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Abstract

A prototypical blind signal separation problem is the so-called cocktail party problem, with

n people talking simultaneously and n different microphones within a room. The goal is to
recover each speech signal from the microphone inputs. Mathematically this can be modeled
by assuming that we are given samples from an n-dimensional random variable X = AS,
where S is a vector whose coordinates are independent random variables corresponding
to each speaker. The objective is to recover the matrix A−1 given random samples from
X. A range of techniques collectively known as Independent Component Analysis (ICA)
have been proposed to address this problem in the signal processing and machine learning
literature. Many of these techniques are based on using the kurtosis or other cumulants to
recover the components.

In this paper we propose a new algorithm for solving the blind signal separation problem
in the presence of additive Gaussian noise, when we are given samples from X = AS + η,
where η is drawn from an unknown, not necessarily spherical n-dimensional Gaussian dis-
tribution. Our approach is based on a method for decorrelating a sample with additive
Gaussian noise under the assumption that the underlying distribution is a linear transforma-
tion of a distribution with independent components. Our decorrelation routine is based on
the properties of cumulant tensors and can be combined with any standard cumulant-based
method for ICA to get an algorithm that is provably robust in the presence of Gaussian
noise. We derive polynomial bounds for the sample complexity and error propagation of
our method.

c© 2013 M. Belkin, L. Rademacher & J. Voss.
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1. Introduction and related work

A prototypical blind signal separation setting is the so-called cocktail party problem: in a
room, there are n people speaking simultaneously and n microphones, with each micro-
phone capturing a superposition of the voices. The objective is to recover the voice of
each individual speaker. The simplest modeling assumption is to consider each speaker
as producing a signal to be a random variable independent of the others and to take the
superposition to be a linear transformation independent of time. This leads to the following
problem: given a sample from n-dimensional random variable X, satisfying X = AS, where
A is a non-singular square matrix and S is another random vector whose coordinates are
unknown independently distributed (but not necessarily identical) random variables, we
need to recover the matrix A−1. Equivalently, we need to recover the basis corresponding
to the directions of the independent components.

The name Independent Component Analysis refers to a broad range of algorithms ad-
dressing this signal separation problem as well as its variants and extensions. It has gen-
erated significant interest and an extensive literature in the signal processing and machine
learning communities due to its applicability to a variety of important practical situations
including speech Makino et al. (2007), vision Bell and Sejnowski (1997) and various biolog-
ical and medical applications, e.g., Jung et al. (2000). For a comprehensive introduction
see the books Comon and Jutten (2010); Hyvärinen and Oja (2000).

One widely used class of algorithms for ICA is based on the remarkable fact that if
the data is whitened, that is, X has the zero mean and the identity covariance matrix,
then the absolute value of kurtosis reaches its maximum in the directions corresponding
to the independent components. More precisely, consider the kurtosis as a function on the
n-dimensional unit sphere. For whitened data it can be defined as follows:

v 7→ κ4(v ·X) := E((v ·X)4)− 3

It can be shown Delfosse and Loubaton (1995); Frieze et al. (1996) that the vectors corre-
sponding to the maxima of the absolute value of κ4(v ·X) form an orthonormal basis whose
elements are independent random variables. Thus the underlying structure of the signal can
be recovered by analyzing the behavior of this function. Moreover, computing the kurtosis
involves the expected value of the fourth power of a random variable, which can be easily
approximated from a finite sample.

This observation leads to the following procedure for the Independent Component Anal-
ysis in the noiseless case:
Step 1. “Whiten” the original signal, that is, apply a linear transformation that trans-
forms the covariance matrix of the sample to the identity. This is typically achieved by
using the Principal Component Analysis (PCA) to transform the input data to the basis
of its principal directions by an orthogonal transformation and rescaling the resulting data
appropriately.
Step 2. After the signal is whitened, various optimization procedures can be used to
find the maxima of the absolute value of kurtosis over the unit sphere. The independent
components are recovered from the directions of these maxima.

In the recent paper Arora et al. (2012) an important observation is made that for a
slight variation of Step 2 to work, it is sufficient for the the sample to be decorrelated
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(quasi-whitened), that is, to have independent coordinates in some orthogonal basis, rather
than fully whitened (having the identity covariance matrix).

In this paper we consider the problem of signal separation for a noisy signal X = AS+η,
where η is an unknown, not necessarily spherical n-dimensional Gaussian distribution. The
main difficulty is in Step 1, since the principal directions given by PCA are contaminated by
the noise and do not generally decorrelate the underlying signal. Interestingly, as a result
of the invariance of the kurtosis under the additive Gaussian noise, Step 2 of the algorithm
is still valid and the usual methods and analyses still apply with minor caveats.

The main contribution of our paper is addressing the problem of decorrelating the un-
derlying signal in the presence of noise. We show how to approximate a matrix B, such that
B−1A is diagonal in the basis of independent coordinates. We provide polynomial bounds
for the sample complexity and error analysis as well as an analysis of error propagation
compatible with any analysis of Step 2.

Our approach can be viewed as a noise-invariant version of PCA for the special case
when the underlying probability distribution is a product of independent variables. The
method is based on the properties of the fourth cumulant tensor, rather than the usual
covariance matrix used in PCA. To the best of our knowledge, this is the first general
algorithm for noisy ICA with sample complexity and running time guarantees. Moreover,
unlike methods such as Yeredor (2000), our approach is compatible with any optimization
procedure for the Step 2.
Related work. Over the last twenty years blind signal separation1 has become a large and
active area of research in signal processing and machine learning community. An important
class of methods for ICA is based on the properties of kurtosis and other higher-order
cumulants.

Most of these works concentrate on algorithms, implementations, and applications and
do not provide a sample or running-time complexity analysis for the algorithms. One
such analysis is provided in Frieze et al. (1996), where the authors address the question
of learning a linear transformation, which is equivalent to the ICA problem, and provide
a complexity analysis. In a slightly different context of cryptoanalysis, Nguyen and Regev
(2009) analyzes a kurtosis-based method for learning a parallelopiped. In Vempala and Xiao
(2011) the authors analyze a generalized version of ICA for learning higher-dimensional
subspace “juntas” in the presence of noise.

The problem of blind signal separation in the presence of noise has been an active
topic of research in the machine learning literature. In particular we would like to point
out the work of Yeredor (2000) which proposes an elegant one-step approach for general
ICA with Gaussian noise, based on approximating the Hessian of the second characteristic
function, namely v 7→ ∇2

v logEx(ev
T x), at a finite number of generic choices of v. Hsu and

Kakade in another recent work (Hsu and Kakade, 2012, Section 3, Theorem 3) propose
an approach similar to Yeredor’s, using the Hessian of the directional kurtosis instead of
the second characteristic function and make interesting connections to learning Gaussian
mixture distributions in high dimension. Finally, Arora et al. (2012) also uses a Hessian-
based technique to provide a complete sample complexity analysis for noisy ICA for the
special case when the underlying signal is a uniform distribution over the n-dimensional

1. Also known as Blind Source Separation.
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binary cube {−1, 1}n. The technique of Arora et al. also applies when all independent
components have kurtosis of the same sign. However, their technique cannot be used in the
general case since it involves extracting the square root of a matrix that is positive definite
only under that condition. Our approach, based on the full fourth cumulant tensor, does
not face this difficulty.

We also would like to point out that our approach is closely related to the class of tensor
methods for data analysis, see e.g. Shashua and Hazan (2005); Morton and Lim.

2. Properties of Cumulants

Let φX(t) = E[exp(itTX)], t ∈ Rn denote the first charateristic function of a n-dimensional
vector valued random variable X, and let ψX(t) = log(φX(t)) denote the second character-
istic function of X. Cumulants are defined as the coefficients of the Taylor Expansion of
the second characteristic function. Specifically, using the multi-index notation, we write

1 +
∞∑
r=1

∑
i1,...,in∈[n]r

1

r!
ir
( r∏
j=1

tij

)
Cum(Xi1 , . . . ,Xir) = ψX(t).

For each cumulant Cum(Xi1 , . . . ,Xir), r is referred to as the order of the cumulant. Order
r cumulants of a random variable X can be collected into a cumulant tensor, called the rth

cumulant tensor of X. For instance, the fourth order cumulant tensor of X, denoted by QX

in this paper, is defined by (QX)ijkl = Cum(Xi,Xj ,Xk,Xl). Since any simultaneous draw
of random variables can be viewed as a draw of a single vector-valued random variable, this
definition can be used to construct cross-cumulants between arbitrary random variables. In
the univariate case in which X and t are scalars, the notation κr(X) is used to denote the
rth order cumulant Cum(X, . . . ,X).

Cumulants are similar in flavor to moments, and indeed all cumulants have polyno-
mial expansions in terms of the moments of the same and lesser order. For example, the
fourth cumulant (kurtosis) of a 0-mean one-dimensional random variable X can be expanded
κ4(X) = E[X4] − 3E[X2]2. However, cumulants have nice algebraic properties not shared
by moments, properties on which this work relies heavily. Let X1, . . . , Xr be real-valued
random variables. Then, cross-cumulants are known to manifest the following properties:

1. (Multilinearity) If ci ∈ R is a constant, then

Cum(X1, . . . , ciXi, . . . , Xr) = ciCum(X1, . . . , Xi, . . . , Xr).

Also, if Yi is a random variable, then

Cum(X1, . . . , Xi + Yi, . . . , Xr)

= Cum(X1, . . . , Xi, . . . , Xr) + Cum(X1, . . . , Yi, . . . , Xr).

2. (Independence) If 2 variables Xi and Xj (i < j) are independent random variables,
then the cross cumulant Cum(X1, . . . , Xi, . . . , Xj , . . . , Xn) is zero. Combined with the
multilinearity property, this implies that if the variables Y1, . . . , Yn are independent
of X1, . . . , Xn, then

Cum(X1 + Y1, X2 + Y2, . . . , Xn + Yn)

= Cum(X1, X2, . . . , Xn) + Cum(Y1, Y2, . . . , Yn).
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3. (Vanishing Gaussians) The only non-zero cumulant tensors of Gaussian random vari-
ables are the 1-tensor mean and the 2-tensor covariance matrix.

Note that in the univariate case, these properties become:

1. (Additivity) If X and Y are independent random variables, then κr(X+Y ) = κr(X)+
κr(Y ).

2. (Homogeneity of degree r) If c is a constant, then κr(cX) = crκr(X).

3. (Vanishing Gaussians) The only non-zero cumulants of a Gaussian random variable
are the mean and the variance (the first and second order cumulants).

3. Problem Statement and Main Result

Let x(1),x(2), . . . ,x(N) ∈ Rn be an i.i.d. N -sample of vector-valued random variables. In
independent component analysis (ICA) it is assumed that each x(i) is generated from a
latent random variable s(i) via an unknown mixing matrix A such that

x(i) = As(i) + η(i)

where η is additive noise. The latent random variable S is typically assumed to be a vector
in Rn; though in principle, it could be a vector in any space Rm where m ≤ n. The
coordinates of S are assumed to be independent random variables. A is taken to be a full
rank matrix, A ∈ Rn×m. It will be assumed for simplicity that m = n, thus making A
invertible. We will further assume that each random variable Si has variance 1. Note that
this last assumption serves to remove an ambiguity of the problem, since the columns of
A could otherwise be chosen to have any scale. As a result of these assumptions, Cov(S)
becomes the identity matrix. For convenience, we also assume that S has 0 mean.

As discussed in the introduction, most ICA algorithms can be broken down into 2 steps.
In the first step, the independent components are made orthogonal and rescaled such that
X = RS where R is an orthogonal matrix. This method of decorrelating the independent
components is termed whitening. In the second step, the columns of R (which correspond
to independent components) up to sign and order are found.

In the noisy case the main challenge is presented by Step 1, as Step 2 for kurtosis-
based methods is naturally invariant to Gaussian noise. Since additive Gaussian noise
affects the covariance matrix Cov(AS +η), PCA-based whitening fails to orthogonalize the
independent components. It was observed in Arora et al. (2012) that a variation on step
1 could be used. It is enough to make the independent components orthogonal without
giving them the same scale. Whereas true whitening sets X = RS, we replace R with RD
such that R is orthogonal and D is a diagonal scaling matrix. Thus, following Arora et al.
(2012), quasi-whitening2 can be defined as follows:

Definition 1 A quasi-whitening matrix is a matrix W such that WA = RD for some
orthogonal matrix R and nonsingular diagonal matrix D.

2. Hyvärinen had a different definition of quasi-whitening in Hyvarinen (1999).
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We shall now state our main result. Let e1, . . . , en be the canonical vectors that form
a basis for the space spanned by the random vector S. Let κmin = mini(|κ4(Si)|), κmax =
maxi(|κ4(Si)|), and µk = maxi(E[Ski ]). Let ση = max‖u‖=1

√
uTΣηu where Ση is the

covariance of η. Let Ai denote the ith column of matrix A. For clarity of the presentation, we
use the following machine model for the running time: a random access machine that allows
the following exact arithmetic operations over real numbers in constant time: addition,
substraction, multiplication, division and square root.

Theorem 2 Let ε > 0 and δ ∈ (0, 1). Given

N = O

(
n10κ(A)16

ε2δ

κ2max

κ4min

(
µ8 +

σ8η
σmin(A)8

))
samples of X = AS + η we can compute, in time polynomial in N and n, an approximate
quasi-whitening matrix B̂ so that with probability at least 1− δ over the sample we have

1. For i 6= j,

− ε ≤ 〈B̂−1Aei, B̂
−1Aej〉

‖B̂−1Aei‖2‖B̂−1Aej‖2
≤ ε (1)

2. The length of ej is scaled under the transformation B̂−1A as:

(1− ε)‖Ai‖22 ≤ ‖B̂
−1Aej‖

2

2 ≤ (1 + ε)‖Ai‖22 (2)

In simpler words, quasi-whitening approximately orthogonalizes the independent compo-
nents of X and scales the independent components based on the lengths of the columns of
A.

We note that existing cumulant-based methods already employed for step 2 in ICA can
be modified in reasonably straightforward ways to work under quasi-whitening. Several pop-
ular ICA algorithms including JADE Cardoso and Souloumiac (1993) and the kurtosis-based
implementation of FastICA Hyvärinen (1999); Hyvärinen and Oja (2000) are implemented
using cumulants. Since higher order cumulants ignore Gaussian noise, this allows for the
creation of a class of new algorithms that are resistant to additive Gaussian noise.

To see the validity of fourth cumulant based algorithms for the second step of ICA in
the presence of Gaussian noise, we draw from Observation 2 in Frieze et al. (1996). An
interpretation of the statement and proof is that given α1, α2, . . . , αn ∈ R such that each
αi 6= 0 and the function G(v) =

∑n
i=1 v4

iαi such that v is restricted to the unit sphere,
we have that when there exists some αi > 0, a complete list of local maxima of G(v) is
given by {±ei : αi > 0} (where ei is the ith canonical vector). Similarly, when there exists
some αi < 0, a complete list of local minima of G(v) is given by {±ei : αi < 0}. Using the
properties of cumulants, it follows that given v ∈ Rn,

κ4(v · S) =

n∑
i=1

v4
i κ4(Si), (3)

where κ4(Si) takes on the role of αi. As such, any algorithm that maximizes |κ4(v · S)|
or alternatively κ4(v · S)2 over the unit sphere will find the canonical vectors. Of course,

6



Blind Signal Separation in the Presence of Gaussian Noise

one cannot work in the coordinate system of S, but under the assumption of orthogonality
provided, one can instead maximize |κ4(u ·X)| where u is restricted to the unit sphere since

κ4(u ·X) = κ4(u · (RDS)) = κ4((R
Tu) · (DS))

using that additive Gaussian noise is ignored by cumulants. DS is simply a rescaling of
S, and κ4(Si) can be replaced by κ4(diiSi) in equation (3). Using the change of variable
v = RTu, any locally maximal value for u will correspond to a column of R, thus recovering
a component Si up to scaling and noise. In Frieze et al. (1996), Observation 2 summarizes
a very similar result in the case of true whitening without additive Gaussian noise using
the fourth moment instead of fourth cumulant, and a mostly correct efficient algorithm and
analysis is provided for the fourth moment based on this observation.

4. How to Achieve Quasi-Whitening

Recall that QX denotes the fourth cumulant tensor of the observed variable X, with ijklth

entry:
(QX)ijkl = Cum(Xi,Xj ,Xk,Xl),

and define an operation of tensors on matrices T× Rn×n → Rn×n by:

(QX ◦M)ij =
n∑

k,l=1

Cum(Xi,Xj ,Xk,Xl)mlk.

Before proceeding with the argument leading to the construction of a quasi-whitening
matrix, it is worth making several observations about this operation. First, the operation
can be viewed as matrix-vector multiplication. Use multi-indices α, β such that α runs over
(i, j) and β runs over (l, k), and note that by symmetry, (QX)ijkl = (QX)ijlk = (QX)αβ.
Under this flattening of the tensor QX, the operation becomes matrix-vector multiplication
with M taking on the role of the vector using mlk = mα.

The following Lemma describes how the cumulant tensor transforms under a linear
change of variable:

Lemma 1 Given a random vector-valued variable Y ∈ Rn and matrices B,M ∈ Rn×n,
then QBY ◦M = B(QY ◦ (BTMB))BT .

The proof of Lemma 1 is deferred to Appendix A. The techniques are very similar to those
to be seen in Lemma 2 and follow directly from the properties of cumulants. This general
structure will be used in constructing a quasi-whitening matrix in the noiseless case, as
well as in finding an estimate to a quasi-whitening matrix from data. What follows is the
construction of a quasi-whitening matrix when one knows the cumulant tensor exactly.

Lemma 2 Let M be an arbitrary matrix. Then, QX ◦M = ADAT where D is a diagonal
matrix with qth entry dqq = κ4(Sq)A

T
qMAq.
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Proof This proof will proceed by simplifying QX ◦M using the properties of cumulants.

(QX ◦M)ij =
n∑

k,l=1

Cum(Xi,Xj ,Xk,Xl)mlk

=

n∑
k,l=1

Cum

 n∑
q=1

AiqSq + ηi,

n∑
q=1

AjqSq + ηj ,

n∑
q=1

AkqSq + ηk,

n∑
q=1

AlqSq + ηl

mlk

=
n∑

k,l=1

n∑
q=1

Cum(AiqSq, AjqSq, AkqSq, AlqSq)mlk

=

n∑
k,l=1

n∑
q=1

AiqAjqAkqAlqCum(Sq,Sq,Sq,Sq)mlk,

where the last two equalities come from the independence, multilinearity, and vanishing
Gaussian properties. Switching into univariate cumulant notation and rearranging summa-
tions yields:

(QX ◦M)ij =
n∑
q=1

AiqAjqκ4(Sq)
n∑
k,l

AlqmlkAkq

=

n∑
q=1

AiqAjqκ4(Sq)A
T
qMAq

which has matrix form:
QX ◦M = ADAT

where D is a diagonal matrix with diagonal entries dqq = κ4(Sq)A
T
qMAq.

Theorem 3 Let M be the matrix (QX ◦ I)−1. Let B be a factorization matrix such that
BBT = QX ◦M . Then, B−1 is a Quasi-Whitening matrix.

Proof Applying Lemma 2 gives QX ◦ I = AD′AT with d′qq = κ4(Sq)Aq · Aq. Note that

M = (AT )−1D′−1A−1. Applying Lemma 2 a second time yields QX ◦M = ADAT where
dqq = κ4(Sq)A

T
qMAq gives the diagonal elements of D. Manipulating dqq yields:

dqq = κ4(Sq)A
T
q (AT )−1D′−1A−1Aq

= κ4(Sq)e
T
q (D′)−1eq = κ4(Sq)[κ4(Sq)Aq ·Aq]−1 =

1

‖Aq‖22

Note that dqq is a positive number for each diagonal entry of D. D1/2 exists and can
be uniquely defined by taking the positive square root of all diagonal entries. Letting
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B be any factorization matrix such that BBT = QX ◦ ((QX ◦ I)−1) = ADAT , then
I = B−1AD1/2(B−1AD1/2)T gives that B−1AD1/2 = R for some orthogonal matrix R.
Hence, B−1A = RD−1/2 gives that B−1 is a quasi-whitening matrix.

5. Estimation of Cumulants

So far we have shown that given exact knowledge of the fourth order cumulant tensor for the
random variable X = AS +η, it is possible to find a quasi-whitening matrix B−1 such that
B−1A = RD for some orthogonal and diagonal matrices R and D respectively. In practice,
one does not have exact knowledge of the cumulant tensor, and the cumulant tensor thus
needs to be estimated from samples. Cumulants can be estimated using k-statistics, which
are unbiased estimates of cumulants. k-statistics have been studied within the statistics
community, and are discussed in chapter 4 of McCullagh (1987). For the fourth order
cumulant tensor, given random variables Y1,Y2, . . . ,Yn, the k-statistic k(Yi,Yj ,Yk,Yl),
which estimates Cum(Yi,Yj ,Yk,Yl), is:

k(Yi,Yj ,Yk,Yl) =
1

N

N∑
r,s,t,u=1

φ(r, s, t, u)y
(r)
i y

(s)
j y

(t)
k y

(u)
l ,

where φ is a function invariant under permutations of its indices defined by φ(i, i, i, i) = 1,
φ(i, i, i, j) = φ(i, i, j, j) = −1/(N − 1), φ(i, i, j, k) = 2/[(N − 1)(N − 2)], and φ(i, j, k, l) =
−6/[(N − 1)(N − 2)(N − 3)] when i, j, k, l ∈ [N ] are distinct McCullagh (1987).

k-statistics share several important properties with the cumulant tensors that they es-
timate. The k-statistic is symmetric in that k(Xi, Xj , Xk, Xl) is invariant under reordering
of indices, and it is also multilinear.

Lemma 3 The k-statistic transforms multilinearly.

The proof of Lemma 3 and all other Lemmas in this section will be deferred to Appendix
A.

These multilinearity properties imply that

k(Xi,Xj ,Xk,Xl)

=
∑
qrst

k(Aiq(S +A−1η)q, Ajr(S +A−1η)r, Aks(S +A−1η)s, Alt(S +A−1η)t)

=
∑
qrst

AiqAjrAksAltk(Sq + (A−1η)q,Sr + (A−1η)r,Ss + (A−1η)s,St + (A−1η)t).

As such, Lemma 1 applies also to k-statistic estimates of random variables. In particular, it
is possible to think of the k-statistic tensor associated with the random variable X as being
generated from an unobserved k-statistic tensor from the latent samples of S + A−1η. We
can work directly with the random variable S + A−1η for the purposes of error analysis.
This will be a natural approach since the difficulty of the problem relies partially on the
fourth cumulant of the latent distribution for S +A−1η.
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Let µk represent maxi E[Ski ]. By assumption, µ1 = 0 and µ2 = 1. Let η∗ denote A−1η.
Let

ση∗ = max
‖u‖=1

(√
uTΣη∗u

)
where Ση∗ is the covariance matrix of η∗. The error induced by estimating the latent fourth
cumulant tensor kS+η∗ from a sample can be bounded using the following Lemma:

Lemma 4 Given ε, δ > 0, the error of each term in the k-statistic tensor for S + A−1η is
at most ε with probability 1− δ using

N = O

(
n4

ε2δ

(
µ8 +

σ8η
σmin(A)8

))

samples.

6. Error Propagation for Quasi-Whitening

What follows is an analysis for how error propagates throughout the quasi-whitening al-
gorithm. It will be demonstrated that the canonical vectors which act as a basis for the
independent components of S will remain approximately orthogonal after quasi-whitening
given sufficiently many samples. It will be demonstrated that the required number of sam-
ples is polynomial in terms of 1/ε, 1/δ, n, κ(A), κmax/κmin, 1/κmin, ση/σmin(A), and µ8
where ε is the allowable cosine error from orthogonality of the basis vectors, and 1 − δ is
the probability of success. Since it was demonstrated in the previous section that, given
any ε > 0, the sample estimate of the cumulant tensor can have error bounded by ε in each
term, it suffices to demonstrate that, at each step of the algorithm, error does not grow too
fast. The probability of success is unchanged since only one sample is taken. As a nota-
tion, hatted variables shall be used to denote approximations of non-hatted variables. It is
assumed that the k-statistic tensor Q̂S estimate of QS is defined from samples of the noisy
latent variable S + η∗ = A−1X, though for simplicity, η∗ is suppressed from the subscript
notation. (See also the discussion after Lemma 3.) Similarly, Q̂X comes from the k-statistic
kX+η. ‖·‖F will denote the Frobenius norm. ‖·‖max will denote the max norm, i.e.:

‖Q‖max := max
i,j,k,l

|Qijkl|

for a fourth order tensor Q.

Lemma 5 Given a sample of X, let Q̂X and Q̂S be the associated k-statistic estimates for
QX and QS respectively, and let M̂ be an estimate for the matrix M such that for some
ε1, ε2 > 0, ‖Q̂S − QS‖max ≤ ε1 and ‖M̂ −M‖2 ≤ ε2. There exists a matrix Y such that
Q̂X ◦ M̂ = AY AT and QX ◦M = ADAT where D is the diagonal matrix defined in Lemma
2, and the error in the estimate Y is bounded as:

‖Y −D‖2 ≤ ‖Y −D‖F ≤ n2‖A‖22‖M‖F ε1 +
√
nε2‖A‖22(n2ε1 + κmax)
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Proof Using Lemma 1, one gets Q̂X ◦ M̂ = A(Q̂S ◦ (AT M̂A))AT , which gives that Y
is well defined, and Y = (Q̂S ◦ (AT M̂A)). By similar reasoning, D = QS ◦ (ATMA). In
the following investigation of error propagation, the tensors Q̂S and QS will be treated as
matrices as described in section 4, and the 2-norm used on the tensors should be interpreted
as if the tensor has been flattened to its n2 × n2 matrix form. Then:

‖Y −D‖F = ‖Q̂S ◦ (AT M̂A)−QS ◦ (ATMA)‖F
= ‖Q̂S ◦ (AT M̂A)−QS ◦ (AT M̂A) +QS ◦ (AT M̂A)−QS ◦ (ATMA)‖F
≤ ‖Q̂S −QS‖2‖(AT M̂A)‖F + ‖QS‖2‖AT (M̂ −M)A‖F
≤ n2ε1‖A‖22‖M̂ −M +M‖F + κmax‖A‖22

√
nε2

≤ n2‖A‖22ε1(‖M̂ −M‖F + ‖M‖F ) +
√
nκmax‖A‖22ε2

≤ n2‖A‖22ε1(
√
nε2 + ‖M‖F ) +

√
nκmax‖A‖22ε2

= n2‖A‖22‖M‖F ε1 +
√
nε2‖A‖22(n2ε1 + κmax).

This is also a bound for ‖Y −D‖2 based on the standard inequality ‖Y −D‖2 ≤ ‖Y −D‖F .

Lemma 5 above bounds the error growth from tensor operations while placing all error
on the diagonal matrix.

The main result of this paper is contained in Theorem 2, which we prove now.
Proof of Theorem 2. The proof is split into 3 parts. In the first part, the preceding
Lemmas are used to propagate error from the estimated latent tensor QS. Then, a bound
on the number of samples required to bound within ε the cosine and scaling errors for
the basis for the independent subspace from equations (1) and (2) is stated. Finally, it is
demonstrated that the bound on angular error is correct.

Let N be a sample size to be chosen later as a function of an arbitrary parameter η > 0,
so that with probability 1−δ we have ‖Q̂S−QS‖max < η. Then, let D′ = diag(κ4(S1)‖A1‖2,
. . . , κ4(Sn)‖An‖2) be the same as in the proof of Theorem 3. By Lemma 2, AD′AT = QX◦I.
Let Y ′ be the estimate of D′ generated as AY ′AT = Q̂X ◦ I. Then by Lemma 5, it follows
that ‖Y ′−D′‖2 < n5/2‖A‖22η. In order to apply equation (8) from Appendix B, it is useful
to get error bounds for ‖D′−1‖2. It can be shown that:

1

κmaxσmax(A)2
≤ ‖D′−1‖2 ≤

1

κminσmin(A)2
. (4)

Then, it follows that using equation (8):

‖Y ′−1 −D′−1‖2 ≤ 2‖D′−1‖22‖Y ′ −D′‖2 ≤
2n5/2‖A‖22η
κ2minσmin(A)4

=
2n5/2κ(A)2η

κ2minσmin(A)2
(5)

with the restriction that η must be chosen such that ‖Y ′−D′‖ = n5/2‖A‖22η ≤ 1/(2‖D′−1‖2).
This can be ensured by requiring that η ≤ κmin/(2n

5/2κ(A)2).
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Now, let Y and D be defined such that ADAT = QX ◦ (AD′AT )−1 and AY AT =
Q̂X ◦ (AY ′AT )−1. By Lemma 5,

‖Y −D‖2 ≤ n2‖A‖22‖(AD′AT )−1‖F η +
√
n‖(AY ′AT )−1 − (AD′AT )−1‖2‖A‖22(n2η + κmax)

≤ n2κ(A)2‖D′−1‖F η +
√
nκ(A)2‖Y ′−1 −D′−1‖2(n2η + κmax)

≤ n5/2κ(A)2

κminσmin(A)2
η +

2n3κ(A)4κmax

κ2minσmin(A)2
η +

2n5κ(A)4

κ2minσmin(A)2
η2

which follows by applying (4) and (5).
Since η ≤ κmin/(2n

5/2κ(A)2),

‖Y −D‖2 = O

(
n3κ(A)4κmax

σmin(A)2κ2min

η

)
.

Once again, it will be necessary to bound ‖D‖2 in order to apply equation (8). Using
D = diag(1/‖A1‖22, . . . , 1/‖An‖22) from the proof of Theorem 3, it follows that:

σmin(A)2 ≤ ‖D−1‖2 ≤ σmax(A)2.

Applying equation (8) yields:

‖Y −1 −D−1‖2 ≤ 2‖D−1‖22‖Y −D‖2 ≤ 2σmax(A)4O

(
n3κ(A)4κmax

σmin(A)2κ2min

η

)
‖Y −1 −D−1‖2
σmin(A)2

≤ O
(
n3κ(A)8κmax

κ2min

η

)
with the restriction that ‖Y−D‖2 ≤ 1/(2‖D−1‖2). Noting that ‖Y−D‖2 = O

(
n3κ(A)4κmax

σmin(A)2κ
2
min
η
)

and 1/‖D−1‖2 ≥ 1/σmax(A)2, it suffices to restrict η ≤ O
(

κ2min
n3κ(A)6κmax

)
.

Since η is arbitrary (except for upper bound restrictions), η can be chosen such that
‖Y −1−D−1‖2
σmin(A)2

< ε
2 . This can be accomplished taking η = O

(
κ2min

n3κ(A)8κmax
ε
)

. This choice is

valid, as both restrictions on η are met when ε ≤ 1. By Lemma 4, taking

N = O

(
n4

η2δ
(µ8 + (σ8η/σmin(A)8))

)
= O

(
n10

(κ(A)16κ2max)

ε2δκ4min

(µ8 + (σ8η/σmin(A)8))

)
samples suffice to obtain the desired error bound ε with probability 1− δ.

The basis in which S has independent coordinates is the canonical basis. Therefore, the
ultimate goal is to show that, with our choice of an approximate quasi-whitening matrix
B̂−1 below, the canonical vectors stay approximately orthogonal after applying B̂−1A. To
see this, factorize B̂B̂T = Q̂X ◦ (Q̂X ◦ I)−1. B̂−1 is the approximate quasi-whitening
matrix, and B̂B̂T = AY AT gives that B̂−1AY 1/2 = R for some orthogonal matrix R, and
B̂−1A = RY −1/2. Since Y is symmetric, Y −1/2 can be taken to be a symmetric matrix.
Take ei, ej to be canonical vectors. Define δij to be the delta function such that

δij =

{
1 if i = j,

0 otherwise.

12
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Then with probability 1− δ,

〈B̂−1Aei, B̂
−1Aej〉

‖Ai‖2‖Aj‖2
=

eTi A
T B̂−T B̂−1Aej
‖Ai‖2‖Aj‖2

=
eTi Y

−1ej
‖Ai‖2‖Aj‖2

∈

(
D−1ij

‖Ai‖2‖Aj‖2
− ε

2
,

D−1ij
‖Ai‖2‖Aj‖2

+
ε

2

)

⊃
(
δij‖Ai‖‖Aj‖
‖Ai‖‖Aj‖

− ε

2
,
δij‖Ai‖‖Aj‖
‖Ai‖‖Aj‖

+
ε

2

)
= δij ±

ε

2
.

Consider the case where i = j. Then,

‖B̂−1Aei‖
2

2 ∈
(

1± ε

2

)
‖Ai‖22,

which gives equation (2) Consider the case where i 6= j. Then,

〈B̂−1Aei, B̂
−1Aej〉

‖Ai‖2‖Aj‖2
· ‖B̂

−1Aei‖2‖B̂−1Aej‖2
‖B̂−1Aei‖2‖B̂−1Aej‖2

∈ ± ε
2

〈B̂−1Aei, B̂
−1Aej〉

‖B̂−1Aei‖2‖B̂−1Aej‖2
∈ ± ε

2
· 1

1± ε/2
⊂ ±ε

by restricting ε < 1
2 . This gives equation (1), completing the proof.
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Appendix A. Deferred Proofs

Proof of Lemma 1. The proof follows primarily from the multilinearity of cumulants:

(QBY ◦M)ij =

n∑
k,l=1

Cum((BY)i, (BY)j , (BY)k, (BY)l)mlk

=
n∑

k,l=1

n∑
q,r,s,t=1

Cum(biqYq, bjrYr, bksYs, bltYt)mlk

=
n∑

k,l=1

n∑
q,r,s,t=1

biqbjrCum(Yq,Yr,Ys,Yt)bltmlkbks

=

n∑
q,r,s,t=1

biqbjrCum(Yq,Yr,Ys,Yt)(B
TMB)ts

=

n∑
q,r=1

biqbjr(QY ◦ (BTMB))qr,

which can be equivalently written as QBY ◦M = B(QY ◦ (BTMB))BT .

Proof of Lemma 3. There are 2 properties of multilinearity. For simplicity of no-
tation, they will be only shown on the first coordinate of the k-statistic function. Let
Yi,Yj ,Yk,Yl,Zi be random variables, and let c ∈ R. Then

1. The additivity portion of multilinearity comes from:

k(Yi + Zi,Yj ,Yk,Yl)

=
1

N

N∑
r,s,t,u=1

φ(r, s, t, u)(y
(r)
i + z

(r)
i )y

(s)
j y

(t)
k y

(u)
l

=
1

N

 N∑
r,s,t,u=1

φ(r, s, t, u)y
(r)
i y

(s)
j y

(t)
k y

(u)
l +

N∑
r,s,t,u=1

φ(r, s, t, u)z
(r)
i y

(s)
j y

(t)
k y

(u)
l


= k(Yi,Yj ,Yk,Yl) + k(Zi,Yj ,Yk,Yl).

2. The multiplicative portion of multilinearity comes from:

k(cYi,Yj ,Yk,Yl) =
1

N

N∑
r,s,t,u=1

φ(r, s, t, u)cy
(r)
i y

(s)
j y

(t)
k y

(u)
l

= c
1

N

N∑
r,s,t,u=1

φ(r, s, t, u)y
(r)
i y

(s)
j y

(t)
k y

(u)
l

= k(Yi,Yj ,Yk,Yl).
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The following statement will be useful in the proof of Lemma 4.

Lemma 6 Let Z = S + η∗. Then,

Var(k(Zi,Zj ,Zk,Zl)) = O

(
maxi∈[n] E[Z8

i ]

N

)
.

Proof In order to save space, it will be useful to use multi-index notation. In particular,

taking I = (i1, i2, i3, i4) ∈ [n]4 and α = (α1, α2, α3, α4) ∈ [N ]4, φαz
(α)
I will be denote

φ(α1, α2, α3, α4)z
(α1)
i1

z
(α2)
i2

z
(α3)
i3

z
(α4)
i4

Further, the set α ∩ β will be defined as:

α ∩ β = {αi : αi = βj for some pair (i, j)}.

Keeping these notations in mind, we can proceed with the proof. Let I ∈ [n]4.

Var(k(Zi1 ,Zi2 ,Zi3 ,Zi4))

= E

 1

N

∑
α∈[N ]4

φαz
(α)
I

2− E

 1

N

∑
α∈[N ]4

φαz
(α)
I

2

=
1

N2

∑
α∈[N ]4

∑
β∈[N ]4

E[φαz
(α)
I φβz

(β)
I ]− 1

N2

∑
α∈[N ]4

∑
β∈[N ]4

E[φαz
(α)
I ]E[φβz

(β)
I ]

=
1

N2

∑
α∈[N ]4

∑
β∈[N ]4

α∩β 6=∅

E[φαz
(α)
I φβz

(β)
I ]− 1

N2

∑
α∈[N ]4

∑
β∈[N ]4

α∩β 6=∅

E[φαz
(α)
I ]E[φβz

(β)
I ]

≤ 1

N2

∑
α∈[N ]4

φα
∑

β∈[N ]4

α∩β 6=∅

φβE[z
(α)
I z

(β)
I ]. (6)

Equation (6) contains the essence of the argument. However, in order to complete the argu-

ment, several facts need to be demonstrated. First, it needs to be seen that
∣∣∣E[z

(α)
I z

(β)
I ]
∣∣∣ ≤

maxi(E[Z8
i ]). To see this, use the Cauchy-Schwartz inequality on random variables Y1, Y2

to get:
E[Y1Y2] ≤ max(E[Y 2

1 ],E[Y 2
2 ]) (7)

Applying this fact recursively yields that
∣∣∣E[z

(α)
I z

(β)
I ]
∣∣∣ ≤ maxi(E[Z8

i ]).

The second difficulty that arises is seeing how limiting oneself to samples in which
α ∩ β 6= ∅ restricts the summation. First, let dist(β) denote the number of distinct indices
in β. If c = dist(β), then there are

(
N
c

)
choices of index values that can be used to generate

β, of which
(
N−4
c

)
certainly do not intersect α. As such,(

N
c

)
−
(
N−4
c

)(
N
c

)
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gives an upper bound on the fraction of index sets in which β ∩ α 6= ∅ when dist(β) = c.
Finally, noting that |φβ| ≤ 7/(Ndist(β)−1) for sufficiently large N and that

∑
α∈[N ]4 φα =

O(N), we have sufficient tools with which to proceed from (6):

Var(k(Zi1 ,Zi2 ,Zi3 ,Zi4)) ≤ 1

N2

∣∣∣∣∣∣∣∣
∑

α∈[N ]4

φα

4∑
c=1

∑
dist(β)=c
α∩β 6=∅

φβE[z
(α)
I z

(β)
I ]

∣∣∣∣∣∣∣∣
≤ 1

N2
max
i∈[n]

E[Z8
i ]
∑

α∈[N ]4

|φα|
4∑
c=1

∑
dist(β)=c
α∩β 6=∅

|φβ|

≤ 1

N2
max
i∈[n]

E[Z8
i ]
∑

α∈[N ]4

|φα|
4∑
c=1

(
N
c

)
−
(
N−4
c

)(
N
c

) 7N−c+1
∑

dist(β)=c

1

= O

 1

N2
max
i∈[n]

(E[Z8
i ])N

−1N−c+1N c
∑

α∈[N ]4

|φα|


= O

(
maxi∈[n](E[Z8

i ])

N

)
.

Proof of Lemma 4. Define Z = S + η∗. Then using Lemma 6, Var(k(Zi,Zj ,Zk,Zl)) =
O( 1

N maxq∈[n] E[Z8
q ]). Using the binomial expansion,

E[Z8
q ] =

8∑
m=0

(
8

m

)
E[Smq (η∗q)

8−m]

=

4∑
m=0

(
8

2m

)
E[S2m

q (η∗q)
8−2m],

since odd 0-mean Gaussian moments are 0. Using equation (7), we see that the dominant
terms are µ8 and (ση/σmin(A))8. In particular, the cross terms come from E[S2m

q η∗8−2m].
When m = 2, from (7), it follows that

E[S4
q(η
∗
q)

4] ≤ max(µ8,E[(η∗q)
8]).

When m = 1, then

E[S2
q(η
∗
q)

6] = E[(S2
q(η
∗
q)

2)(η∗q)
4]

≤ max(E[S4
q(η
∗
q)

4)],E[(η∗q)
8)],

for which E[S4
q(η
∗
q)

4)] ≤ max(µ8,E[(η∗q)
8]) has just been shown. The case m = 3 can be

argued similarly to m = 1 interchanging the roles of S and η∗. Thus, one gets:

E[Z8
q ] = O(µ8 + E[(η∗q)

8]).
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For even Gaussian moments, the following equation holds (see for instance Kendall et al.
(1994) section 3.4):

E[σ2kη∗ ] =
(2k)!

k!2k
σ2kη∗ .

It follows that

E[Z8
q ] = O(µ8 + σ8η∗)

= O(µ8 + σ8η/σmin(A)8).

Chebyshev’s inequality states that for a random variable Y , Pr(|Y − µY | ≥ cσY ) ≤ 1
c2

.
Taking Y to be k(Si+η∗i ,Sj +η∗j ,Sk +η∗j ,Sl+η∗l ), then since the k-statistic is unbiased, it
follows that its expectation is Cum(Si+η∗i ,Sj +η∗j ,Sk +η∗j ,Sl+η∗l ) = Cum(Si,Sj ,Sk,Sl).

c can be chosen such that δ/n4 ≥ 1/c2. Then, in order to bound the error beneath ε, it
suffices to satisfy:

ε ≥ c
√

Var(k(Si + η∗i ,Sj + η∗j ,Sk + η∗j ,Sl + η∗l )),

which can be guaranteed by choosing N such that ε ≥ cO(( 1
N maxq∈[n](E[Z8

i ]))
1/2). This

leads to the expression:

cO

(√
1

N
max
q∈[n]

(E[Z8
i ])

)
≤ ε

O

√µ8 + (σ8η/σmin(A)8)

N

√n4

δ
≤ ε

N ≥ O

(
n4
µ8 + (σ8η/σmin(A)8)

ε2δ

)
.

Applying the union bound, this number of samples is sufficient to guarantee with proba-
bility 1−δ that all terms in the k-statistic tensor for S+A−1η can be bounded beneath ε.

Appendix B. A Lemma for Bounding Matrix Inversion Error

The following Lemma (a portion of Theorem 2.5 from Stewart and Sun (1990)) can be used
to bound the error from matrix inversion:

Lemma 7 Let ‖·‖ be any consistent matrix norm. Given a matrix C and a matrix pertur-
bation E such that ‖C−1E‖ < 1, and given C̃ = C + E, then

‖C̃−1 − C−1‖
‖C−1‖

≤ ‖C−1E‖
1− ‖C−1E‖

.

From this Lemma, it follows immediately that if ‖E‖2 ≤ 1/(2‖C−1‖2), then

‖C̃−1 − C−1‖2 ≤ 2‖C−1‖22‖E‖2 . (8)
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