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Abstract

Partial monitoring is an online learning model where in every time step, after a learner and
an opponent choose their actions, the loss and the feedback for the learner is calculated
based on a loss and a feedback function, both of which are known to the learner ahead
of time. As in other online learning scenarios, the goal of the learner is to minimize
his cumulative loss. In this paper we present and analyze a new algorithm for locally
observable partial monitoring games. We prove that the expected regret of our algorithm
is of Õ(

√
N ′T ), where T is the time horizon and N ′ is the size of the largest point-local

game. The most important improvement of this bound compared to previous results is
that it does not depend directly on the number of actions, but rather on the structure of
the game.

Keywords: partial monitoring, online learning, limited feedback, regret analysis

1. Introduction

Consider the sequential game where a learner chooses actions while, at the same time, an
opponent chooses an outcome, then the learner receives some feedback and suffers some
(unobserved) loss. Both the loss and the feedback are deterministic functions of the action
and the outcome and these actions are revealed to both party before the game begins. The
goal of the learner is to minimize his cumulative loss.

A classical example is dynamic pricing. In this problem, a vendor wants to sell his
product to customers. Every time a customer appears, the vendor (learner) puts a price
tag on the product while the customer (opponent) secretly thinks of a maximum price for
which he is willing to buy the product. Then, the transaction happens or not depending on
the price tag and the maximum price. If the product was not sold then the vendor suffers
some constant loss for lost sales. Even if the customer bought the product, the vendor
suffers some loss if the price tag was too low (opportunity loss). This value of this latter
kind of loss will never be revealed to the learner. His feedback is only whether the product
was bought or not.

Partial monitoring models online learning scenarios with limited feedback, such as the
example above. Under what conditions can the learner have good performance? What are
the theoretical limitations of learning? How does the feedback structure influence the ability
and speed of learning? These are some of the questions to investigate in partial monitoring.

While the goal of the learner is to minimize his cumulative loss, the performance is
measured in terms of the regret, defined as the excess cumulative loss compared to that of
the best fixed action in hindsight. If the regret grows sublinearly with the time horizon, we
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Bartók

can say that the learner learns the optimal action. Then the question becomes how quickly
the learning happens, i.e., what is the growth rate of the regret?

Regret analysis of partial monitoring problems started with investigating special cases.
In the case of full feedback, the Weighted Majority algorithm due to Vovk (1990) and
Littlestone and Warmuth (1994) achieves Θ(

√
T logN) expected regret against an oblivious

adversarial opponent, where T is the time horizon and N is the number of actions. The
other thoroughly investigated case is the so-called bandit feedback model where the learner
receives his own loss as feedback. In this case, the algorithm Exp3 by Auer et al. (2002)
achieves O(

√
TN logN) expected regret.1

The general setting of partial monitoring was first considered by Piccolboni and Schin-
delhauer (2001). Their algorithm, FeedExp was proven to achieve O(T 3/4) expected regret
in terms of the time horizon whenever the problem is learnable at all. Later, Cesa-Bianchi
et al. (2006) tightened this bound to O(T 2/3). They also showed a problem instance where
the above bound is optimal. The question remained, however, which problem instances al-
low regret smaller than cT 2/3. This question was partially answered by Bartók et al. (2011)
who showed, against stochastic opponents, that some class of partial monitoring games can
have O(

√
T ) regret. The key condition that distinguishes games with smaller regret is the

so called local observability condition (see Definition 4). The same answer was later given
for oblivious adversarial opponents by Foster and Rakhlin (2012).

The above recent works on partial monitoring focus mainly on the regret growth rate in
terms of the time horizon. It leaves the question open what bound we can have in terms of
the number of actions? Most of the algorithms and bounds prove to be suboptimal when
compared to the special cases of full feedback and bandit feedback. The work of Mannor
and Shamir (2011) considers the case “between” bandit and full feedback games where the
learner gets his own loss and possibly losses of other actions in every time step. They derive
a bound that is, in some sense, unimprovable.

In our work, we investigate how the feedback and loss structure influences the worst-
case regret of a game in terms of both the time horizon and the number of actions. In
particular, we show that any non-degenerate locally observable finite partial monitoring
game has worst-case expected regret of Õ(

√
N ′T ), where N ′ is the size of the largest point-

local game (see Definition 6).2 This bound is optimal at least for the case of bandit feedback
and substantially improves the bound of Õ(N

√
T ) given by Foster and Rakhlin (2012). Our

algorithm, while similar to the algorithm NeighborhoodWatch of Foster and Rakhlin
(2012), differs in two important points. First, the point-local games we define slightly differ
from the local games in their work. Second, when deciding which (point-)local game to
play, our algorithm does not randomize. We believe that this second property is the main
insight that allows us to obtain the improved upper bound.

2. Preliminaries

An instance G of finite partial monitoring is defined by the matrices L ∈ RN×M and H ∈
ΣN×M for some alphabet Σ of symbols. Before the game starts, these matrices are revealed

1. The algorithm INF by Audibert and Bubeck (2009) achieves the optimal bound of O(
√
TN), removing

the logarithmic term.

2. The notation Õ(·) hides logarithmic factors.

2



Near-optimal algorithm for partial monitoring

to both the learner and the opponent. In every round t, the learner chooses an action
It ∈ {1, . . . , N} and simultaneously the opponent chooses an outcome Jt ∈ {1, . . . ,M}.
Then the learner receives feedback H(It, Jt) and also suffers loss L(It, Jt), which is not
revealed to him. The goal of the learner is to minimize his cumulative loss over a time
horizon T :

LT =
T∑
t=1

L(It, Jt) .

In this paper, we assume that the opponent does not have access to the actions chosen
by the learner. That is, we assume an oblivious adversarial opponent. Equivalently, we
can assume that the opponent chooses an outcome sequence (J1, . . . , JT ) before the game
begins. We measure the performance of the learner by comparing his cumulative loss to the
cumulative loss of the best fixed action in hindsight. To this end, the regret is defined:

RT = LT − min
i∈{1,...,N}

T∑
t=1

L(i, Jt) .

2.1. Properties of a game

Most of the definitions of this section are taken from Bartók et al. (2011). Consider the
game G = (L,H) with N actions and M outcomes. For 1 ≤ i ≤ N , let `i ∈ RM denote
the column vector consisting of the ith row of L. Let ∆M denote the (M − 1-dimensional)
probability simplex, that is, ∆M = {q ∈ RM : ‖q‖1 = 1, q ≥ 0}. For any outcome sequence
of length T , the vector q consisting of the relative frequencies with which each outcome
occurs is in ∆M . With this notation we can describe the cumulative loss of action i as

T∑
t=1

L(i, Jt) = T · `>i q .

We can say that the term `>i q is the average loss of action i. Thus, a relative frequency
q ∈ ∆M determines which action is optimal: argmini `

>
i q. This induces a cell decomposition

of ∆M :

Definition 1 (Cells) Given a game G = (L,H), the cell of action i is defined as

Ci = {q ∈ ∆M : `>i q = min
j
`>j q} .

In other words, the cell of an action is the set of outcome frequencies for which the action is
optimal. It is easy to see that Ci is the solution of the linear inequality system (`i− `j)>q ≤
0, j = 1, . . . , N and thus every cell is an intersection of halfspaces (convex polytope). It is
also obvious that the cells together cover ∆M .

Now we are equipped to define neighbors:

Definition 2 Two actions i and j are neighbors if Ci ∩ Cj 6= ∅.
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Note that this definition slightly differs from that of Bartók et al. (2011) where two actions
are neighbors only if their cells’ intersection is an M − 2-dimensional polytope. As a
consequence, our result is weaker than that of Bartók et al. (2011) in the sense that our
algorithm works for a smaller class of games. Also note that in this paper we restrict
ourselves to games that have neither duplicate actions, i.e., actions i, j with `i = `j , nor
degenerate actions, whose cells are lower than M − 1-dimensional. Games with actions of
either of the above kinds are considered degenerate games. Nonetheless, any degenerate
game can be made non-degenerate by slightly perturbing its loss matrix.

So far we have not dealt with the feedback structure of the game. To this end, the signal
matrix of an action is defined.

Definition 3 (Bartók et al. (2011)) For an action i, let σ1, . . . , σsi ∈ Σ be the symbols
appearing in row i of H. The signal matrix Si of action i is defined as the incidence matrix
of symbols and outcomes:

Si(k, l) = I{H(i, l) = σk} k = 1, . . . , si ; l = 1, . . . ,M .

For ease of reading, we illustrate the above definition with an example. Let the row of H
corresponding to action i be

(
a b a c c

)
. Then Si is a 3× 5 matrix:

Si =

1 0 1 0 0
0 1 0 0 0
0 0 0 1 1

 .

A useful property of the signal matrix is that if we treat the outcomes as the standard
basis vectors in the M -dimensional Euclidean space then, denoting by et the outcome at
time step t, we get that the vector Siet is the basis vector for the corresponding symbol
the learner receives as feedback, had he chosen action i. Also, for any relative frequency
q ∈ ∆M , Siq gives a relative frequency over symbols observed by the learner.

Now we recite the local observability condition, the key condition for achieving Õ(
√
T )

regret.

Definition 4 (Bartók et al. (2011)) Two neighboring actions i and j are locally ob-
servable if `i − `j ∈ ImS>i ⊕ ImS>j .

Here Im(·) denotes the image space (or column space) of a matrix while ⊕ denotes the
standard direct sum.

The above definition implies that two actions i and j are locally observable if `i− `j can
be expressed as S>i vi,j−S>j vj,i with some vectors vi,j ∈ Rσi and vj,i ∈ Rσj . The reason why
this property is important becomes clear when we try to calculate the difference between
the average loss of action i and j:

(`i − `j)> q = v>i,jSiq − v>j,iSjq .

Here the fact to note is that the vectors Siq and Sjq are symbol frequencies and can be
observed by choosing actions i and j. We will heavily use this property of locally observable
neighbors in our algorithm.

The last definition of this section is local observability of a game.
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Definition 5 A game is locally observable if all of its neighboring action pairs are locally
observable.

In the following, we describe our algorithm that achieves near-optimal regret for locally
observable games.

3. Algorithm

Our algorithm is similar in spirit to that of Foster and Rakhlin (2012). It also borrows
ideas from Bartók et al. (2010). The skeleton of Foster and Rakhlin’s algorithm Neigh-
borhoodWatch is that the actions are split into “local games”, and the algorithm plays a
two-level hierarchical exponential-weights algorithm. On the top level the algorithm decides
which local game to play, then the bottom level decides which action to play within the
chosen local game. This way their algorithm achieves Õ(N

√
T ) expected regret against any

outcome sequence.
The difference in our approach compared to that of Foster and Rakhlin is twofold: first,

our “local games” are defined differently and second, to decide which local game to play at
a time step is not decided by a randomized strategy but chosen deterministically. This way
we are able to reduce the expected worst-case regret to be of Õ(

√
N ′T ), where N ′ is the

size of the largest point-local game, defined shortly.
In Foster and Rakhlin (2012), every action has a corresponding local game, namely, Gi

consists of action i and all of its neighbors. For our algorithm, we define point-local games:

Definition 6 (Point-local games) A subset of actions i1, . . . , is in G is called point-local
if Ci1 ∩ · · · ∩ Cis 6= ∅ and adding an extra action is+1 gives Ci1 ∩ · · · ∩ Cis+1 = ∅.

In words, a subset of actions is a point-local game if their cells have at least one point in
common and if the subset is not extendable. For an illustration of cell decomposition and
local versus point-local games, see Figure 1.

3.1. Playing in point-local games

In this section we describe how one plays in a single point-local game. This algorithm,
called LocalExp3, will be used as a subroutine in our main algorithm.

For now, let G be a locally observable point-local game. That is, every two actions of
the game are locally observable neighbors. For every action pair i, j, we define the vectors
vi,j and vj,i according to local observability:

`i − `j = S>i vi,j − S>j vj,i .

Remark 7 The vectors vi,j that satisfy the above equation are not unique. Actually, the
choice of these vectors can influence the behaviour of the algorithm and thus also the regret.
We do not exactly know what is the best choice but, as we will see from the regret bound, a
choice that minimizes the max norm of the vectors will be helpful for us.
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(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(a) The largest local game is the
whole game: 4 and all of
its neighbors. On the other
hand, the largest point-local
game is {4, 5, 6, 7}.

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(b) This game has many actions
but the size of the largest
point-local game N ′ is 2.

Figure 1: Examples of cell decomposition on the outcome frequency space ∆3.

To see that vi,j are well defined, notice that `j − `i = S>j vj,i − S>i vi,j = −(`i − `j).
The algorithm, as its name suggests, is similar to Exp3 due to Auer et al. (2002). The

main difference is how the weights are updated; since we do not have access to losses of
chosen actions, we need to do something else. To have low regret, we do not actually
need unbiased estimates of the individual losses, it is enough to ensure that the expected
difference of the updates of two actions equals to the difference of the losses at each time
step.

The above goal is achieved by randomly choosing two actions: one that will be chosen
by the learner (It) and one that it will be compared against (I ′t). We choose these two
actions independently based on the same distribution pi(t) given by the algorithm the usual
way. Then, the update after observing the feedback is given as3:

ˆ̀
i(t) =

(
I{It = i}
pi(t)

vi,I′t − vIt,i
)>

SItet , (1)

where vi,i = 0. Recall that et is defined as the basis vector corresponding to the outcome Jt
chosen by the opponent at time step t. Note that while et is not observed, SItet is precisely
the information that is observed by the learner at time step t. Pseudocode of the algorithm
is shown in Algorithm 1.

To see why the above update makes sense we prove the following statement:

Lemma 8 For every time step t and actions i and j,

Et[ˆ̀i(t)− ˆ̀
j(t)] = L(i, Jt)− L(j, Jt) ,

where Et[·] = E[·|I1, . . . , It−1] is the conditional expectation given all the choices of the
algorithm up to time step t− 1.

3. This update is very similar to that of Foster and Rakhlin (2012).
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Algorithm 1: LocalExp3

Parameters: γ, η;
Initialization: Construct vi,j , Si from (L,H), wi ← 1;
for t=1:T do

pi ← (1− γ) wi∑
j wj

+ γ
N i = 1, . . . , N ;

Draw actions I and I ′ with distribution pi;
Choose action I;
Receive feedback vector g;
for i=1:N do

ˆ̀
i ←

(
I{I=i}
pi

vi,I′ − vI,i
)>

g;

Update weights wi ← wi exp(−η ˆ̀
i);

end

end

Proof

Et[ˆ̀i(t)] =
pi(t)

pi(t)

N∑
k=1

pk(t)v
>
i,kSiet −

N∑
k=1

pk(t)v
>
k,iSket

=
N∑
k=1

pk(t)
(
v>i,kSi − v>k,iSk

)
et

=
N∑
k=1

pk(t)(`i − `k)>et

= L(i, Jt)−
N∑
k=1

pk(t)L(k, Jt) . (2)

Hence,

Et[ˆ̀i(t)− ˆ̀
j(t)] = L(i, Jt)− L(j, Jt) .

Now we can prove that, with appropriately set parameters, LocalExp3 gives Õ(
√
NT )

expected regret.

Theorem 9 Let G = (L,H) be a point-local N ×M partial-monitoring game. Let Vmax =
maxi,j ‖vi,j‖∞ and Lmax = maxi,j L(i, j). For any outcome sequence of length T chosen by
an opponent, algorithm LocalExp3 run with parameters

η =
1

2Vmax

√
logN

TN
γ =

√
logN

TN
,

achieves expected regret

E[RT ] ≤ (2Lmax + 4Vmax)
√
NT logN .
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The proof of this theorem is rather technical and is almost identical to that of Exp3 and
thus it is written in the appendix.

3.2. Playing in general games

Suppose now we have a game G that satisfies the local observability condition. Its actions
are covered by K point-local games Gi, with Ni actions (i = 1, . . . ,K). Let N ′ denote
maxiNi. In this section we present our algorithm GlobalExp3 and prove that it achieves
Õ(
√
N ′T ) expected regret against any outcome sequence. The algorithm plays a local game

chosen based on the whereabouts of the outcome frequency vector. Thus, the algorithm has
two main components: (1) explore and track the outcome frequency vector qt ∈ ∆M , and
(2) play in a local game that is believed to contain the optimal action.

To track the outcome frequency, in the preprocessing phase the algorithm chooses a
subset of neighboring action pairs M = {{i1, j1}, . . . , {i|M|, j|M|}}. The only constraint
on M is that the set of loss difference vectors {`i − `j : {i, j} ∈ M} should be linearly
independent and span the subspace generated by all loss differences. This way the size of
M is at most M − 1. If it is less than M − 1, it means that some directions in ∆M are
irrelevant in terms of deciding which action is optimal.

Let the exploring parameter β be chosen later. In every round, the algorithm decides
to explore with probability 2|M|β. Then, it chooses a pair Pt from M uniformly and
finally one of the actions It ∈ Pt from the chosen pair, also uniformly. Then, the difference
estimates for every {i, j} ∈ M are updated as:

d̂i,j(t) =
I{Pt = {i, j}}

β

(
I{It = i}v>i,jSi − I{It = j}v>j,iSj

)
et ,

f̂i,j(t) =
(t− 1)f̂i,j(t− 1) + d̂i,j(t)

t
.

Finally, our estimate q̂(t) for the outcome frequency vector is

q̂(t) =


`>i1 − `

>
j1

...
`>i|M| − `

>
j|M|

1>


†

f̂i1,j1(t)
...

f̂i|M|,j|M|(t)

1


where † denotes the pseudo-inverse. In the following, first we prove that q̂(t) is an unbiased
estimate of the true outcome frequency qt. Then, we prove that the true frequency is within
a constant confidence interval from the estimate, given that t is large enough.

Lemma 10 For any pair {i, j} ∈ M,

E[(`i − `j)>q̂(t)] = (`i − `j)>qt .

Proof First we derive E[d̂i,j(t)]:

E[d̂i,j(t)] =
2β

β

(
1

2
v>i,jSi −

1

2
v>j,iSj

)
et = (`i − `j)>et .
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Now it easily follows that

E[f̂i,j(t)] =
1

t

t∑
s=1

d̂i,j(s) = (`i − `j)>
1

t

t∑
s=1

es = (`i − `j)>qt .

Finally,

E[(`i − `j)>q̂(t)] = (`i − `j)>


`>i1 − `

>
j1

...
`>i|M| − `

>
j|M|

1>


†

E




f̂i1,j1(t)
...

f̂i|M|,j|M|(t)

1




= (`i − `j)>


`>i1 − `

>
j1

...
`>i|M| − `

>
j|M|

1>


†

`>i1 − `
>
j1

...
`>i|M| − `

>
j|M|

1>

 qt

= (`i − `j)>qt ,

where the last equality follows from the fact that A†A is the orthogonal projection to the
rowspace of A.

In the next lemma we show that the real outcome frequency qt is in a parallelotope around
q̂(t) with high probability.4

Lemma 11 Given confidence parameter δ and width ε, with probability at least 1 − δ, for

all t ≥ 4V 2
max log(2T |M|/δ)

3ε2β
, qt lies within the parallelotope defined by

|(`i − `j)>(q̂(t)− qt)| ≤ ε {i, j} ∈ M .

Proof We start as follows:

(`i − `j)>(q̂(t)− qt) = f̂i,j(t)− E[f̂i,j(t)] .

With the help of Bernstein’s inequality (see e.g., Boucheron et al. (2003, Theorem 3)), we
write

P (|f̂i,j(t)− E[f̂i,j(t)]| > ε) ≤ 2 exp

− ε2/2

Var(d̂i,j(s))
t + Vmaxε

3βt


≤ exp

(
− 3ε2βt

4V 2
max

)
.

Letting t ≥ 4V 2
max log(2T |M|/δ)

3ε2β
and rearranging gives

P (|f̂i,j(t)− E[f̂i,j(t)]| > ε) ≤ δ

|M|T
.
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1

2 3

4
q̂

Figure 2: A game with two point-local games. The two point-local games are {1, 2, 3} and
{2, 3, 4}. The current estimate for qt is q̂ with the confidence parallelotope around
it. The elements ofM are {{1, 2}, {2, 3}} and thus the edges of the parallelotope
are parallel to the corresponding boundaries of C1 ∩ C2 and C2 ∩ C3. The picture
suggests that the true outcome frequency must lie, with high confidence, in the
second point-local game.

We get the statement of the lemma by using the union bound.

For an illustration of a global game and a confidence parallelotope, refer to Figure 2.
Now we are ready to explain the algorithm. In every round, first it decides if the round

will be an exploratory round. If yes then it chooses a pair from M then an element of the
chosen pair. It updates q̂ and the next round begins. If the round is not an exploratory
round then it plays in one of the local games. To decide which local game to play, the
algorithm considers the following:

1. If the parallelotope is fully contained in the point-local game5 played in the previous
round, then play that local game again.

2. If not, then take any local game that contains the parallelotope. In this case, the local
game’s weights are reset.

Pseudocode of the algorithm is written in Algorithm 2. To prove a regret bound for the
algorithm, we first show that, with high probability, GlobalExp3 does not change local
games very often. To move toward this statement, we show the following:

Lemma 12 For any game G there exists an εG > 0 such that for any q ∈ ∆M , the ball

{x ∈ ∆M : ‖q − x‖ ≤ εG}

is completely contained in at least one of the point local games.

4. Note that this parallelotope is “open” if |M| < M − 1 but this fact does not affect our analysis.
5. We slightly abuse our notion of point-local games when we say that the parallelotope is contained in a

point-local game. What we mean is that the parallelotope is contained in the union of the cells of the
actions in the point-local game. We denote this union of cells by CGi =

⋃
j∈Gi Cj .

10



Near-optimal algorithm for partial monitoring

Algorithm 2: GlobalExp3

Initialization: Construct local games Gi, set εG , β, construct M, q̂ = 0, f̂i,j = 0;
Initialization of local games: weights w1,1, . . . , w1,N1 ; . . . ;wK,1, . . . , wK,NK

to 1, set
current local game k = 1, parameters ηi, γi;
for t=1,. . . ,T do

Draw X by Bernoulli with parameter 2|M|β;
if X=1 then

Draw an action pair A from M uniformly;
Chose action I from A uniformly;
Receive feedback vector g;
for {i, j} ∈ M do

d̂i,j ← I{A={i,j}}
β

(
I{I = i}v>i,jg − I{I = j}v>j,ig

)
;

end

else
if parallelotope(q̂, εG/6) 6⊂ CGk then

k ← any local game that contains parallelotope(q̂, εG);
wk,1 = · · · = wk,Nk

← 1;

end
Play one round of LocalExp3 in Gk;

end
for {i, j} ∈ M do

f̂i,j ← (t−1)f̂i,j+d̂i,j
t ;

end

q̂ ← D†f̄ where D = (`i1 − `j1 , . . . , `i|M| − `j|M| ,1)> and f̄ = (f̂i1,j1 , . . . , f̂i|M|,j|M|)
> ;

end

Proof The statement is trivial with εG being the minimum distance between any two
non-neighboring cells.

Now we show that the outcome frequency can not change too fast.

Lemma 13 For any outcome sequence of length T , the total variation of (qt)t is of O(log T ).

Proof For any time step t we have ‖qt+1 − qt‖ = ‖et+1 − qt‖/(t+ 1) ≤ 1/(t+ 1). Thus,

T∑
s=1

‖qs − qs−1‖ ≤
T∑
s=1

1

s
≤ log T + 1 . �

Now we are ready to show the key lemma:

Lemma 14 The number of times GlobalExp3 changes between local games is logarithmic
in T .

Proof We change local games when the parallelotope of width εG/6 goes out of the cur-
rent local game. In this case we switch to a local game that contains the bigger, εG-wide
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parallelotope. Thus, the next switch to happen, q̂ needs to travel εG/6 far. But since we
make sure that qt and q̂(t) are, if confidence intervals do not fail, at most εG/6 far away
from each other for high enough t, this also means that qt has to travel at least εG/6 before
the next switch. By Lemma 13 we get that the number of switches is at most 6

εG
log T .

Now we state and prove the main theorem of the paper.

Theorem 15 Given a finite partial monitoring game G = (L,H), algorithm GlobalExp3
with appropriately set parameters achieves expected regret

E[RT ] ≤ 1 + 24
Vmax

εG

√
|M|T log(2T 2/|M|) +

√
6

εG
(2Lmax + 4Vmax)

√
N ′T logN ′ log T .

Proof Using ε = εG/6 in Lemma 11 we let E denote the event that any confidence interval

fails after time step t0 = 72V 2
max log(2TM/δ)

ε2Gβ
. From now on we assume the event Ec.

For every local game 1 ≤ i ≤ K, let Ti be the last time step when qt ∈ CGi . Due to the
construction of the confidence parallelotopes, the local game Gi is never played again from
time step Ti + 1 on. Thus, we can investigate how much regret local game i produces by
looking at its regret up to time step Ti. The optimal action(s) up to time step Ti must be
in Gi and thus the regret bound of Theorem 9 can be applied to upper bound the regret of
GlobalExp3.

Let Zi denote the (random) number of times the algorithm switches to local game i
after time step t0. For every “epoch” 1 ≤ l ≤ Zi, let R(i,l) denote the regret of local game
i in epoch l. Then, the regret accumulated from all the local games can be written as∑K

i=1

∑Zi
l=1R

(i,l). By Lemma 14 we know that the number of terms in the above expression
is bounded. Furthermore, the terms themselves can be bounded with the help of Theorem 9.
The expected regret of GlobalExp3 comes from (1) event E , (2) the first t0 time steps,
(3) number of times an exploratory action is taken, and (4) the regret of the local games:

E[RT ] ≤ δT +
72V 2

max log 2T |M|
δ

ε2Gβ
+ 2|M|βT +

√
6

εG
(2Lmax + 4Vmax)

√
N ′T logN ′ log T .

Setting δ = 1/T and β = C1Vmax

√
log 2T 2|M|/(εG

√
T |M|) we get the desired result.

4. Discussion

In this paper we presented and analyzed an algorithm that achieves Õ(
√
N ′T ) expected

regret on locally observable non-degenerate partial monitoring games. This bound is sub-
stantially better than that of the previous state-of-the art algorithm. The main benefit of
this new bound is that now we know that the expected regret does not directly depend on
the number of actions, but rather, through the structure of the game, on the size of the
largest point-local game. As an extreme example, one can think of a game with a large
number of actions but N ′ = 2. In our solution we used the intuitive idea that the algorithm
should not randomize when choosing which local game to play in. Indeed, randomization
is usually needed when multiple actions are close to being optimal by a small margin. Due

12



Near-optimal algorithm for partial monitoring

to the construction of point-local games, this situation is avoided and thus we have the
opportunity to play a point-local game of choice without randomizing.

One may notice that our bound contains the value εG in the denominator. This value
depends on the structure of the game and can get very small in some cases. One might
also think that with more actions, εG decreases and thus N gets in the bound implicitly.
However, there exist game instances with many actions and large εG. For an example
consider cell decomposition in which every corner of the probability simplex has a local
game with many actions, but these local games are far away from each other.

We would also like to note that a value related to εG naturally must appear in the regret
upper bound. To understand why, consider a game where two non-neighboring actions do
not satisfy the local observability condition, but their cells are very close to each other (and
thus εG is small). Imagine these cells moving towards each other. When the gap becomes
zero, the actions become neighbors and the game becomes non-locally observable; thus the
regret will scale with T 2/3. Hence, as εG shrinks, the regret must go up.

The bound also shows a dependence on the number of outcomes (M). We conjecture
that this dependence can be lifted with a more sophisticated way of tracking qt. Our
method of devoting some rounds to exploration seems suboptimal. Improving the bound in
this aspect remains future work.

As a final remark we note a fact that we found interesting. If we use the algorithm
LocalExp3 on a bandit game (we can because it is a point-local locally observable game),
the algorithm does not reduce to Exp3. This is due to the fact that the expectation of
the updates are offset by the value

∑N
k=1 pk(t)L(k, Jt), which is in turn the expected loss

of the algorithm at time step t. This “centralized” update might even improve upon the
performance of Exp3 because it makes the absolute values of the updates smaller.
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Appendix A. Proof of Theorem 9

Proof [Theorem 9] For every variable x used by the algorithm, we denote by x(t) the value
of the variable at the end of time step t. The proof of this regret bound is almost identical
to that of Auer et al. (2002). We begin by lower bounding W (T ) =

∑N
i=1wi(T ).

W (T ) =

N∑
i=1

wi(T ) ≥ wi∗(T ) = exp

(
−η

T∑
t=1

ˆ̀
i∗(t)

)

for any action i∗. We continue by upper bounding the term W (t)/W (t − 1) for any =
1, . . . , T .

W (t)

W (t− 1)
=

∑N
i=1wi(t− 1) exp(−η ˆ̀

i(t))

W (t− 1)

≤ 1− η
N∑
i=1

wi(t− 1)

W (t− 1)
ˆ̀
i(t) + η2

N∑
i=1

wi(t− 1)

W (t− 1)
ˆ̀
i(t)

2 (3)

= 1− η
N∑
i=1

pi(t)− γ/N
1− γ

ˆ̀
i(t) + η2

N∑
i=1

pi(t)− γ/N
1− γ

ˆ̀
i(t)

2

≤ exp

(
−η

N∑
i=1

pi(t)− γ/N
1− γ

ˆ̀
i(t) + η2

N∑
i=1

pi(t)− γ/N
1− γ

ˆ̀
i(t)

2

)
.

In (3) we used that ex ≤ 1 + x + x2 if |x| ≤ 1, and thus we must ensure this condition.
For this, we need to set γ ≥ 2ηVmax, where Vmax = maxi,j ‖vi,j‖∞. We will make sure to
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satisfy this condition when rendering values to the parameters. Now we merge the above
lower and upper bound using telescopic sum:

exp
(
−η
∑T

t=1
ˆ̀
i∗(t)

)
N

≤ W (T )

W (0)

≤ exp

(
−η

T∑
t=1

N∑
i=1

pi(t)− γ/N
1− γ

ˆ̀
i(t) + η2

T∑
t=1

N∑
i=1

pi(t)− γ/N
1− γ

ˆ̀
i(t)

2

)

Taking logarithm and expectation of both sides we get

−ηE

[
T∑
t=1

ˆ̀
i∗(t)

]
− logN ≤ E

[
−η

T∑
t=1

N∑
i=1

pi(t)− γ/N
1− γ

ˆ̀
i(t) + η2

T∑
t=1

N∑
i=1

pi(t)− γ/N
1− γ

ˆ̀
i(t)

2

]

E

[
T∑
t=1

N∑
i=1

pi(t)Et
[
ˆ̀
i(t)− ˆ̀

i∗(t)
]]
≤ logN

η
+ E

[
T∑
t=1

Et

[
N∑
i=1

γ

N
ˆ̀
i(t) + ηpi(t)ˆ̀

i(t)
2

]]
(4)

E

[
T∑
t=1

N∑
i=1

pi(t) (L(i, Jt)− L(i∗, Jt))

]
≤ logN

η
+ E

[
T∑
t=1

Et

[
N∑
i=1

γ

N
ˆ̀
i(t) + ηpi(t)ˆ̀

i(t)
2

]]
(5)

E[R(T )] ≤ logN

η
+ 2LmaxγTN + 4V 2

maxηTN . (6)

In (4) we used the tower rule for conditional expectation, in (5) we used Lemma 8, and
in (6) we used the following two bounds:

Et[ˆ̀i(t)] ≤ 2Lmax see (2)

Et[ˆ̀i(t)2] ≤ 4V 2
max

pi
.

Now, setting η = 1
2Vmax

√
logN
TN and γ = 2Vmaxη =

√
logN
TN we get the desired result.
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