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Abstract

This paper considers a generalized no-regret problem with vector-valued rewards, defined
in terms of a desired reward set of the agent. For each mixed action q of the opponent,
the agent has a set R∗(q) where the average reward should reside. In addition, the agent
has a response mixed action p which brings the expected reward under these two actions,
r(p, q), to R∗(q). If a strategy of the agent ensures that the average reward converges to
R∗(q̄n), where q̄n is the empirical distribution of the opponent’s actions, for any strategy
of the opponent, we say that it is a no-regret strategy with respect to R∗(q). When the
multifunction q 7→ R∗(q) is convex, as is the case in the standard no-regret problem, no-
regret strategies can be devised. Our main interest in this paper is in cases where this
convexity property does not hold. The best that can be guaranteed in general then is
the convergence of the average reward to Rc(q̄n), the convex hull of R∗(q̄n). However, as
the game unfolds, it may turn out that the opponent’s choices of actions are limited in
some way. If these restrictions were known in advance, the agent could possibly ensure
convergence of the average reward to some desired subset of Rc(q̄n), or even approach
R∗(q̄n) itself. We formulate appropriate goals for opportunistic no-regret strategies, in the
sense that they may exploit such limitations on the opponent’s action sequence in an on-line
manner, without knowing them beforehand. As the main technical tool, we propose a class
of approachability algorithms that rely on a calibrated forecast of the opponent’s actions,
which are opportunistic in the above mentioned sense. As an application, we consider the
online no-regret problem with average cost constraints, introduced in Mannor, Tsitsiklis,
and Yu (2009). We show, in particular, that our algorithm does attain the best-response-
in-hindsight for this problem if the opponent’s play happens to be stationary, or close to
stationary in a certain sense.

Keywords: No-regret algorithms, Blackwell’s approachability, Calibrated play

1. Introduction

The notion of no-regret strategies, introduced by Hannan (1957) in the context of repeated
matrix games, has played a central role in on-line learning and prediction problems; see,
e.g., Cesa-Bianchi and Lugosi (2006) for an overview. The present paper is motivated by a
generalized no-regret problem, defined as follows. Consider a repeated matrix game between
two players, the agent and the opponent. For each pair of simultaneous actions a and z
in the one-stage game, a vector-valued reward r(a, z) ∈ R

K is obtained by the agent. Let
r(p, q) ,

∑

a,z p(a)q(z)r(a, z) denote the expected reward vector for a pair of mixed actions p
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and q. Suppose that for each mixed action q of the opponent, the agent has a desired reward
set R∗(q) ⊂ R

K , and at least one mixed action p = p∗(q) that satisfies r(p, q) ∈ R∗(q).
A generalized no-regret strategy for this problem may be defined as strategy (or on-line
algorithm) for the agent in the repeated game that ensures limn→∞ d(R̄n, R

∗(q̄n)) = 0
(almost surely) for any strategy of the opponent. Here R̄n = n−1

∑n
k=1 r(ak, zk) is the

average reward, q̄n = n−1
∑n

k=1 1(zk) is the empirical distribution of the opponent’s actions,
and d is the Euclidean distance. For short, we say that R̄n approaches R∗(q̄n).

The standard no-regret problem is obtained as a special case for scalar rewards r(a, z)
and R∗(q) = {r ∈ R : r ≥ r∗(q)}, where r∗(q) , maxp r(p, q) is the maximal reward that
the agent could obtain against a mixed action q of the opponent. The no-regret strategy
proposed in Hannan (1957) essentially relied on perturbed best-response to the empirical
frequencies of the opponent’s actions. Subsequently, Blackwell (1954) showed that the
problem can be formulated and solved as a particular case of his theory of approachability
(Blackwell, 1956). The proof relies on the convexity of the multifunction q 7→ R∗(q), which
in turn follows from the convexity of r∗(q) in q.

A similar line of reasoning may be pursued for the generalized no-regret problem de-
scribed above. Our main interest in this paper is in cases where the convexity property
of q 7→ R∗(q) does not hold, as in the following problem of constrained no-regret (which is
treated in detail in Section 5).

Example 1 Suppose the agent wishes to maximize the average Ūn of a scalar reward
u(a, z), subject to a long-term average cost constraint of the form C̄n ≤ γ + o(1), where
C̄n is the n-step average of a (scalar or vector-valued) cost function c(a, z). Let u∗γ(q) =
maxp∈∆(A){u(p, q) : c(p, q) ≤ γ} denote the maximal expected reward that the agent can
secure against a mixed action q ∈ ∆(Z) of the opponent while keeping the constraints below
γ. The desired set of the pairs (reward, cost) for this problem is given by R∗(q) = {r =
(u, c) : u ≥ u∗γ(q), c ≤ γ}. Observe that with a non-trivial side constraint, q 7→ R∗(q) is
non-convex due to the non-convexity of u∗γ(q), and hence R∗(q̄n) cannot be approached in
general, as was shown in Mannor et al. (2009). �

Several other generalized no-regret problems can be formulated in the above form, including
regret minimization with global cost functions (Even-Dar et al., 2009), regret minimization
in variable duration repeated games (Mannor and Shimkin, 2008), and regret minimization
in stochastic game models (Mannor and Shimkin, 2003).

When q 7→ R∗(q) is non-convex, its convex hull Rc(·) is defined as follows.

Definition 1 (Convex Hull of a Multifunction) The convex hull of a multifunction
(or set-valued function) q 7→ R(q) is the smallest convex multifunction that contains it,
namely Rc so that R(q) ⊂ Rc(q) for each q, and αRc(q1)+(1−α)Rc(q2) ⊂ Rc(αq1+(1−α)q2)
for any q1, q2 and α ∈ (0, 1), where the first plus sign stands for the Minkowski sum. A
smallest one exists by closedness to intersections.

Rc(·) is still provably approachable, in the sense that there is a strategy for the agent that
ensures limn→∞ d(R̄n, R

c(q̄n)) = 0 a.s. This appears to be the best that can be guaranteed
in general.

But more can be achieved if the opponent happens to play “regularly” in some sense.
For example, suppose that the opponent adopts a stationary strategy, namely repeats the
same mixed action qn = q0 at each stage. In that case we can hope to refine our online
strategy so that, by capitalizing on this regularity, it will still approach the original R∗(q0)
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(rather than the larger Rc(q0)). Note that we still require that R̄n approaches Rc(q̄n) for
any strategy of the opponent, and that any regularities in the opponnent’s play are not
imposed beforehands but rather need to be detected online. We refer to such strategies of
the agent as opportunistic. A precise definition is given in Section 3.

We next illustrate these ideas, and the key role played by convexity.

Example 2 Consider a scalar reward matrix given by r(a1, z1) = 2, r(a2, z2) = −2, and
r(a1, z2) = r(a2, z1) = 0, where a1, a2 are the actions available to the agent, and z1, z2

those of the opponent. Suppose the agent’s goal is to have its long-term average reward
larger or equal to 1 in absolute value, namely |R̄n| ≥ 1− o(1). The desired set of rewards is
hence R∗(q) = (−∞,−1] ∪ [1,∞) for all q. Now, it is easily seen that for any mixed action
q = (q(z1), q(z2)) of the opponent, the agent has a response p so that r(p, q) ∈ R∗(q). Thus,
if the opponent is restricted a-priori to stationary strategies, the agent can easily devise a
(possibly adaptive) strategy that approaches R∗(q̄n). However, this is clearly not the case
in general: for example, the opponent can ensure R̄n → 0 by playing z1 whenever R̄n−1 < 0,
and z2 otherwise. We see that the agent cannot approach R∗(q̄n) in general, but can hope
to do so if the opponent happens to play a stationary strategy. �

Below is the outline of the paper. In Section 2, we review Blackwell’s approachability
theory, which is our main tool to devise opportunistic strategies. We then turn to treat a
general (abstract) approachability problem for non-convex sets: (i) In Section 3, we intro-
duce the concept of opportunistic approachability, which relies on an accompanying notions
of statistically and empirically restricted opponent. (ii) Section 4 provides a background on
calibrated forecasts (Dawid, 1985), presents our calibration-based approachability algorithm,
and establishes its opportunistic properties. For the case of empirically restricted opponent,
we require the calibrated forecast to be slowly time-varying in an appropriate sense, which
we establish for a specific forecasting algorithm. Finally, in Section 5, we specialize to the
extended no-regret problem, and in particular to constrained no regret. Specifically, we
formulate the no-regret problem as approachability of the set S = {(r, q) : r ∈ R∗(q)},
which is non-convex and non-approachable in general.

Since Blackwell’s original construction, several approachability algorithms and related
results have been proposed in the literature (Hart and Mas-Colell, 2001; Spinat, 2002;
Shimkin and Shwartz, 1993; Milman, 2006; Lehrer, 2002; Abernethy et al., 2011). The ap-
proachability policies discussed in these papers are based on Blackwell’s primal condition,
which is a geometric separation condition with respect to the fixed target set. There-
fore, the existing algorithms are not opportunistic in the sense we advocate in this paper.
The idea of best-response to calibrated forecasts was first introduced in Foster and Vohra
(1997) in the context of attaining correlated equilibrium, and was subsequently used in
Mannor and Shimkin (2008) and Mannor et al. (2009) in the context of regret minimiza-
tion. An approachability strategy that is based on calibrated forecasts was first pro-
posed in Perchet (2009); however, the discussion there is limited only to convex sets, and
hence the opportunistic properties of the algorithm are not analyzed. We note that our
calibration-based algorithm, while conceptually simple, is computationally challenging due
to the computational complexity of obtaining calibrated forecasts. Given the result of
Hazan and Kakade (2012), it is unlikely that there exists a polynomial-time algorithm to
compute an exact calibrated forecast when the number of actions available to the opponent
is large. The only polynomial algorithms known in the literature are for the case of binary
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sequences (Mannor et al., 2007). We emphasize that the main goal in this paper is in for-
mulating the concept of opportunistic strategies and in showing that there exist algorithms
that fit this concept. Thus, the computational issues and the analysis of the convergence
rates are left for future work.

2. Review of the Approachability Problem

In this Section, we present the main tool that is used to devise opportunistic strategies,
namely the approachability theory as well as Blackwell’s approachability algorithm.

Consider a repeated two-person game between an agent and an arbitrary opponent. The
agent chooses its actions from a finite set A, while the opponent chooses its actions from a
finite set Z. At each time instance n = 1, 2, ..., the agent selects its action an ∈ A, observes
the action zn ∈ Z chosen by the opponent, and obtains a vector reward Vn = v(an, zn) ∈ R

ℓ,
ℓ ≥ 1, where v : A × Z → R

ℓ is a given function. The average reward up to time n is
V̄n = n−1

∑n
k=1 Vk. A mixed action of the agent is the probability distribution p ∈ ∆(A),

where p(a) specifies the probability of choosing action a ∈ A. Similarly, q ∈ ∆(Z) denotes
a mixed action of the opponent. Let q̄n ∈ ∆(Z) denote the empirical distribution of the
opponent’s actions at time n, with q̄n(z) , n−1

∑n
k=1 I {zn = z} . We slightly abuse notation

and let v(p, q) ,
∑

a∈A,z∈Z p(a)q(z)v(a, z) denote the expected reward under mixed actions
p ∈ ∆(A) and q ∈ ∆(Z); the distinction between v(a, z) and v(p, q) should be clear by their
arguments. The notation v(p, z) and v(a, q) is interpreted similarly.

Let hn−1 , {a1, z1, ..., an−1, zn−1} ∈ (A×Z)n−1 denote the history of the game up to
time n. A strategy π of the agent is a collection of the decision rules πn : (A×Z)n−1 →
∆(A), n ≥ 1, where each mapping πn specifies the mixed action for the agent at time n,
based on the observed history: pn = πn(hn−1). The pure action an taken by the agent is
then selected randomly according to pn. Similarly, the opponent’s strategy is denoted by
σ = {σn}∞n=1, with σn : (A×Z)n−1 → ∆(Z).

Below is the classical definition of an approachable set from Blackwell (1956).

Definition 2 (Approachable Set) A closed set S ⊆ R
ℓ is approachable by the agent’s

strategy π if the average reward V̄n converges to S in the point-to-set Euclidean distance,
almost surely for every strategy σ of the opponent1. The set S is approachable if there exists
such a strategy for the agent.

In what follows, we find it convenient to state all our results in terms of the expected
average reward, where the expected value is only with respect to the agent’s mixed actions:
v̄n , n−1

∑n
k=1 v(pk, zk). The stated convergence results are shown to hold pathwise, for

any possible sequence of the opponent’s actions. The corresponding almost sure results for
the actual average reward can be easily deduced using martingale convergence theory, by
noting that d

(

V̄n, S
)

≤
∥

∥V̄n − v̄n
∥

∥+ d (v̄n, S) . Now, the first term is the norm of the mean
of the martingale difference sequence Dk = v(ak, zk) − v(pk, zk) and can readily be shown
to converge to zero at a uniform rate of O (1/

√
n); see, e.g., Shiryaev (1995).

Next, we present a formulation of Blackwell’s Theorem (Blackwell, 1956) which provides
us with conditions for approachability of general and convex sets. To this end, for any

1. Blackwell’s original definition requires almost sure convergence at a uniform rate over opponent’s strate-

gies. Our algorithms satisfy this definition provided that the convergence of the employed calibrated

forecasts is uniform. However, we will not assume it here.
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x /∈ S, let c(x) ∈ S denote a closest point in S to x. Also, for any p ∈ ∆(A) let T (p) ,
{v(p, q) : q ∈ ∆(Z)}, which equals the convex hull of the points {v(p, z)}z∈Z .
Theorem 3

(i) Primal Condition and Algorithm. A closed set S ⊆ R
ℓ is called a B-set (where

B stands for Blackwell) if for every x /∈ S there exists a mixed action p∗ = p∗(x) ∈
∆(A) such that the hyperplane through y = c(x) perpendicular to the line segment xy,
separates x from T (p∗). Every B-set is approachable, by using at time n the mixed
action p∗(v̄n−1) whenever v̄n−1 /∈ S. If v̄n−1 ∈ S, an arbitrary action can be used.

(ii) Dual Condition. A closed set S ⊆ R
ℓ is called a D-set (where D stands for Dual)

if for every q ∈ ∆(Z) there exists p ∈ ∆(A) such that v(p, q) ∈ S. If a closed set S is
approachable then it is a D-set.

(iii) Convex Sets. Let S be a closed convex set. Then, the following statements are
equivalent: (i) S is approachable, (ii) S is a B-set, and (iii) S is a D-set.

Corollary 4 The convex hull of a D-set is approachable (and is also a B-set).

Proof The convex hull of a D-set is a convex D-set. The claim follows by part (iii) of
Theorem 3.

3. Opportunistic Approachability

In this Section, we define the desiderata for an opportunistic approachability algorithm. To
that end, we first define appropriate notions of a statistically and an empirically restricted
play of the opponent, as well as the response and goal function for the given target set. The
proofs of the results of this and other sections are omitted due to space constraints, and
can be found in Bernstein et al. (2013).

We start with the following assumption on the target set S.

Assumption 3.1 The set S is a D-set. Namely, for every q ∈ ∆(Z) there exists a response

p ∈ ∆(A) such that v(p, q) ∈ S.

Observe that we do not assume that S is a convex set. Consequently, while conv(S) is
approachable by Corollary 4, S itself need not be approachable.

Before making formal definitions, we state the idea of our approach. We propose al-
gorithms that simultaneously achieve the following goals, for any D-set S: (i) The convex
hull of S is approached, for any strategy of the opponent; (ii) If the empirical frequencies
of the opponent’s pure actions are restricted to a subset of its mixed actions space (in the
sense of Definition 6 below), then the algorithm approaches a corresponding strict subset
of conv(S). In particular, if the opponent is stationary, the set S itself is approached.

3.1. Restricted Opponent Play

We first consider the notion of a statistically restricted play of the opponent, in the sense that
the sequence of its mixed actions {qn} is asymptotically restricted to some set Q ⊆ ∆(Z).
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Definition 5 (Statistically Q-Restricted Play) We say that the play of the opponent
is statistically Q-restricted, if there exists a convex subset Q ⊆ ∆(Z) so that the se-
quence {qn} of the mixed actions of the opponent satisfies, for the given sample path,
limn→∞ n−1

∑n
k=1 d (qk, Q) = 0. Here, d(q,Q) is Euclidean point-to-set distance.

It should be emphasized that Definition 5 is stated in terms of the sample path of the
opponent’s play, and not in terms of its overall policy.

A weakness of Definition 5 is that the mixed actions of the opponent are not generally
revealed (when its strategy is not known), or may be meaningless (e.g., when the opponent
is Nature). We therefore define a weaker notion of an empirically restricted play of the
opponent, in terms of the empirical frequencies of the opponent’s pure actions. To this end,
we need to refer to a partition of the time axis into episodes on which these frequencies are
computed. We let τm denote the length of episode m = 1, 2, ... and nM =

∑M
m=1 τm denote

the time at the end of episode M . Finally, q̂m ∈ ∆(Z) denotes the empirical distribution
of the opponent’s actions at episode m, namely q̂m(z) = τ−1

m

∑nm

k=nm−1+1 I{zk = z}.
Definition 6 (Empirically Q-Restricted Play) We say that the play of the opponent
is empirically Q-restricted with respect to a partition {τm}, if there exists a convex subset
Q ⊆ ∆(Z) so that, for the given sample path, limM→∞ n−1

M

∑M
m=1 τmd (q̂m, Q) = 0.

Our definition of empirically Q-restricted play involves a general partition {τm} rather than
a partition with fixed lengths τm ≡ τ . The main reason behind this general definition is the
fact that we would like to cover the case of statistically stationary sequences.

Lemma 7 Suppose that, almost surely, the play of the opponent is statistically Q-restricted
in the sense of Definition 5. Then the requirement of Definition 6 is satisfied with respect
to any partition {τm} with super-logarithmically increasing episode lengths, namely with
limm→∞(logam/τm) = 0 for all a > 0.

A given sequence of actions may satisfy Definition 6 under different partitions, as the
following example demonstrates.

Example 3 Consider binary sequences of actions, and let Q = {(0.5, 0.5)}, a singleton. The
sequence 0101... is empirically Q-restricted with respect to any partition with fixed even
episode lengths, or with any strictly increasing episodes lengths. On the other hand, consider
the sequence 01001100001111.... The empirical frequencies of this sequence does not con-
verge to Q, but it is empirically Q-restricted with respect to a partition with exponentially
increasing lengths τm = 2m. However, if we choose any partition with sub-exponentially
increasing lengths, Definition 6 will not be satisfied. �

The next lemma shows that Definition 6 requires more than just convergence of q̄n to
Q. This requirement is motivated by the fact that we are interested in sequences for which
Definition 6 can be satisfied on sub-exponentially increasing partitions.

Lemma 8 If Definition 6 is satisfied with respect to a partition with sub-exponentially in-
creasing episode lengths (namely with limm→∞(τm/am) = 0 for all a > 0), then q̄n converges
to Q. However, the converse is not true. Namely, there exist a sequence of actions so that
q̄n converges to Q, but there is no partition with sub-exponentially increasing block lengths
so that Definition 6 is satisfied with respect to it.
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3.2. Response and Goal Functions

By definition of a D-set, one can define the following.

Definition 9 (Response Function) A function p∗ : ∆(Z) → ∆(A) is a response func-

tion relative to the target set S if for each q ∈ ∆(Z), v (p∗ (q) , q) ∈ S.

Below we demonstrate that p∗ cannot be continuous in general. A piecewise continuous
selection is always possible, as shown in Bernstein et al. (2013), Appendix A. We note that
the smoother is p∗, the tighter would be the approachability guarantees (see Definition
11 below, and the discussion following it). However, we do not impose any additional
assumptions on p∗ in the following.

Example 4 (Example 2 continued) Recall the approachability problem with the tar-
get D-set S = (−∞,−1] ∪ [1,∞) presented in Example 2. Let p , p(a1) and q , q(z1),
respectively, denote the probability of choosing action a1 by the agent and z1 by the oppo-
nent. Observe that for q < 0.5 and p ≤ 0.5 − q, we have that v(p, q) ≤ −1 and therefore
v(p, q) ∈ S. Similarly, for q > 0.5 and p ≥ 1.5 − q, we have that v(p, q) ≥ 1, implying that
v(p, q) ∈ S. We thus can define a response function as follows:

p∗(q) =

{

0, for q ≤ 0.5

1, otherwise.
(1)

While other selections possible, all of them will have a discontinuity at q = 0.5. �

The actual choice of p∗ is problem dependent. In Section 5, we will see an example
where p∗ is naturally defined as a best-response map. In general, we make the following.

Assumption 3.2 Let p∗ be a response function relative to the given target set S, which we
fix in the following.

We note that Assumption 3.2 implies Assumption 3.1 by the definition of p∗. Hence,
throughout, we suppose that Assumption 3.2 holds, and we do not refer to the target
set S explicitly.

The specified response function p∗ leads naturally to our next definition.

Definition 10 (Goal Function) The goal function v∗ : ∆(Z) → S is defined as v∗(q) =
v (p∗ (q) , q) for any q ∈ ∆(Z).

3.3. Opportunistic Strategies

When the play of the opponent is Q-restricted, we essentially require the average reward to
converge to V (Q) = conv{v∗(q) : q ∈ Q}, the convex hull of the image of Q under v∗ (see
Figure 1). Due to possible discontinuities in v∗, we need to slightly expand that definition.

Definition 11 (Closed Convex Image) The closed convex image of a set Q ⊆ ∆(Z)
under the goal function v∗ is defined as V +(Q) ,

⋂

ǫ>0 conv {v∗(q) : d(q,Q) ≤ ǫ} .

The set V +(Q) contains the convex hull of v∗(q), q ∈ Q, together with possible jumps in
v∗ on the boundary of Q. Note that V +(Q) ⊂ conv(S), as v∗(q) ∈ S by its definition.
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S

Q

q1
q2

q3

v∗(q1)

v∗(q2)

v∗(q3)

Figure 1: An illustration of the restriction set Q and V (Q).

Example 5 (Example 4 continued) Consider the response function defined in (1). The
corresponding goal function is given by v∗(q) = −2(1−q), q ≤ 0.5, and v∗(q) = 2q otherwise.
The closed convex image of singeltons is then V +({q}) = v∗(q) for q 6= 0.5, while V +({q}) =
conv ({−1, 1}) = [−1, 1] for q = 0.5. Observe that the discontinuity of v∗ at q = 0.5 is
expressed by the fact that V +({q}) is the “jump interval” [−1, 1]. �

We are now ready to define opportunistic approachability strategies.

Definition 12 (Statistically Opportunistic Approachability) A strategy π is statis-

tically opportunistic for a given target D-set S if it holds that limn→∞ d (v̄n, V
+(Q)) = 0

whenever the play of the opponent is statistically Q-restricted (Definition 5) for some set
Q ⊆ ∆(Z).

Definition 13 (Empirically Opportunistic Approachability) A strategy π is empiri-

cally opportunistic for a given target D-set S w.r.t. a partition {τm} if limn→∞ d (v̄n, V
+(Q)) =

0 whenever the play of the opponent is empirically Q-restricted w.r.t. {τm} (Definition 6)
for some set Q ⊆ ∆(Z).

It should be emphasized that the definitions of opportunistic approachability strategies
are based on the sample path properties of the opponent’s play, and the related convergence
results are required to hold without knowing the restriction set Q beforehand. Also, note
that these Definitions include the standard definition of approachability as a special case,
by setting Q = ∆(Z). Finally, observe that if a strategy is empirically opportunistic with
respect to some partition with super-logarithmically increasing lengths, it is also statistically
opportunistic (as follows from Lemma 7). But the converse is not necessarily true.

4. Calibration-Based Approachability

In this Section, we present the calibration-based algorithm that is the subject of this paper,
and show that it is an opportunistic approachability algorithm in the sense of Definitions
12 and 13.

4.1. Calibrated Forecasts

A forecaster specifies at each time step n a probabilistic forecast yn ∈ ∆(Z) of the op-
ponent’s action zn, based on the history of observed actions and previous forecasts. The
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forecaster’s policy may be randomized, i.e. it specifies a probability measure ηn over ∆(Z).
In this case, the forecast yn ∈ ∆(Z) is drawn at random according to ηn. The following is
a standard definition of a calibrated forecaster (see, e.g., Foster and Vohra (1997)).

Definition 14 (Calibrated Forecaster) A forecaster is calibrated if for every Borel mea-
surable set Q ⊆ ∆(Z) and every strategy of the opponent, it holds that

lim
n→∞

1

n

n
∑

k=1

I {yk ∈ Q} (1(zk)− yk) = 0, a.s., (2)

where 1(z) is the probability vector in ∆(Z) concentrated on z.

A deterministic forecaster can not be calibrated for all possible sequences (Dawid, 1985).
However, if the forecaster is allowed to randomize, calibration is possible (see the overview in
Cesa-Bianchi and Lugosi (2006), as well as Mannor et al. (2007) and Foster et al. (2011)).
The common approach is to use a finite ǫ-grid over ∆(Z) which is gradually refined in
order to fulfil the requirement of Definition 14. To achieve ǫ-calibration, the algorithms
usually process the entire grid for each prediction. The only computationally efficient algo-
rithms known in the literature are for the case of binary sequences (Mannor et al., 2007).
Moreover, it was shown in Hazan and Kakade (2012) that the existence of a general compu-
tationally efficient calibrated forecaster would imply the existence of an efficient algorithm
for computing approximate Nash equilibria, thus implying the unlikely conclusion that every
problem in PPAD (the class of problems that are polynomial time reducible to the problem
of computing Nash equilibrium in a two player game) is solvable in polynomial time.

4.2. The Calibrated Approachability Algorithm and Main Result

Recall that p∗ denotes a response function as per Definition 9. Our algorithm is conceptually
very simple – at each time n use the mixed action pn which is specified by

pn = p∗(yn), (3)

where yn is the calibrated forecast at time n.
The following Theorem summarizes the opportunistic approachability properties of this

algorithm. The detailed analysis of the algorithm that establishes these properties appears
in Bernstein et al. (2013), Appendix B.

Theorem 15 Suppose that Assumption 3.2 holds. Then:

(i) The Calibrated Approachability Algorithm specified by (3) is statistically opportunistic
in the sense of Definition 12.

(ii) Suppose that the probability distribution ηn of the employed calibrated forecast is chang-
ing slowly. Namely, there exists n0 < ∞ such that for all n ≥ n0,

‖ηn − ηn−1‖∞ ≤ C

nξ
, (4)

for some ξ > 0 and C < ∞. Then, the Calibrated Approachability Algorithm is
empirically opportunistic in the sense of Definition 13, under either

9
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(1) Bounded episodes lengths τm ≤ τ̄ < ∞, or

(2) Growing episodes lengths τm = O(mν) with ν > 0, under the condition that
ξ > ν/(ν + 1).

Proof Idea. The proof of general approachability is based on showing that the average
reward converges to n−1

∑n
k=1 v

∗(yk) which is in conv(S). As a consequence, part (i) follows
by showing that whenever the play of the opponent is statistically Q-restricted, so does the
sequence of calibrated forecasts. Thus, n−1

∑n
k=1 v

∗(yk) → V +(Q). (See Bernstein et al.
(2013), Appendix B.2 for the full proof.)

The empirical opportunistic approachability result (part (ii)) is obtained by showing
that the calibration property (2) implies a similar property in terms of the empirical fre-
quencies of the actions provided that the distributions of calibrated forecasts are changing
slowly in the sense of (4). (See Bernstein et al. (2013), Appendix B.3 for the full proof.)

We illustrate the importance of requirement (4) using the setting of Example 4, where
the goal is to approach the non-convex set S = (−∞,−1] ∪ [1,∞). Suppose that the op-
ponent’s actions are 0, 0, 1, 0, 0, 1, ..., implying that q̄n → q0 = (2/3, 1/3). An opportunistic
approachability algorithm should ideally converge in this case to V +({q0}) (see Definition
13). Indeed, the fixed forecaster yn = (2/3, 1/3) is calibrated, and the Calibrated Ap-
proachability Algorithm that uses this forecaster will approach V +({q0}) = v(p∗(q0), q0) =
v((1, 0), (2/3, 1/3)) = 4/3, where the first equality follows since q0 is a continuity point of
the response function p∗ defined in (1). Now since 4/3 ∈ S, the algorithm will approach
S. However, consider a perfect forecaster that predicts yn = 1(zn). If the Calibrated
Approachability Algorithm uses this forecaster, it approaches 2

3v
∗((1, 0)) + 1

3v
∗((0, 1)) =

2
3v((1, 0), (1, 0)) + 1

3v((0, 1), (0, 1)) = 2/3, which is not in S. Hence, in this case, only
convergence to conv(S) is guaranteed.

This example illustrates the fact that a perfect forecaster is bad for the purpose of em-
pirically opportunistic approachability. In fact, we would prefer a fixed forecaster, or more
generally, a slowly time-varying forecaster, as captured by condition (4). In Bernstein et al.
(2013), Appendix C, we show that there exists a specific calibration algorithm that satisfies
this property (see Corollary 35 there). We also conjecture that all calibrated forecasters
possess a certain smoothness property. Indeed, since a calibrated forecaster should be cal-
ibrated for all possible sequences, it is reasonable to assume that it will do some kind of
averaging based on the history of the observed actions, and thus will be smooth in some
sense (but maybe not in the uniform sense of (4)).

5. Generalized No-Regret and Constrained Regret Minimization

Recall the generalized no-regret problem presented in the Introduction. The repeated game
model is the same as above, except that the vector-valued reward function v is replaced
by r. In addition, suppose that for each mixed action q of the opponent, the agent has
a desired reward set R∗(q) ⊂ R

K , and at least one mixed action p = p∗(q) that satisfies
r(p, q) ∈ R∗(q). If a strategy of the agent ensures that limn→∞ d(R̄n, R

∗(q̄n)) = 0 (a.s.) for
any strategy of the opponent, we say that it is a no-regret or regret minimizing strategy
with respect to R∗(q). Observe that the existence of no-regret strategies is equivalent to

10
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the approachability of the set S = {v = (r, q) : r ∈ R∗(q)}. As was mentioned, our main
interest is in non-convex maps q 7→ R∗(q). Hence, the target set S is a non-convex D-set by
construction, and the opportunistic approachability theory developed in this paper applies.

We next specialize to the problem of regret minimization subject to average cost con-
straints (Mannor et al., 2009). Consider the same repeated game model, except that we
are given two functions: (i) a scalar reward (or utility) function u : A×Z → R, and (ii) a
vector-valued cost function c : A×Z → R

s. In addition, we are given a convex set Γ ⊆ R
s,

the constraint set, defining the allowed values for the long-term average cost (see below).
The typical case is that of linear constraints, that is Γ = {c ∈ R

s : ci ≤ γi, i = 1, ..., s} for
some vector γ ∈ R

s. The constraint set is assumed to be not excludable, in the sense that
for every q ∈ ∆(Z), there exists p ∈ ∆(A), such that c(p, q) ∈ Γ.

The agent is required to satisfy the cost constraints, in the sense that limn→∞ d(c̄n,Γ) =
0 must hold, irrespectively of the opponent’s play. Subject to these constraints, the agent
wishes to maximize its average reward ūn.

We note that a concrete learning application for the constrained regret minimization
problem was proposed in Bernstein et al. (2010). There, the on-line problem of merging the
output of multiple binary classifiers was considered, with the goal of maximizing the true-
positive rate, while keeping the false-positive rate under a given threshold 0 < γ < 1. As
shown there, this problem may be formulated as a constrained regret minimization problem.

Suppose the agent knew in advance that the empirical distribution q̄n equals to q. He
could then maximize its expected average reward subject to the constraints by always
choosing the mixed action p that solved the following program:

u∗Γ(q) , max
p∈∆(A)

{u(p, q) : c(p, q) ∈ Γ} . (5)

We consider u∗Γ(q) as the the best-reward-in-hindsight for the constrained problem. The goal
of the agent would be then to attain u∗Γ in the following sense.

Definition 16 (Constrained no-regret) A strategy of the agent π is a constrained no-

regret strategy with respect to a function u∗Γ if: (i) lim supn→∞ (u∗Γ(q̄n)− ūn) ≤ 0; and (ii)
limn→∞ d(c̄n,Γ) = 0 both hold almost surely, for every strategy of the opponent. If such a
strategy exists, we say that u∗Γ(·) is attainable.

We can formulate the constrained regret minimization problem as a particular case of the
generalized no-regret problem discussed in this paper. Indeed, let r(a, z) = (u(a, z), c(a, z)) ∈
R
1+s denote the vector-valued reward associated with this problem. The desired reward set

for a given mixed action q of the opponent is then given by R∗(q) = {r = (u, c) ∈ R
1+s :

u ≥ u∗Γ(q), c ∈ Γ}. The goal of the agent would be to approach R∗(q̄n). This is equivalent
to the approachability of the set S = {v = (r, q) ∈ R

1+s × ∆(Z) : r ∈ R∗(q)} with the
vector-valued reward function v(a, z) = (r(a, z),1(z)).

However, the function u∗Γ(q) is not convex in general, which implies that the set S is
not convex. Therefore, one cannot invoke the dual condition to infer approachability of S,
but only of its convex hull. Indeed, it was shown in Mannor et al. (2009) that S is not
approachable in general.

A feasible (approachable) target set is then conv(S) =
{

(r, q) ∈ R
s+1 ×∆(Z) : r ∈ Rc(q)

}

,
where Rc(q) = {r = (u, c) ∈ R

1+s : u ≥ conv (u∗Γ) (q), c ∈ Γ} and the function conv (u∗Γ) is
the lower convex hull of u∗Γ(·).

11
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Two algorithms were proposed in Mannor et al. (2009) for attaining the relaxed goal
function conv(u∗Γ). The first is a standard approachability algorithm for conv(S), which
requires the demanding calculation of projection directions to the convex hull of S. Further,
this algorithm is not opportunistic, in the sense described below. The second algorithm
relies on computing calibrated forecasts of the opponent’s actions, and as we show below is
equivalent to our calibration-based scheme when used for this special case.

In order to apply our algorithm, a response function p∗ (Definition 9) is required. It is
easily seen that any choice of p∗(q) ∈ argmaxp∈∆(A) {u(p, q) : c(p, q) ∈ Γ} yields a response
function. The goal function in this case is then

v∗(q) = (u∗Γ(q), c(p
∗(q), q), q) . (6)

Thus, our Calibrated Approachability Algorithm can be applied, and the results of
this section imply that the algorithm approaches conv(S), hence attains the relaxed goal
function conv(u∗Γ). In particular, S itself is approached whenever the opponent is either
statistically or empirically restricted to a singleton Q = {q0} that is a continuity point of
p∗(q). Interestingly, in the present case the last continuity requirement can be removed.

Lemma 17 For the model of the present section, V +({q}) ⊆ S (rather than conv(S)) for
every q ∈ ∆(Z).

Proof Observe that the first component of v∗ (defined in (6)) is continuous in q (see
Mannor et al. 2009). Also, note that the jumps of c(p∗(q), q), the second component of v∗ ,
lie entirely in S. This is true since, for the fixed first component, the induced set is convex
due to convexity of Γ. Consequently, the jumps of v∗(q) around a given q ∈ ∆(Z) lie in S,
which implies that V +({q}) ⊆ S by its definition.

This brings us back to our requirement for a constrained no-regret algorithm, in Defini-
tion 16. While this requirement cannot be attained for any strategy of the opponent, it is
attained whenever the opponent is asymptotically stationary, in the sense that its actions
are (statistically or empirically) converging to a singleton.

Corollary 18 For the model of the present section, whenever the play of the opponent is
either empirically or statistically {q0}-restricted, the Calibrated Approachability Algorithm
attains u∗Γ(q0) (rather than a relaxed goal) while satisfying the average cost constraints.

6. Conclusion and Future Work

In this paper, our central goal was to formulate the concept of opportunistic strategies
for the generalized no-regret problem. Our technical tool was Blackwell’s approachability
theory, which we extended to the opportunistic framework. We have also devised a class
of calibration-based approachability algorithms and shown that they are opportunistic in
the sense advocated here. The presented algorithms are computationally challenging in
that they require the computation of calibrated forecasts. In addition, a procedure for the
computation of the response function p∗ is required, the complexity of which is problem
dependent. However, given these two components, the computational burden is much lighter
than standard approachability that requires computing the projection to the target set and
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solving a zero-sum game in every stage. Specifically, it is sometimes difficult to compute
the projection to the convex hull of a non-convex set; a step which our approach avoids.

We have applied our opportunistic framework to the problem of constrained regret min-
imization, and shown that the best-reward-in-hindsight (rather than its convex relaxation)
is attained when the opponent turns out to be stationary in our sense.

It should be of interest to devise alternative algorithms that are computationally efficient
and have optimal convergence rates. Specifically, we are currently considering a new class
of algorithms that is based on online convex optimization methods.
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