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Abstract
We study the stochastic multi-armed bandit problem when oneknows the valueµ(⋆) of an optimal
arm, as a well as a positive lower bound on the smallest positive gap∆. We propose a new random-
ized policy that attains a regretuniformly bounded over timein this setting. We also prove several
lower bounds, which show in particular that bounded regret is not possible if one only knows∆,
and bounded regret of order1/∆ is not possible if one only knowsµ(⋆).

1. Introduction

In this paper we investigate the classical stochastic multi-armed bandit problem introduced by
Robbins(1952) and described as follows: an agent facingK actions (or bandit arms) selects
one arm at every time step until a finite time horizonn ≥ 1. Successive pulls of each arm
i ∈ {1, . . . ,K} yield a sequence of i.i.d rewardsY (i)

1 , Y
(i)
2 , . . . according to some unknown distri-

butionνi with expected valueµ(i). Denote by⋆ ∈ {1, . . . ,K} any optimal arm defined such that
µ(⋆) = maxi=1,...,K µ

(i). A policyI = {It} is a sequence of random variablesIt ∈ {1, ...,K} in-
dicating which arm to pull at each timet = 1, . . . , n and such thatIt depends only on observations
strictly anterior tot. The performance of a policyI is measured by its (cumulative)regretat time
n that is defined by

Rn = nµ(⋆) −
n∑

t=1

IEµ(It) .

Observe that if we denote byTi(t) =
∑t−1
ℓ=1 1{Iℓ = i} the number of times armi was pulled

(strictly) before timet ≥ 2 and by∆i = µ(⋆) − µ(i) the gap between armi and the optimal arm,
then one can rewrite the regret asRn =

∑K
i=1 ∆iIETi(n + 1). This formulation will be used

hereafter.
We refer the reader toBubeck and Cesa-Bianchi(2012) for a survey of the extensive litera-

ture on this problem and its variations. In this paper we investigate a phenomenon that was first
observed inLai and Robbins(1984a): with some prior knowledge (in the form of lower bounds)
on the maximal meanµ(⋆) and the minimal gap∆ = mini:∆i>0 ∆i, it is possible to obtain a re-
gret that isbounded uniformly inn, which implies in particular that the regret does not tend to
infinity as the time horizonn tends to infinity. Note that this result is striking, as the seminal pa-
perLai and Robbins(1985) indicates that, if one has no prior knowledge on the distributions, then
asymptotically (inn) a regret of orderlogn is unavoidable.
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1.1. Contributions

We describe in Section2 a simple algorithm for the two-armed bandit problem when oneknows the
largest expected rewardµ(⋆) and the gap∆. In this two-armed case, this amounts to knowingµ(1)

andµ(2) up to a permutation. We show that the regret of this algorithmis bounded by∆+ 16/∆,
uniformly in n. The optimality of this bound is assessed in Section4 where we show that any
agent knowing∆ andµ(⋆) must incur a regret of at least1/∆. This upper and lower bounds raise
the following question: can such bounded regret be achievedwithout one of these two pieces of
information? It follows from Theorems6 and8 that the answer to this question is negative. Indeed,
the sole knowledge of either∆ orµ(⋆) leads to a rescaled regret∆Rn that is at least logarithmic in
n. Interestingly, all these results are fully non-asymptotic, including lower bounds.

What if ∆ is not perfectly known but onlyε > 0 such that∆ > ε? We answer this question
in Section3 in the context of the generalK-armed bandit problem. There, we prove an upper
bound onRn when one knows the maximal meanµ(⋆) together with a positive lower boundε on
the smallest gap∆. Specifically, we design a randomized policy for which

Rn ≤
∑

i:∆i>0

{
∆i +

32

∆i
log
(5
ε

)}
.

Moreover, it follows form our main lower bound in Theorem8 that this result cannot be improved
without further assumptions, since forε of order of1/

√
n —no information on the smallest gap—

a logarithmic growth inn is unavoidable for the rescaled regret∆Rn. However forε of order∆
one would expect no dependency onε (since at least forK = 2 our policy of Section2 attains a
regret of order1/∆). To deal with this issue we propose an improvement of the basic policy that
for which the termlog(1/ε) is replaced bylog(∆i/ε) log log(1/ε). In particular if all the gaps∆i

andε are of the same order, the logarithmic becomes a log-log term.
Theexploration-exploitation tradeoffis a preponderant paradigm in the bandit literature. The

effects of this tradeoff already appear for the caseK = 2 in the form of thelogn term derived in the
original Lai and Robbins(1985) paper. Indeed, there exist simple classes of (two!) problems over
which the regret is uniformly bounded with full informationbut cannot be bounded uniformly with
bandit feedback, see Theorem6. Clearly, this tradeoff should become more and more apparent as
the number of arms increases but this is not our main focus. Rather, the combination of our results
sheds light on an interesting phenomenon: the effects of thetradeoff vanish when both∆ andµ(⋆)

are known but can be seen already whenK = 2 and either∆ or µ(⋆) is unknown.

1.2. Related works

The two-armed bandit problem when one knows the distributions of the arms up to a permutation
was first investigated inLai and Robbins(1984a). The authors observed that in that case, using a
policy based on the sequential likelihood ratio test, one can obtain a regret uniformly bounded over
n. Both upper and lower bounds were provided. This setting wasgeneralized inLai and Robbins
(1984b), where the authors considered the general multi-armed bandit problem when one knows
a separating valueγ between the largest mean and the other means. In that case they proved the
bounded regret property for a policy based on sequential likelihood ratio tests forH0 : µ > γ vs.
H1 : µ < γ (assuming exponential distributions to compute the likelihoods). They also designed a
more subtle strategy for the case when onlyµ(⋆) is known. In that case too they proved a bounded
regret property. The main open problems left by these works are (i) to understand the limitations of
bounded regret, and (ii) to characterize the exact dependence on the parameters in the regret (when
bounded regret is achievable). In this paper we make progress on both questions.

Regarding the limitations of bounded regret, we prove threefinite-time lower bounds, including
a finite-time version of the seminal result ofLai and Robbins(1985). Ideas similar to the ones we
develop in Theorems5 and6 already appeared inKulkarni and Lugosi(2000) but our results are
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fully non asymptotic with the exact dependence in the parameters involved. Theorem8 is more
innovative. It shows that a logarithmic growth for the rescaled regret∆Rn is unavoidable even if
one knowsµ(⋆). The proof of this result goes beyond any previous lower bound for the stochastic
multi-armed bandit problem, includingLai and Robbins(1984b, 1985), since all of them required
to distinguish problems with different values ofµ(⋆) (such as the ones in Theorem6 for example).
As a consequence of this theorem, we can deduce that the policies with bounded regret derived
in Lai and Robbins(1984b); Agrawal et al.(1989) with only the knowledge ofµ(⋆) must have a
suboptimal dependency in1/∆.

The knowledge ofµ(⋆) was also exploited in other works. For instance inSalomon and Audibert
(2011), the authors showed that knowingµ(⋆) allows for policies with provably better concentra-
tion properties. Their policies are based on sequential likelihood ratio tests forH0 : µ = µ(⋆) vs.
H1 : µ < µ(⋆) (assuming Gaussian distributions to compute the likelihoods). To some extent it
was to be expected that the knowledge ofµ(⋆) leads to an improved regret as it partially removes
the need for exploration: if one arm has empirical performances close toµ(⋆), one can be confident
that this is the best arm without worrying that it could be thebest arm only because we have not yet
explored enough the other options. However note that the problem turns out to be more subtle than
the above simple argument and underlines the fact that one needs more than the knowledge ofµ(⋆)

in order to have a bounded regret with optimal scaling in1/∆. Indeed, Theorem8 implies that the
sole knowledge ofµ(⋆) does not warrant the bounded property for the rescaled regret ∆Rn.

1.3. Basic assumptions

Throughout the paper, we assume that the distributionsνi are sub-Gaussian that is
∫
eλ(x−µ)νi(dx) ≤

eλ
2/2 for all λ ∈ IR. Note that these include Gaussian distributions with variance less than1 and

distributions supported on an interval of length less than2.
We denote bŷµ(i)

s = 1
s

∑s
ℓ=1 Y

(i)
ℓ the empirical mean of armi after s pulls, for s ≥ 1.

Together with a Chernoff bound, it is not hard to see that the sub-Gaussian assumption implies the
following concentration inequality, valid for anyu > 0,

IP(µ̂(i)
s − µ(i) > u) ≤ exp

(
−su

2

2

)
. (1)

2. The two-armed case

In this section we investigate a toy example whereK = 2 and the agent knows exactly both
µ(⋆) = 0 (without loss of generality) and∆. While somewhat simplistic this example offers a
convenient framework to lay the main ideas to build policieswith bounded regret.

Initialization:

(0) For roundst ∈ {1, 2}, select armIt = t.

For each roundt = 3, 4, . . .

(1) If µ̂(i)
Ti(t)

> −∆/2 andµ̂(i)
Ti(t)

> µ̂
(j)
Tj(t)

then select armi, i.e.,It = i.

(2) Otherwise select both arms, i.e.,It = 1 andIt+1 = 2.

Policy 1: A policy with bounded regret for the two-armed bandit problem.
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Theorem 1 Policy1 has regret bounded asRn ≤ ∆+ 16/∆, uniformly inn.

Proof Without loss of generality we assume that1 = ⋆ is the optimal arm. Observe that

{It = 2} ⊂ {t = 2} ∪ {µ̂(2)
T2(t)

> −∆/2 , t ≥ 3, It = 2} ∪ {µ̂(2)
T2(t)

≤ −∆/2 , t ≥ 3, It = 2}.

Summing overt for the second event, we get

IE

n∑

t=3

1{µ̂(2)
T2(t)

> −∆/2 , It = 2} ≤ IE

n∑

t=1

1{µ̂(2)
t > −∆/2} ≤

n∑

t=1

exp(−t∆2/8) ≤ 8

∆2
. (2)

For the third event we use the definition of the policy to obtain

{µ̂(2)
T2(t)

≤ −∆/2 , t ≥ 3, It = 2} ⊂ {µ̂(1)
T1(t−1) ≤ −∆/2 , t ≥ 3, It−1 = 1}

and conclude as in (2).

This policy has two weaknesses. First one may pay a big price for misspecifying the value of∆.
Namely if one only knows a lower bound0 < ε ≤ ∆ and substitutesε to ∆ in Policy 1, then it
follows easily that the regret becomes of order∆/ε2. Furthermore, for essentially the same reason,
the trivial generalization of this algorithm to theK-armed case would give a regret bounded by∑

i∆i/∆
2. In the next section we show how to overcome these two issues using a new, random-

ized, policy.

3. A family of policies with bounded regret

In this section we consider the general multi-armed case, when the agent knowsµ(⋆) = 0 (without
loss of generality) and anε > 0 such thatε ≤ ∆. Akin to Policy1, the policy analyzed here sets a
threshold at−ε/2 and prescribes to pull a single arm above this threshold. However if all arms have
their empirical mean below this threshold, then the policy is more subtle than what was described
in the previous section (where all arms were pulled in round robin fashion). Here the policy picks
an arm at random, where the probability of selecting armi is essentially proportional to(µ̂(i)

Ti(t)
)−2,

which is an empirical estimate of∆−2
i sinceµ(⋆) = 0. Policy2 is slighly more general, as it uses

a potential functionψ : IR+ → IR+, and selects armi with probability inversely proportional to
ψ(|µ̂(i)

Ti(t)
|). The natural choice isψ(x) = x2, but other choices can lead to improved performances,

see Theorem2 below. Note that we also analyze the case whereε = 0 (that is, when we have no
information on the smallest gap). Hereafter, we definea ∧ b = min(a, b) anda ∨ b = max(a, b).

Theorem 2 Fix ε ∈ (0, 1∧∆], then Policy2 associated with the potentialψ(x) = x2 satisfies for alln ≥ 1,

Rn ≤
∑

i:∆i>0

{
∆i +

32

∆i
log
(7
ε

)}
. (3)

Furthermore forε = 0, let v = IE
(
Y

(⋆)
1

)2
, then the regret is bounded as

Rn ≤
∑

i:∆i>0

{
∆i + (1 ∨ v)4 log(9n)

∆i

}
. (4)

The dependency inε can be reduced by using the potentialψ(x) = x2

log(4x/ε) since it yields

Rn ≤
∑

i:∆i>0

{
∆i +

32 log
(
2∆i
ε

)

∆i

[
2 + log log

(4
ε

)]}
. (5)
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Initialization:

(0) For roundst ∈ {1, . . . ,K}, select armIt = t.

For each roundt = K + 1,K + 2, . . .

(1) If there existsi such that̂µ(i)
Ti(t)

≥ −ε/2, then selectIt ∈ argmax1≤i≤K µ̂
(i)
Ti(t)

.

(2) Otherwise select randomly an arm according to the following probability distribution:

pi,t =
c

ψ(|µ̂(i)
Ti(t)

|)
, wherec =

K∑

j=1

1

ψ(|µ̂(j)
Tj (t)

|)
.

Policy 2: A family of policies with bounded regret for theK-armed bandit problem.

If ε is of the order of every∆i, then Equation (5) upper bounds the regret in
∑

i log log(1/∆i)/∆i;
on the other hand, using the potentialψ(x) = x2 only guarantees, under the same assumptions, a
bound in

∑
i log(1/∆i)/∆i.

The result forε = 0 implies that when one has no information on the smallest gap,our policy
does not obtain bounded regret but it recovers the performances of UCB,Auer et al.(2002). As we
shall see in Section4 it is in fact impossible to obtain bounded regret scaling in1/∆ if one only
knowsµ(⋆).

Theorem2 is deduced from the following more general regret bound for Policy 2 expressed in
terms of the properties of the potentialψ.

Theorem 3 Fix ε ∈ [0,∆] and letψ be a differentiable and increasing functionψ : [ε/2,∞) → IR+. If
ε > 0, Policy2 satisfies for alln ≥ 1,

Rn ≤
∑

i:∆i>0

{
∆i +

8

∆i
+

∆i

ψ(∆i/2)

[16ψ(ε/2)
ε2

+

∫ ∞

ε/2

2ψ′(x)

e
x2

2 − 1
dx
]}

. (6)

Furthermore forε = 0 it satisfies

Rn ≤
∑

i:∆i>0

(
∆i +

8

∆i
+

∆i

ψ(∆i/2)

n∑

t=1

IE ψ(|µ̂(1)
t |)

)
. (7)

Proof Without loss of generality we assume that1 = ⋆ is the optimal arm. We decompose the
event of a wrong selection into three events:

{It = i} ⊂ {t = i} ∪ {µ̂(i)
Ti(t)

> −∆i/2 , t ≥ K + 1, It = i}

∪ {µ̂(i)
Ti(t)

≤ −∆i/2 , t ≥ K + 1, It = i} .

Using (2) one can easily prove that the cumulative probability of thefirst two events is smaller
than8/∆2

i . For the third event, it is convenient to define the random variableZt ∈ {0, 1, 2} that
indicates whether the agent plays according to (0), (1) or (2) in Policy 2 at timet. We write the
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following, using the definition of the algorithm and the factthatψ is non-decreasing,

IP{µ̂(i)
Ti(t)

≤ −∆i/2 , t ≥ K + 1, It = i}

= IP{µ̂(i)
Ti(t)

≤ −∆i/2 , It = i , Z = 2}

= IE pi,t1{µ̂(i)
Ti(t)

≤ −∆i/2 , Zt = 2}

= IE
pi,t
p1,t

p1,t1{µ̂(i)
Ti(t)

≤ −∆i/2 , Zt = 2}

≤ IE
ψ(|µ̂(1)

T1(t)
|)

ψ(∆i/2)
p1,t1{µ̂(i)

Ti(t)
≤ −∆i/2 , Zt = 2}

≤ 1

ψ(∆i/2)
IE ψ(|µ̂(1)

T1(t)
|)p1,t1{Zt = 2}

≤ 1

ψ(∆i/2)
IE ψ(|µ̂(1)

T1(t)
|)1{µ̂(1)

T1(t)
< −ε/2 , t ≥ K + 1 , It = 1}.

A simple rewriting of time then concludes the proof for the case ofε = 0. We use the slight abuse
of notationψ−2(x) := [ψ−1(x)]2, andψ(∞) = limx→∞ ψ(x). Forε > 0 we have

n∑

t=1

IE ψ(|µ̂(1)
T1(t)

|)1{µ̂(1)
T1(t)

≤ −ε/2 , It = 1} ≤
n∑

t=1

IE ψ(|µ̂(1)
t |)1{|µ̂(1)

t | ≥ ε/2}

=
n∑

t=1

∫ ∞

0

IP
(
ψ(|µ̂(1)

t |)1{|µ̂(1)
t | ≥ ε/2} ≥ x

)
dx

=

n∑

t=1

{
ψ
(ε
2

)
IP
(
|µ̂(1)
t | > ε

2

)
+

∫ ∞

ψ(ε/2)

IP
(
|µ̂(1)
t | ≥ ψ−1(x)

)
dx
}

≤
n∑

t=1

{
2ψ
(ε
2

)
e−

tε2

8 +

∫ ψ(∞)

ψ(ε/2)

2e−
tψ−2(x)

2 dx
}

≤ 16

ε2
ψ
(ε
2

)
+

∫ ψ(∞)

ψ(ε/2)

2

e
ψ−2(x)

2 − 1
dx.

Making the change of variablex = ψ(u) concludes the proof of Theorem3.

Theorem2 follows from Theorem3 with specific choices forψ. First, takeψ(x) = x2, ε ∈
(0, 1] and observe that the integral in (6) can be computed as

∫ ∞

ε/2

4x

e
x2

2 − 1
dx = −4 log

(
1− e−

ε2

8

)
≤ 8 log

(3
ε

)
,

which gives (3). Whenε = 0, sinceIE ψ(|µ̂(1)
t |) = v/t, Equation (7) directly gives (4).

Next, we turn to the the slightly more sophisticated potential functionψ(x) = x2

log(4x/ε) . Ob-
serve that for anyx ≥ 0,

ψ′(x) =
2x

log(4x/ε)
− x

log2(4x/ε)
≤ 2x

log(4x/ε)
.
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Therefore, forε ∈ (0, 1], the integral in (6) is bounded from above by

∫ ∞

ε/2

4x

log(4x/ε)[e
x2

2 − 1]
dx ≤

∫ 1

ε/2

8

x log(4x/ε)
dx+

∫ ∞

1

9e−
x2

2 dx

≤ 8 log log(4/ε)− 8 log log 2 + 4

≤ 8 log log(4/ε) + 7 .

It concludes the proof of (5).

4. Lower bounds

We conclude our study of bounded regret in stochastic multi-armed bandits with three different
lower bounds. For simplicity, we phrase these results for the simple two-armed case. First we show
with Theorem5 that if one knows bothµ(⋆) and∆, then the best attainable regret is of order1/∆,
which matches (up to a numerical constant) the result of Theorem1. Next we show in Theorem6
that the sole knowledge of∆ leads to a lower bound of orderlog(n∆2)/∆. This theorem implies
that the bounds ofAudibert and Bubeck(2009), Auer and Ortner(2010) andPerchet and Rigollet
(2011) exhibit a tight dependence in∆ (for the two-armed case), unlike the famous result of
Lai and Robbins(1985). Moreover, compared to the proof ofLai and Robbins(1985), our approach
is (i) much simpler, (ii) non-asymptotic and (iii) it is not limited to a certain class of policies. Fi-
nally we show in Theorem8 that if one only knowsµ(⋆) then a regret of orderlog(n)∆ is unavoidable
(for some value of∆).

Our proof strategy consists in rephrasing arm selection as ahypothesis testing problem, and
then use well-known lower bounding techniques for the minimax risk of hypothesis testing. For
instance, the proof of Theorem5 and Theorem6 builds upon the following result; see (Tsyabkov,
2009, Chaper 2) for a proof, or Lemma7 below withλ chosen to be a Dirac mass at1. Recall that
the Kullback-Leibler divergence between two positive measuresρ, ρ′ with ρ′ absolutely continuous
with respect toρ, is defined as

KL(ρ, ρ′) =

∫
log

(
dρ

dρ′

)
dρ = IEX∼ρ log

(
dρ

dρ′
(X)

)
.

Lemma 4 Letρ0, ρ1 be two probability distributions supported on some setX , withρ1 absolutely continuous
with respect toρ0. Then for any measurable functionψ : X → {0, 1}, one has

IPX∼ρ0(ψ(X) = 1) + IPX∼ρ1(ψ(X) = 0) ≥ 1

2
exp (−KL(ρ0, ρ1)) .

In this section we denote byν = ν1 ⊗ ν2 the product distribution that generates the rewards
from νj when pulling armj ∈ {1, 2}. The regret of a policy that observes such rewards is denoted
by Rn(ν). Finally let IPν denote the probability associated toν and byIEν the corresponding
expectation.

Hereafter, we favor rewards that are normally distributed because they lead to simpler calcula-
tions of the KL-divergence. However, our lower bounds remain of the same order for all families of
distributions{ρµ}µ with expected valueµ and such thatKL(ρµ− ρµ′) ≥ C(µ−µ′)2 for some ab-
solute constantC > 0. This is the case, for example, of the Bernoulli distribution with parameterµ
as long asµ remains bounded away from 0 and 1; see, e.g., (Rigollet and Zeevi, 2010, Lemma 4.1).

The first lower bound illustrates that when one knows the distributions up to a permutation, the
best one can hope for is a bounded regret of order1/∆.
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Theorem 5 Let ν = N (0, 1) ⊗ N (−∆, 1) andν′ = N (−∆, 1) ⊗ N (0, 1). Then for any policy, and for
everyn ≥ 1,

max (Rn(ν), Rn(ν
′)) ≥ 1

4∆
.

Proof In this proof we assume that the policy has access tot rewards from each arm at time step
t. Clearly this full information setting is simpler than the bandit setting, and thus a lower bound for
the former implies one for the latter. Using Lemma4 as well as straightforward computations one
obtains

max (Rn(ν), Rn(ν
′)) ≥ 1

2
(Rn(ν) +Rn(ν

′)) =
∆

2

n∑

t=1

(IPν(It = 2) + IPν′(It = 1))

≥ ∆

4

n∑

t=1

exp(−KL(ν⊗t, ν′⊗t)) =
∆

4

n∑

t=1

exp(−t∆2) ≥ 1

4∆
.

The above theorem ensures that the regret bound of Theorem1 has the correct dependence in∆.
This is quite surprising as the original bound ofLai and Robbins(1985) indicates that without
the knowledge ofµ(⋆) and∆, one can incur a regret that diverges to infinity at a logarithmic
rate. The next result shows that this logarithmic regret already appears when one does not know
the value ofµ(⋆). Thus the knowledge of∆ without the knowledge ofµ(⋆) is not sufficient to
obtain a bounded regret. Moreover, the following lower bound matches the upper bounds (for the
two-armed case) ofAudibert and Bubeck(2009), Auer and Ortner(2010) andPerchet and Rigollet
(2011), thus proving their optimality.

Theorem 6 Letν = δ0 ⊗N (−∆, 1) andν′ = δ0 ⊗N (∆, 1). Then for any policy, and anyn ≥ 1,

max (Rn(ν), Rn(ν
′)) ≥ log(n∆2/2)

4∆
.

Proof First note that

max (Rn(ν), Rn(ν
′)) ≥ Rn(ν) ≥ ∆IEνT2(n).

Furthermore, denoting byνt (respectivelyν′t) the law of the observed rewards up to timet underν
(respectively underν′), and following the same computations than in the previous proof, one also
obtains

max (Rn(ν), Rn(ν
′)) ≥ ∆

4

n∑

t=1

exp(−KL(νt, ν
′
t)).

Since underν, arm 1 is uninformative, it follows from basic calculation that

KL(νt, ν
′
t) = 2∆2IEνT2(t) .

The above three displays yield

max (Rn(ν), Rn(ν
′)) ≥ ∆

2

(
IEνT2(n) +

n

4
exp(−2∆2IEνT2(n))

)

≥ min
x∈[0,n]

∆

2

(
x+

n

4
exp(−2∆2x)

)
≥ log(n∆2/2)

4∆
.
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Finally we prove that the knowledge ofµ(⋆) without the knowledge of∆ is not sufficient either
to obtain a bounded rescaled regret∆Rn. This result is more difficult, and falls within the more
general topic of lower bounds for adaptive rates. First we need to generalize Lemma4 to deal with
both a composite alternative, and a rescaled risk. The proofof this result is standard and postponed
to the appendix.

Lemma 7 Letρ0 andρ∆,∆ ∈ IR be probability distributions supported on some setX , with ρ∆ absolutely
continuous with respect toρ0. Letλ be a finite positive measure onIR. Then for any measurable function
ψ : X → {0, 1}, one has

IPX∼ρ0(ψ(X) = 1) +

∫
∆IPX∼ρ∆(ψ(X) = 0)dλ(∆) ≥ 1

Cλ
exp (−KL(ρ0, ρ̄)) ,

whereρ̄ is the positive measure onX defined bȳρ =
∫
∆ρ∆dλ(∆) andCλ = 1 +

∫
∆dλ(∆).

Note that
∫
∆ρ∆λ(∆) is not a probability distribution, however it is a positive measure thus

the Kullback-Leibler divergence in the above lemma is well-defined.

Theorem 8 Letν0 = N (0, 1)⊗N (−1, 1), andν∆ = N (−∆, 1)⊗N (0, 1),∆ ∈ (0, 1]. Then for any policy,
and anyn ≥ 1,

max

(
Rn(ν0), sup

∆∈(0,1]

∆Rn(ν∆)

)
≥ 1

2
log(n/139).

Theorem8 can be read as follows: for any policy, and anyn ≥ 1, there exists∆ ∈ (0, 1] and a
problem instance with gap∆ and optimal valueµ(⋆) = 0 such that on this problem one has

Rn ≥ log(n/139)

2∆
.

Proof Similarly to the previous proof we defineν0,t andν∆,t as the law of the observed rewards
up to timet. Lemma7 yields

max

(
Rn(ν0), sup

∆∈(0,1]

∆Rn(ν∆)

)
≥ 1

2Cλ

n∑

t=1

exp

(
−KL

(
ν0,t,

∫
∆ν∆,tdλ(∆)

))
. (8)

Forν ∈ {ν0, ν∆}, define the average rewards for armi ∈ {1, 2} by µ(i)
ν . Therefore,µ(1)

ν0 = µ
(2)
ν∆ =

0, µ(2)
ν0 = −1 andµ(1)

ν∆ = −∆. Recall that a policy{It}t≥1 taking values in{1, 2} generates a

sequence of rewardsY (It)
t , t ≥ 1 distributed according toν ∈ {ν0, ν∆}. The joint density (with

respect to the Lebesgue measure)dνt of (Y (It)
1 , . . . , Y

(It)
t ) ∈ IRt, whereν ∈ {ν∆, ν0} can be

computed easily using the chain rule for conditional densities. It is given by

dνt =
1

(2π)t/2
exp

(
− 1

2

t∑

ℓ=1

(Y
(Iℓ)
ℓ − µ(Iℓ)

ν )2
)
.

Choosingν = ν∆ andν = ν0 respectively, it yields

dν∆,t
dν0,t

(Y
(I1)
1 , . . . , Y

(It)
t ) = exp

(
− 1

2

t∑

ℓ=1

[
(Y

(Iℓ)
ℓ − µ(Iℓ)

ν∆ )2 − (Y
(Iℓ)
ℓ − µ(Iℓ)

ν0 )2
])

= exp
(
− 1

2

t∑

ℓ=1
Iℓ=1

[
(Y

(1)
ℓ +∆)2 − (Y

(1)
ℓ )2

]
− 1

2

t∑

ℓ=1
Iℓ=2

[
(Y

(2)
ℓ )2 − (Y

(2)
ℓ + 1)2

])

= exp

(
−T

(1)

2
(2∆µ̂(1) +∆2) +

T (2)

2
(2µ̂(2) + 1)

)
,

9
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where we denote for simplicity

T (i) = Ti(t+ 1) =
t∑

ℓ=1

1{Iℓ = i} and µ̂(i) = µ̂
(i)
Ti(t)

=
1

T (i)

t∑

ℓ=1
Iℓ=i

Y
(i)
ℓ , i ∈ {1, 2} .

Dropping the dependency in(Y (I1)
1 , . . . , Y

(It)
t ) from the notation, it yields

∫
∆
dν∆,t
dν0,t

dλ(∆) = exp

(
T (2)

2
(2µ̂(2) + 1)

)∫
∆exp

(
−T

(1)

2
(2∆µ̂(1) +∆2)

)
dλ(∆) ,

and thus

KL

(
ν0,t,

∫
∆ν∆,tdλ(∆)

)

= −IEν0

(
T (2)

2
(2µ̂(2) + 1) + log

(∫
∆exp

(
−T

(1)

2
(2∆µ̂(1) +∆2)

)
dλ(∆)

))

=
1

2
IEν0T

(2) − IEν0 log

(∫
∆exp

(
−T

(1)

2
(2∆µ̂(1) +∆2)

)
dλ(∆)

)

where the last line follows standard computations. Next, itfollows from the Cauchy-Schwarz
inequality that the function

x 7→ log

(∫

∆

∆exp(ϕ(∆)x)dλ(∆)

)

is convex for any functionϕ. Together with the Jensen inequality, it yields

IEν0 log

(∫
∆exp

(
−T

(1)

2
(2∆µ̂(1) +∆2)

)
dλ(∆)

)

≥ log

(∫
∆exp

(
−IEν0

T (1)

2
(2∆µ̂(1) +∆2)

)
dλ(∆)

)

= log

(∫
∆exp

(
− IEν0T

(1)

2
∆2

)
dλ(∆)

)

Defineτ = IEν0T
(1) and letλ be the uniform distribution on[0, 1/

√
τ ]. Sinceue−u

2/2 ≥ u/2 for
0 ≤ u ≤ 1, it yields

∫
∆exp

(
− IEν0T

(1)

2
∆2

)
dλ(∆) =

1√
τ

∫ 1

0

u exp(−u2/2)du ≥ 1

4
√
τ
,

Thus we have proved that

KL

(
ν0,t,

∫ 1

0

∆ν∆,td∆

)
≤ 1

2
IEν0T

(2) + log(4
√
IEν0T

(1))

≤ 1

2
IEν0T2(n) +

1

2
log(16n).

Plugging this into (8) one obtains

max

(
Rn(ν0), sup

∆∈(0,1]

∆Rn(ν∆)

)
≥

√
n

8Cλ
exp

(
−1

2
IEν0T2(n)

)
≥

√
n

16
exp

(
−1

2
IEν0T2(n)

)
,

10
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where we use the fact thatτ ≥ 1, which impliesCλ ≤ 3/2 ≤ 2. On the other hand one also has

Rn(ν0) ≥ IEν0T2(n)

Therefore

max

(
Rn(ν0), sup

∆∈(0,1]

∆Rn(ν∆)

)
≥ min
x∈[0,n]

1

2

(
x+

√
n

16
exp(−x/2)

)
=

1

2
log(n/139) .

Theorem6 and8 have important consequences on theexploration-exploitation tradeoffmen-
tioned in the introduction. Indeed, consider the full information case where at each round, the agent
observes the reward of both arms. In this case, it is not hard to see that the policy that indicates
to pull the arm with the best average reward has bounded regret of order1/∆. Therefore, the
knowledge of∆ or µ(⋆) alone does not alleviate the price for exploration. However, when both are
known, it vanishes (see Theorem1).
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Appendix A. Proof of Lemma 7

Throughout the proof, Radon-Nikodym derivatives overX are taken with respect to a common but
unspecified reference measure. It does not enter our final result. It follows from Fubini’s Theorem
that

IPX∼ρ0(ψ(X) = 1) +

∫
∆IPX∼ρ∆(ψ(X) = 0)dλ(∆)

=

∫

ψ=1

dρ0 +

∫ (∫

ψ=0

∆dρ∆

)
dλ(∆)

=

∫

ψ=1

dρ0 +

∫

ψ=1

dρ̄ =

∫

ψ=0

dρ0 +

∫

ψ=1

dρ̄

dρ0
dρ0

Furthermore the last expression is clearly minimized forψ(x) = 1

{
dρ̄
dρ0

(x) > 1
}

. It yields

∫

ψ=1

dρ0 +

∫

ψ=0

dρ̄

dρ0
dρ0 ≥

∫

dρ̄
dρ0

>1

dρ0 +

∫

dρ̄
dρ0

≤1

dρ̄

dρ0
dρ0(x)

=

∫

dρ̄
dρ0

>1

dρ0 +

∫

dρ̄
dρ0

≤1

dρ̄ =

∫
min (dρ0, dρ̄) .

Note that the latter quantity is often referred to asHellinger affinityand does not depend on the
reference measure onX ; see, e.g.,Tsyabkov(2009), Chapter 2. Now using the Cauchy-Schwarz
inequality and the fact that

∫
min (dρ0, dρ̄) +

∫
max (dρ0, dρ̄) = Cλ ,

we get

(∫ √
dρ̄dρ0

)2

=

(∫ √
min(dρ̄, dρ0)max(dρ̄, dρ0)

)2

≤
(∫

x

min(dρ̄, dρ0)

)(∫

x

max(dρ̄, dρ0)

)

≤ Cλ

∫

x

min(dρ̄, dρ0).

The above three displays together yield

IPX∼ρ0(ψ(X) = 1) +

∫

∆

∆IPX∼ρ∆(ψ(X) = 0)dλ(∆) ≥ 1

Cλ

(∫ √
dρ̄dρ0

)2

.

To complete the proof, observe that the Jensen inequality yields

(∫ √
dρ̄dρ0

)2
=
(∫ √ dρ̄

dρ0
dρ0

)2
= exp

[
2 log

(∫ √ dρ̄

dρ0
dρ0

)]

≥ exp
[
2

∫
log
(√ dρ̄

dρ0

)
dρ0

]
= exp[−KL(ρ0, ρ̄)].
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