pivoting).

2.5 Y

——rank/d =0~ rank/d

rank / degrees of freedom
rank / degrees of freedom
rank / degrees of freedom

2

3.5 2 3.5 2 3.5

25 3 25 3 25 3
log, ,(n) log, ,(n) log, ,(n)
Figure 3: Ratio of the sufficient rank to obtaift worse predictive performance, over the degrees of

freedom (plain: random column sampling, dashed: incorepgBdtolesky decomposition

with column pivoting). From left to rightpumadyrdataset82fh, 32nh 32nm

on a fixed design, it is of clear interest to extend our reswdtsandom design settings using
tools fromHsu et al.(2011). The analysis may also be extended to other losses thamytizees
loss, such as the logistic loss, using self-concordantyaisaBach 2010 or the hinge loss, using
eigenvalue-based criteri@lanchard et a).2008 or tighter approaches to sample complexity anal-
ysis (Sabato et al.2010. Finally, in this paper, we have considered a batch setimtyextending
our results to online settings, in the line Barres and Yaq2011), is of significant practical and
theoretical interest.
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Appendix A. Duality for kernel supervised learning

In this section, we review classical duality results forrie@fbased supervised learning, which ex-
tends the dual problem of the support vector machine to sdlds. For more details and examples,
seeRifkin and Lippert(2007). We consider the following problem, whefE is an RKHS with
feature map : X — F:

A
mln_ze yw z §|’f”27

feFrn

which may be rewritten with the feature mafas:

A2
[omin Zﬁyz,ul S 1117 such thatu; = (f, ¢(x:).

We may then introduce dual parameters (Lagrange multf)liee R™ and the Lagrangian

L(f,u,0) Zﬁ Yir i) —||f||2 +A§jaz ui — (f, é(z:))).
Minimizing with respect tq f, u), we getf = > | ;¢(z;) and the dual problem:

A
_ 2
2%&% —g(—Aa) 2a Ka,

where, forz € R", g(z) = maxycgrn —% o l(yi,u;) + wiz is the Fenchel-conjugate of the
empirical risk.
Appendix B. Proof of Theorem 1

We first prove a lemma that provides a Bernstein-type inétyualr subsampled covariance matri-
ces. The proof followgropp (2011, 2012 andGittens(2011).

B.1. Concentration of subsampled covariance matrices

Given the matrixt € R"*" andI C {1,...,p}, we denote by; the submatrix ofl composed of
the rows of¥ indexed bylI.

Lemma 2 (Concentration of subsampled covariance)l et ¥ € R™*", with all rows of {5-norm

less thanR. LetI be a random subset dfl,...,n} with p elements (i.e.p elements chosen
without replacement uniformly at random). Then, for aft- 0,
1 1 —pt?/2
P (Amax[ vy —\IJT\I' } >t) <rex < >
1 1¥1 ) P\ RO T0)(R? + £/3)

Proof Let,...,1¥, € R" be then rows of . We consider the matridA € R"*" defined as:

1 1 1<
A==UTT - —00; == gy — 2:
- oV nmwwz i

ZGI

14
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By construction, we havEA = 0, and, as shown byropp (2011, 2012 andGittens(2011), we

have
Etrexp(sA) < Etrexp(sZ),

whereZ= is obtained by sampling independentlyowswith replacement, i.e., is equal to

Ez—szwT——ZZszzwz :

]121

wherez/ € R" is a random element of the canonical basi®éfsuch thaﬁP(zf =1) = 1 for
alli € {1,...,n} andj € {1,...,p}. This result extends to the matrix case the classical result

of Hoeffding (1963.
We thus have:

p

n n p
SIS (v - ) = Y
j=1 N =1 i=1

Jj=1

[1]

with M; = £ (37, = ZE0TT ). We haveEM; = 0, Amax (M) < Amax(2 ¥ @) /p, and

max<z > = ]%)\max(Z ZEZJ?Z%(%\I]T\I’ —TZJZTZJZT) (%\I/T\I/ —"L/}kl/}];r)>
=1 k=1

j=1i=1 k=
n

1 1 1 2 - 1

= EAmax<ﬁ ZZ; (E\PT\I’ — "L/Jﬂb;r) ) becaus@zfzi = E i=k>
I 1 ol 1 -

— » max sz¢z ¢27;Z)z (n\IJT\IJ) ) < - D max n Z¢z¢z T,Z)ﬂ/)z )

R? 1

< —Amax (=T ¥) because);y; v < Ry
p n

We can then apply the matrix Bernstein inequality Tobpp (2012 Theorem 6.1) to obtain the

probability bound:
o 22
X
P\ ™ g2 1 1 1 t)

v T - vl
5 /\max( 1\ \If)+p/\max(n\lf \11)3

which leads to the desired result.

B.2. Proof of Theorem1l

Proof principle. Let ® € R™*" be such thaf = ®®'. Note that if X' had rankr, we could

instead choosé& < R™*".
We consider the regularized low-rank approximation= <I>NV<I>T, with

Ny =0 (®r®] +py]) ' 0r =3[ @ p(®]Br+py]) =1 —~(®] @1 /p+~y])7"  (8)
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(obtained using the matrix inversion lemma). We have- L, but we will considerL., for v > 0
to obtain a bound foty = 0, using a monotonicity argument.

Following the same reasoning than in Sectloh the in-sample prediction errgfE. || 27, — z||>
is equal to

1 1
“E|2z, — 22 = nA(BN,®T +nA) 2|2 + = tr C[ON, T (BN, ®T + nAD) ")
n n

= bias(Ly) + variance(L).

The functiony — N, is matrix-non-increasing (i.e., if > v, thenN, < N.). Therefore, we have

0 < N, < Ny < I. Since the variance termiance(L,) = L tr C[®N, T (®N, & T +nAl)~1]?

is non-decreasing iV, this implies that the variance term witt, is smaller than the one with,
and then less then the one with, replaced byl (which corresponds to the variance term without

any approximation). For the bias term we have:
bias(L,) = nA%[|[(BN, & +nAI) " 12|2 = nA22T (BN, @ T + nAl) 72z, (9)

which is a non-decreasing function of Therefore, if we prove an upper-bound on the bias term
for anyy > 0, we have a bound foy = 0. This requiredower-boundingV.,.
Lower-bounding N,. Let¥ = ®(10Td +~41)71/2 € R™". We may rewriteN,, defined in
Eq. @) as
1
Ny = I‘”ﬂ;¢?¢1+7n_l
1 1 1 _
= Ty (-0 D4l ——O D+ —D] D)
n n P
—1

1 1 1 1
_ I_JKE®T¢_%%U—U2];_E@T@_%Em;@j (5®T®—%VD‘U?

Thus, in order to obtain a lower-bound 85, it suffices to have an upper-bound of the form

1 1
)‘max(_\I/T\I/ - —\I’}—\I’[) < t, (10)
n p
which would imply
7 o LaT ~1
I-N, g — (=@ @+~I) ",
K 1—-1 (n 7 )
K—Ly = ®I-N)e'< %t‘b(l@% +D)71eT = (K )T K 5 T
—t ‘n — —

Assume% < 1. We then have, using the previous inequality:

(LynAD) ™ 5 (K== 14nA ) ™" = (K+nA| —%]1)‘1 < —%)‘1(K+n)\[)‘1.

Thus, the bias term in EQ9) is less than the original bias term timgis— %)‘2. If the bound
defined in Eq.{0) is not met, then we can upper-bound the bias terfi byz, which is itself upper-
bounded by the unapproximated bias term tir(rlesR%)—indeed, we have 2T (K+n\l)~2z >
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nA22Tz(nA + nR2)~2 = 1:T2(1 4 R2/)\)~2. Thus if we definer, = P (Amax[%qfﬂy -
%\If}\h} > t), then, E; [bias(L,)] is upper-bounded by

B =m(1+R*/)\)+ (1 - t)(l—%) : (12)

timesbias(K).

Probabilistic control.  We need to upper-bound the largest eigenvalu#t]z)T\Il — %\I/I\I/I, where
I is a random subset dfl,...,n} of cardinalityp. This is the difference between an empirical
second-order moment and the empirical moment of a subsetraidom elements. In order to
apply Lemma2, we need to upper-bound the squafedhorm as (assuming < A):
1
ool = D=0 DI
o, () = e (@724 yD)TR ),

1
= Mt S(= M HeTd+ A1)
v z-e?f?}fn}( (=(A7) ) )ii

N

1
M max (<I>(—<I>T<I> +AI)7'®") - becausey < A
1€1,...,n

= nM\y Y| diag (K (K +nA)7Y||_ = y"'d.

Thus fory < )\, all rows of ¥ have a squareéh-norm upper-bounded byy~'d, andL \I'T\I' <1,
we can apply Lemma, to obtain that:

B 1.t 1 T —pt?/2
Using the bound from Eql(@), we get, givery € (0,1), ¢ = 1/2, andy = %‘5 (which satisfy
7<>\and% =4§/2<1)

B = (1+R—2)m+(1—m){( —ﬂ)‘z—q

A 1—t
—p/8 -2

< i _ _

< 1+° exp<4d/5+1/6>—|—{(1 5/2) 1]

- y §—062/4

S P 32d/5+2 T la=5/2

B nk s 1-46/4

- P 32d/6+2 (1—4/22

nRk 3/4 R? —p
< 1 =1 —_— .
L e <32d/5+2> [1/4] + e (32d/5+2> 30
Thus, ifp > (224 + 2) log 22, we obtain thaB < 1 + 4.
Thus,
E;[bias(L) + variance(L)] < Ej[bias(L,) + variance(K )| by monotonicity

= [E;[bias(L,)] + variance(K)
< (14 40)bias(K) + variance(K)
< (14 46)[bias(K) + variance(K)],
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which is the desired result. Note that
— We could improve the bound by expliciting the reductiontaf variance term.

— In some situations, the prediction performance for the@pmated version may in fact be
smaller than the non-approximated version.

— The proof technique relies on a high-probability boundhwdtspect to the sampling of columns.
More precisely, from Eqg.1(1) and Eq. 12), witht = 1/2 andy = % we get:

Loz —p
P(EEa”ZL — ZH2 2 (1 — g) —]E ”ZK — Z” ) n exp <m> (13)

Appendix C. Asymptotics of bias and variance terms

In this appendix, we consider various decays of eigenvalygesof K and componentg/nv; (in
magnitude) of the signat to estimate. We follow the reasoning Bffarchaoui et al(2008), i.e.,
replacing sums by integrals. Given our assumptions, we:have

nr;
bias = 2 2 B — 2
Z (nu; +nA)? Z ,u,+)\

n_ n*u? 1
— variance = — =y
o2 ; (npi +nX)? ; (i +X)?

For all cases we need to consider, for simplicity, we onlyjae an upper-bound fqr; exactly
equal to its asymptotic equivalent. Considering lowerrmsuand a constant times the asymptotic
equivalent may be done in a similar way.

C.1. Variance terms

We consider the only two possible cases (the variance tetyndepends or{x;)). Moreover we
show that the two traditional definitions of the degreeseéfiomyr K (K +nAI)~! andtr K2?(K+
nAI)~2, have the same asymptotically equivalents.

Polynomial decay (1; = i~2%, 3 > 1/2). The renormalized variance term is less than

n

S <
— (1+20X)? o (1+129X)2

An28
= / L 128281 L g it the change of variable = \t?°,
0 (1 + U)2 25

o 1 1
< 7}\—1/2ﬁ 1/25—1_d
/0 1+ u)? “ 25"

= O(A"Y/28) since the integral is finite.

With the same reasoning, we haseK (K + nA\I)~! < fomw ﬁ)\‘l/%ul/%‘l%du =
O(N~1/28).
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Exponential decay (1; = e *").  The renormalized variance term is less than

n

271 < /7171 dt—/nie_zpt dt
— (1+eriX)2 = Jo (T+ertX)2  Jy (ePt 4 N)2

1
_ 1 / %du with the change of variable = ¢~
P Je—pn (’LL >‘)

YR
S opJo \ut+X (u+A)? Soto ut A

1 1
= ;[log(l +A) —log A] = O(log X)

We the same technique, we get boundstoi (K + nAI)~! in the same way we just did for
tr K2(K +nA\I)~2

C.2. Biasterms

The bias terms depend on bdfly) and(v;) and we consider all combinations.

Polynomial decays f(i; =i~ 2%, 1, =320, 5,6 > 1/2). The bias term is less than

) n Z.45_25 ) n $46-26
A ————— < 2nA ————dt. 14
" ;(Hiww " /1 (1+ 125))2 (14)

If 26 — 43 > 1, then we have an upper bound Df\? [ #*-2dt = O(nA?), because the
integral is finite.
If 26 — 458 < 1, then we can further bound Ed.4) as

no 44B8—26 n28 ) u2—6/6+§—1>\—2+6/6—% 1
2mA\? | ——————dt = 2n)\? / —d
" /1 (1+t2N)2 A (14 u)? 25"

with the change of variable = \¢?°

00 o 2—0/B+35—1 1
- O()\(%—l)/%)/
0

(14 w)? 25
because the integral is finite (due to the assumptions magdeaod ).

O()\(% 1)/25)

Exponential decays (i; = e ", v; = e ", p,x > 0). The bias term is less than

(2p—k)i n (p—k)t
22 e 2 e ot
Z (1+ e\ A /1 TETViA

Ae™P 1-r/p
_m Ldu with the change of variables = \e”’.
P JIx (1+u)?

If x/p > 2, then we have a bound

n\2 [ ul—,‘i/p )
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because the integral is finite and uniformly bounded.in
If x/p < 2, then we have a bound

du = O(n\*/?).

n)\li/p Ae™P ul—li/p _ n}\n/p 00 ul—n/p
R ey e

Mixed decays. For u; with polynomial decays and; with exponential decays, we are in a situ-
ation wherey; is decaying fast enough (faster thart® for anyé > 1/2) so that, given previous
results, the bias is\2.

The only remaining result to showjis = e=** andy; = im2005 > 1/2, which we now consider.
The bias term is equal to

n ] n +—20

22{: Vi 22{: 4
= (pi + A)? — (e + )
-—20 -—20
2 4 2 4
= nA\ E —— +n\ E S
) (e=Pt + )2 - (e=Pt + )2
ig; log \—1 n>i>; log \—1
+—20 +—20
2 [ 2 L
< nA E -+ nA E —
= e—2pi + 22
ié% logA—1 n2i>% logA—1
<n Y, i¥4n ) i
i< 1 -1 i~ 1 -1
zéplog)\ Z>plog)\

= 0(n)+ O(n(log A"H)12%) = O(n(log A\~1)17%).

C.3. Optimal regularization parameters

We can now take all six cases, and compute the opthraaid the resulting optimal regularization
error.

— ;=i 28, v =072 (20 > 46 + 1): we need to minimize with respect fothe function
n~IA"Y/28 1 X2 which leads to\ ~ n~1/(2+1/28) gnd an optimal value of!/(45+1)-1,

— i =i % v =i7% (20 < 48 + 1): we need to minimize with respect fothe function
n~IATY28 4 A\(20-1)/28 which leads to\ ~ n~"/® and an optimal value of!/(?9)-1,

— i = i2%, 1; = e7*: same computation as the first one.

— ;i = e, v; = i~2%: we need to minimize with respect tothe functionn‘llog§ +
(log +)'=%°, which leads tdog + ~ n'/? and an optimal value of'/2~1,

— i = e Py = e " (k > 2p). we need to minimize with respect tb the function
n~!log + + A%, which leads to\ ~ n~'/2 and an optimal value dbg n/n.

— i = e Py = e (k < 2p): we need to minimize with respect tb the function
n~! log% + \*/P, which leads to\ ~ n~"/* and an optimal value dbgn/n.
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Appendix D. Kernels on [0,1]

In this appendix, we consider kernels &h= [0, 1] that lead to closed-form expressions (or asymp-
totic equivalents) for eigenvalues af and components aof. These are used in simulations.

Kernels. For a positive summable sequerige);~1, we considek(z, y) = > 2, 2u; cos 2im(x—
y). Itis defined for any(z, y) € [0,1]? and is 1-periodic in: andy. It is a functiong of 2 — y —
|z —y], i.e k(z,y) = g(x —y — |x — y]). Moreoverk(zx, ) is independent af.

For u; = =3, we havek(z,y) = ﬁB%(x —y — |z — y]), where Byg is the (23)-th
Bernoulli polynomial (WVahba 1990. For example, we havBs(z) = 22 — x + % and Bg(x) =
28 — 325 + %;UA‘ - %xz + 41—2.

For u; = e~P, we havek(z,y) = 2

eP cos 2m(z—y)—1
e2P—2eP cos 2w (z—y)

- Indeed, we have

k(z,y) = Re(Z 26‘pi+2iw’r($_y)> with w? = —1,
i=1

%) —p+2wm(z—y)
_ i(—pr2wm(a—y) | _ e’
= 2Re < Z; e > = 2Re < 1_ e_p+2w7r(r—y) >

= 2Re ! =92 el cos2m(x —y) — 1 .
ep—2wr(z—y) _ e2P — 2eP cos 271'(:E — y) +1

Data and eigenvectors. If we considern data pointse; = % i = 1,...,n, then the kernel
matrix K has component&’;; = k(=1,-1). Itis a circulant matrix, thus it is diagonalizable in

the discrete Fourier basi&(ay, 2006, with eigenvalues equal to the discrete Fourier transfofm
the first column of the matrix, i.e(g(0), g(1/n),...,g(1 —1/n)) .

Thus, thei-th eigenvector hag-th componentﬁem(ﬂ"l)”/” (with w? = —1) and thei-th
eigenvalue is

A= D (1))
j=1

= Z e~ 2iG=)m/n Z 2uscos2sm(j —1)/n

j=1 s=1

— Ze—ZuJi(j—l)ﬂ/n Zﬂs[e%uﬂr(j—l)/n + 6—28w7r(j—1)/n]
j=1 s=1

= n Z Lhs [5S:i[n] + 5_S:i[n]] because of the orthonormality of the Fourier basis

s=1
o (o]
= nu;tn Z Hit+hn + 1 Z H—ithn-
h=1 h=1

If n is large andu; tends to zero whentends to+oo, then an asymptotic equivalent &y is nu;.
For data sampled from the uniform distribution[ 1], then similar equivalents hold (see, e.qg.,
Harchaoui et a).2008).
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Functions. Let f(z) = >.2; 2ui1/2 cos 2imz, for v; a non-negative summable sequence. We
considerz; = f(z;) = f((i—1)/n). The component of on thei-th eigenvector ofs is (following
the same reasoning as above):

Ll 0min (1))
2 ‘7

o [oe)

. 1/2 1/2 1/2

= \/E<V2 + Z Vithn T Z V—i+hn>7
h=1 h=1

and the asymptotic equivalent(is;)'/2.

Link with Sobolev spaces. The kernel(x, i) defined above corresponds far= i~ to certain
Sobolev spacedahba 199Q Gu, 2002. Indeed, fors integer, the associated RKHS is the Sobolev
space of periodic functions which afetimes differentiable.

Moreover, when; = i, then foré > &, then the corresponding function(i& — 1/2)-times
differentiable, and the minimax rate of estimation is knawrbe exactlyO(n'/2%) (Speckman
1985 Johnstone1994). Thus, up to logarithmic terms, the best possible rat@(isl/25), and is
achieved ifs is large enough (Sectioh3).
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