
JMLR: Workshop and Conference Proceedings vol 30 (2013) 1–21

Randomized partition trees for exact nearest neighbor search

Sanjoy Dasgupta dasgupta@cs.ucsd.edu
Department of Computer Science and Engineering
University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093

Kaushik Sinha kaushik.sinha@wichita.edu

Department of Electrical Engineering and Computer Science

Wichita State University

1845 Fairmount Street, Wichita, KS 67260

Abstract

The k-d tree was one of the first spatial data structures proposed for nearest neighbor
search. Its efficacy is diminished in high-dimensional spaces, but several variants, with
randomization and overlapping cells, have proved to be successful in practice. We analyze
three such schemes. We show that the probability that they fail to find the nearest neighbor,
for any data set and any query point, is directly related to a simple potential function that
captures the difficulty of the point configuration. We then bound this potential function
in two situations of interest: the first, when data come from a doubling measure, and the
second, when the data are documents from a topic model.

Keywords: Nearest-neighbor search.

1. Introduction

The problem of nearest neighbor search has engendered a vast body of algorithmic work.
In the most basic formulation, there is a set S of n points, typically in an Euclidean space
Rd, and any subsequent query point must be answered by its nearest neighbor (NN) in S.
A simple solution is to store S as a list, and to address queries using a linear-time scan of
the list. The challenge is to achieve a substantially smaller query time than this.

We will consider a prototypical modern application in which the number of points n and
the dimension d are both large. The primary resource constraints are the size of the data
structure used to store S and the amount of time taken to answer queries. For practical
purposes, the former must be O(n), or maybe a little more, and the latter must be o(n).
Secondary constraints include the time to build the data structure and, sometimes, the time
to add new points to S or to remove existing points from S.

A major finding of the past two decades has been that these resource bounds can be met
if it is enough to merely return a c-approximate nearest neighbor, whose distance from the
query is at most c times that of the true nearest neighbor. One such method that has been
successful in practice is locality sensitive hashing (LSH), which has space requirement n1+ρ

and query time O(nρ), for ρ ≈ 1/c2 (Andoni and Indyk, 2008). It makes use of random
projection, which is also the basis of some other approximate NN methods (Kleinberg, 1997;
Ailon and Chazelle, 2009). A rather different approach is the balanced box decomposition

c© 2013 S. Dasgupta & K. Sinha.

Dasgupta Sinha

tree, which takes O(n) space and answers queries with an approximation factor c = 1 + ε in
O((6/ε)d log n) time (Arya et al., 1998).

In some of these results, an exponential dependence on dimension is evident, and indeed
this is a familiar blot on the nearest neighbor landscape. One way to mitigate the curse of
dimensionality is to consider situations in which data have low intrinsic dimension do, even
if they happen to lie in Rd for d� do or in a general metric space.

A common assumption is that the data are drawn from a doubling measure of dimension
do (or equivalently, have expansion rate 2do); this is defined in Section 4.1 below. Under
this condition, Karger and Ruhl (2002) have a scheme that gives exact answers to nearest
neighbor queries in time O(23do log n), using a data structure of size O(23don). The more
recent cover tree algorithm (Beygelzimer et al., 2006), which has been used quite widely,
creates a data structure in space O(n) and answers queries in time O(2do log n). There
is also work that combines intrinsic dimension and approximate search. The navigating
net (Krauthgamer and Lee, 2004), given data from a metric space of doubling dimension do,
has size O(2O(do)n) and gives a (1+ε)-approximate answer to queries in time O(2O(do) log n+
(1/ε)O(do)); the crucial advantage here is that doubling dimension is a more general and
robust notion than doubling measure.

Despite these and many other results, there are two significant deficiencies in the nearest
neighbor literature that have motivated the present paper. First, existing analyses have
succeeded at identifying, for a given data structure, highly specific families of data for
which efficient exact NN search is possible—for instance, data from doubling measures—
but have failed to provide a more general characterization. Second, there remains a class of
nearest neighbor data structures that are popular and successful in practice, but that have
not been analyzed thoroughly. These structures combine classical k-d tree partitioning with
randomization and overlapping cells, and are the subject of this paper.

1.1. Three randomized tree structures for exact NN search

The k-d tree is a partition of Rd into hyper-rectangular cells, based on a set of data
points (Bentley, 1975). The root of the tree is a single cell corresponding to the entire
space. A coordinate direction is chosen, and the cell is split at the median of the data along
this direction (Figure 1, left). The process is then recursed on the two newly created cells,
and continues until all leaf cells contain at most some predetermined number no of points.
When there are n data points, the depth of the tree is at most about log(n/no).

Given a k-d tree built from data points S, there are several ways to answer a nearest
neighbor query q. The quickest and dirtiest of these is to move q down the tree to its
appropriate leaf cell, and then return the nearest neighbor in that cell. This defeatist search
takes time just O(no + log(n/no)), which is O(log n) for constant no. The problem is that
q’s nearest neighbor may well lie in a different cell, for instance when the data happen to
be concentrated near cell boundaries. Consequently, the failure probability of this scheme
can be unacceptably high.

Over the years, some simple tricks have emerged, from various sources, for reducing the
failure probability. These are nicely laid out by Liu et al. (2004), who show experimentally
that the resulting algorithms are effective in practice.

2

Randomized trees for NN search

Figure 1: Left: A k-d tree, with axis-parallel splits. Right: A variant in which the split
directions are chosen randomly from the unit sphere.

Function MakeRPTree(S)
If |S| ≤ no: return leaf containing S
Pick U uniformly at random from the unit sphere

Pick β uniformly at random from [1/4, 3/4]
Let v be the β-fractile point on the projection of S onto U
Rule(x) = (left if x · U < v, otherwise right)
LeftSubtree = MakeRPTree({x ∈ S : Rule(x) = left})
RightSubtree = MakeRPTree({x ∈ S : Rule(x) = right})
Return (Rule(·), LeftSubtree, RightSubtree)

Figure 2: The random projection tree (RP tree)

The first trick is to introduce randomness into the tree. Drawing inspiration from
locality-sensitive hashing, Liu et al. (2004) suggest preprocessing the data set S by randomly
rotating it, and then applying a k-d tree (or related tree structure). This is rather like
splitting cells along random directions as opposed to coordinate axes (Figure 1, right). In
this paper, we consider a data structure that uses random split directions as well as a
second type of randomization: instead of putting the split point exactly at the median, it
is placed at a fractile chosen uniformly at random from the range [1/4, 3/4]. The resulting
structure (Figure 2) is almost exactly the random projection tree (or RP tree) of Dasgupta
and Freund (2008). That earlier work showed that in RP trees, the diameters of the cells
decrease (down the tree) at a rate depending only on the intrinsic dimension of the data.
It is a curious result, but is not helpful in analyzing nearest neighbor search, and in this
paper we develop a different line of reasoning. Indeed, there is no point of contact between
that earlier analysis and the one we embark upon here.

A second trick suggested by Liu et al. (2004) for reducing failure probability is to allow
overlap between cells. This also appeared in earlier work of Maneewongvatana and Mount
(2001). Once again, each cell C is split along a direction U(C) chosen at random from the

3

Dasgupta Sinha

 12 12

 1 � �� 1
2 + ↵ 1

2 + ↵

median split perturbed split overlapping split

Figure 3: Three types of split. The fractions refer to probability mass. α is some constant,
while β is chosen uniformly at random from [1/4, 3/4].

unit sphere. But now, three split points are noted: the median m(C) of the data along
direction U , the (1/2)−α fractile value l(C), and the (1/2) +α fractile value r(C). Here α
is a small constant, like 0.05 or 0.1. The idea is to simultaneously entertain a median split

left = {x : x · U < m(C)} right = {x : x · U ≥ m(C)}

and an overlapping split (with the middle 2α fraction of the data falling on both sides)

left = {x : x · U < r(C)} right = {x : x · U ≥ l(C)}.

In the spill tree (Liu et al., 2004), each data point in S is stored in multiple leaves, by
following the overlapping splits. A query is then answered defeatist-style, by routing it to
a single leaf using median splits.

Both the RP tree and the spill tree have query times of O(no+log(n/no)), but the latter
can be expected to have a lower failure probability, and we will see this in the bounds we
obtain. On the other hand, the RP tree requires just linear space, while the size of the spill
tree is O(n1/(1−lg(1+2α))). When α = 0.05, for instance, the size is O(n1.159).

In view of these tradeoffs, we consider a further variant, which we call the virtual spill
tree. It stores each data point in a single leaf, following median splits, and hence has linear
size. However, each query is routed to multiple leaves, using overlapping splits, and the
return value is its nearest neighbor in the union of these leaves.

The various splits are summarized in Figure 3, and the three trees use them as follows:

Routing data Routing queries

RP tree Perturbed split Perturbed split
Spill tree Overlapping split Median split

Virtual spill tree Median split Overlapping split

One small technicality: if, for instance, there are duplicates among the data points, it
might not be possible to achieve a median split, or a split at a desired fractile. We will
ignore these discretization problems.

4

Randomized trees for NN search

1.2. Analysis of failure probability

Our three schemes for nearest neighbor search—the RP tree and the two spill trees—can
be analyzed in a simple and unified framework. Pick any data set x1, . . . , xn ∈ Rd and any
query q ∈ Rd. The probability of failure, of not finding the nearest neighbor, can be shown
to be directly related to the quantity

Φ(q, {x1, . . . , xn}) =
1

n

n∑
i=2

‖q − x(1)‖
‖q − x(i)‖

,

where x(1), x(2), . . . denotes an ordering of the xi by increasing distance from q. For RP
trees, the failure probability is proportional to Φ log(1/Φ) (Theorem 7); for the two spill
trees, it is proportional to Φ (Theorem 6). The results extend easily to the problem of
searching for the k nearest neighbors. Moreover, these bounds are roughly tight: a failure
probability proportional to Φ is inevitable unless there is a significant amount of collinearity
within the data (Corollary 2).

Let’s take a closer look at this potential function. If Φ is close to 1, then all the points
are roughly the same distance from q, and so we can expect that the NN query is not easy
to answer. On the other hand, if Φ is close to zero, then most of the points are much further
away than the nearest neighbor, so the latter should be easy to identify. Thus the potential
function is an intuitively reasonable measure of the difficulty of NN search.

This general characterization of data configurations amenable to efficient exact NN
search, by the three data structures, is our main result. Earlier work has looked at other
data structures, and has only provided guarantees for very specific families of data. To
illustrate our theorem, we bound Φ for two commonly-studied data types. In either scenario,
the queries are arbitrary.

• When x1, . . . , xn are drawn i.i.d. from a doubling measure (Section 4.1). As we dis-
cussed earlier, this is the assumption under which many other results for exact NN
search have been obtained.

• When x1, . . . , xn are documents drawn from a topic model (Section 4.2).

For doubling measures of intrinsic dimension do, we show that the spill tree is able to answer
exact nearest neighbor queries in time O(do)

do +O(log n), with a probability of error that
is an arbitrarily small constant, while the RP tree is slower by only a logarithmic factor
(Theorem 9). These are close to the best results that have been obtained using other data
structures. (The failure probability is over the randomization in the tree structure, and can
be further reduced by building multiple trees.) We chose the topic model as an example
of a significantly harder case: its data distribution is more concentrated, in the sense that
there are a lot of data points that are only slightly further away than the nearest neighbor.
The resulting savings are far more modest though non-negligible: for large n, the time to

answer a query is roughly n · 2−O(
√
L), where L is the expected document length.

In some situations, the time to construct the data structure, and the ability to later
add or remove data points, are significant factors. It is readily seen that the construction
time for the spill tree is proportional to its size, while that of the RP tree and the virtual
spill is O(n log n). Adding and removing points is also easy: all guarantees hold if these are
performed locally, while rebuilding the entire data structure every O(n) operations.

5

Dasgupta Sinha

2. A potential function for point configurations

To motivate the potential function Φ, we start by considering what happens when there are
just two data points and one query point.

2.1. How random projection affects the relative placement of three points

Consider any q, x, y ∈ Rd, such that x is closer to q than is y; that is, ‖q − x‖ ≤ ‖q − y‖.
Now suppose that a random direction U is chosen from the unit sphere Sd−1, and that

the points are projected onto this direction. What is the probability that y falls between
q and x on this line? The following lemma answers this question exactly. An approximate
solution, with different proof method, was given earlier by Kleinberg (1997).

Lemma 1 Pick any q, x, y ∈ Rd with ‖q − x‖ ≤ ‖q − y‖. Pick a random unit direction U .
The probability, over U , that y · U falls (strictly) between q · U and x · U is

1

π
arcsin

‖q − x‖
‖q − y‖

√
1−

(
(q − x) · (y − x)

‖q − x‖ ‖y − x‖

)2
 .

Proof We may assume U is drawn from N(0, Id), the d-dimensional Gaussian with mean
zero and unit covariance. This gives the right distribution if we scale U to unit length, but
we can skip this last step since it has no effect on the question at hand.

We can also assume, without loss of generality, that q lies at the origin and that x lies
along the (positive) x1-axis: that is, q = 0 and x = ‖x‖e1. It will then be helpful to split
the direction U into two pieces, its component U1 in the x1-direction, and the remaining
d− 1 coordinates UR. Likewise, we will write y = (y1, yR).

If yR = 0 then x, y, and q are collinear, and the projection of y cannot possibly fall
between those of x and q. Henceforth assume yR 6= 0. Let E denote the event of interest:

E ≡ y · U falls between q · U (that is, 0) and x · U (that is, ‖x‖U1)

≡ yR · UR falls between −y1U1 and (‖x‖ − y1)U1

The interval of interest is either (−y1|U1|, (‖x‖−y1)|U1|), if U1 ≥ 0, or (−(‖x‖−y1)|U1|, y1|U1|),
if U1 < 0. Now yR · UR is independent of U1 and is distributed as N(0, ‖yR‖2), which is
symmetric and thus assigns the same probability mass to the two intervals. Therefore

PrU (E) = PrU1PrUR(−y1|U1| < yR · UR < (‖x‖ − y1)|U1|).

Let Z and Z ′ be independent standard normals N(0, 1). Since U1 is distributed as Z and
yR · UR is distributed as ‖yR‖Z ′,

PrU (E) = Pr(−y1|Z| < ‖yR‖Z ′ < (‖x‖ − y1)|Z|) = Pr

(
Z ′

|Z| ∈
(
− y1

‖yR‖
,
‖x‖ − y1

‖yR‖

))
.

6

Randomized trees for NN search

Now Z ′/|Z| is the ratio of two standard normals, which has a standard Cauchy distri-
bution. Using the formula for a Cauchy density,

Pr(E) =

∫ (‖x‖−y1)/‖yR‖

−y1/‖yR‖

dw

π(1 + w2)

=
1

π

(
arctan

(‖x‖ − y1

‖yR‖

)
− arctan

(−y1

‖yR‖

))
=

1

π
arctan

‖x‖ ‖yR‖
‖y‖2 − y1‖x‖

=
1

π
arcsin

(
‖x‖
‖y‖ ·

√
‖y‖2 − y2

1

‖y‖2 + ‖x‖2 − 2y1‖x‖

)
,

which is exactly the expression in the lemma statement once we invoke y1 = (y ·x)/‖x‖ and
factor in our assumption that q = 0.

To simplify the expression, define an index of the collinearity of q, x, y to be

coll(q, x, y) =
|(q − x) · (y − x)|
‖q − x‖ ‖y − x‖ .

This value, in the range [0, 1], is 1 when the points are collinear, and 0 when q − x is
orthogonal to x− y. The inequality θ ≥ sin θ ≥ 2θ/π (for 0 ≤ θ ≤ π/2) then yields:

Corollary 2 Under the conditions of Lemma 1,

1

π

‖q − x‖
‖q − y‖

√
1− coll(q, x, y)2 ≤ PrU (y · U falls between q · U and x · U) ≤ 1

2

‖q − x‖
‖q − y‖ .

The upper and lower bounds of Corollary 2 are within a constant factor of each other unless
the points are approximately collinear.

2.2. By how much does random projection separate nearest neighbors?

For a query q and data points x1, . . . , xn, let x(1), x(2), . . . denote a re-ordering of the points
by increasing distance from q. Consider the potential function

Φ(q, {x1, . . . , xn}) =
1

n

n∑
i=2

‖q − x(1)‖
‖q − x(i)‖

.

Theorem 3 Pick any points q, x1, . . . , xn ∈ Rd. If these points are projected to a direction
U chosen at random from the unit sphere, then the expected fraction of the projected xi that
fall between q and x(1) is at most (1/2) Φ(q, {x1, . . . , xn}).

Proof Let Zi be the event that x(i) falls between q and x(1) in the projection. By Corol-
lary 2, PrU (Zi) ≤ (1/2)‖q − x(1)‖/‖q − x(i)‖. Now apply linearity of expectation.

The upper bound of Theorem 3 is fairly tight, as can be seen from Corollary 2, unless
there is a high degree of collinearity between the points.

7

Dasgupta Sinha

In the tree data structures we analyze, most cells contain only a subset of the data
{x1, . . . , xn}. For a cell that contains m of these points, the appropriate variant of Φ is

Φm(q, {x1, . . . , xn}) =
1

m

m∑
i=2

‖q − x(1)‖
‖q − x(i)‖

.

Corollary 4 Pick any points q, x1, . . . , xn and let S denote any subset of the xi that includes
x(1). If q and the points in S are projected to a direction U chosen at random from the unit
sphere, then for any 0 < α < 1, the probability (over U) that at least an α fraction of the
projected S falls between q and x(1) is upper-bounded by (1/2α) Φ|S|(q, {x1, . . . , xn}).

Proof Apply Theorem 3 to S, noting that the corresponding value of Φ is maximized when
S consists of the points closest to q; and then apply Markov’s inequality.

2.3. Extension to k nearest neighbors

If we are interested in finding the k nearest neighbors, a suitable generalization of Φm is

Φk,m(q, {x1, . . . , xn}) =
1

m

m∑
i=k+1

(‖q − x(1)‖+ · · ·+ ‖q − x(k)‖)/k
‖q − x(i)‖

.

Theorem 5 Pick any points q, x1, . . . , xn and let S denote a subset of the xi that includes
x(1), . . . , x(k). Suppose q and the points in S are projected to a random unit direction U .
Then, for any (k − 1)/|S| < α < 1, the probability (over U) that in the projection, there is
some 1 ≤ j ≤ k for which ≥ αm points lie between x(j) and q is at most

k

2(α− (k − 1)/|S|)Φk,|S|(q, {x1, . . . , xn}).

This theorem, and many of the others that follow, are proved in the appendix.

3. Randomized partition trees

We’ll now see that the failure probability of the random projection tree is proportional to
Φ ln(1/Φ), while that of the two spill trees is proportional to Φ. We start with the second
result, since it is the more straightforward of the two.

3.1. Randomized spill trees

In a randomized spill tree, each cell is split along a direction chosen uniformly at random
from the unit sphere. Two kinds of splits are simultaneously considered: (1) a split at the
median (along the random direction), and (2) an overlapping split with one part containing
the bottom 1/2+α fraction of the cell’s points, and the other part containing the top 1/2+α
fraction, where 0 < α < 1/2 (recall Figure 3).

8

Randomized trees for NN search

We consider two data structures that use these splits in different ways. The spill tree
stores each data point in (possibly) multiple leaves, using overlapping splits. The tree is
grown until each leaf contains at most no points. A query is answered by routing it to a
single leaf, using median splits, and returning the NN in that leaf.

The time to answer a query is just O(no + log(n/no)), but the space requirement of this
data structure is super-linear. Its depth is ` = log1/β n/no levels, where β = (1/2) +α, and

thus the total size is no2
` = no(n/no)

log1/β 2. We will take no to be a constant independent
of n, so this size is O(nlog1/β 2). When α = 0.05, for instance, the size is O(n1.159). When
α = 0.1, it is O(n1.357).

A virtual spill tree stores each data point in a single leaf, using median splits, once again
growing the tree until each leaf has no or fewer points. Thus the total size is just O(n) and
the depth is log2(n/no). However, a query is answered by routing it to multiple leaves using
overlapping splits, and then returning the NN in the union of these leaves.

Theorem 6 Suppose a randomized spill tree is built using data points {x1, . . . , xn}, to depth
` = log1/β(n/no), where β = (1/2) + α for regular spill trees and β = 1/2 for virtual spill
trees. If this tree is used to answer a query q, then:

Prtree(NN query does not return x(1)) ≤
1

2α

∑̀
i=0

Φβin(q, {x1, . . . , xn})

(the probability is over the randomness in tree construction). Likewise, for 1 ≤ k ≤ αno/2,

Prtree(k-NN query doesn’t return x(1), . . . , x(k)) ≤
k

α

∑̀
i=0

Φk,βin(q, {x1, . . . , xn}).

Proof Let’s start with the regular spill tree. Consider the internal node at depth i on the
root-to-leaf path of query q; this node contains βin data points, for β = (1/2) + α. What
is the probability that q gets separated from x(1) when the node is split? This bad event
can only happen if q and x(1) lie on opposite sides of the median and if x(1) is transmitted
only to one side of the split, that is, if at least α fraction of the points lie between x(1) and
the median. This means that at least an α fraction of the cell’s projected points must fall
between q and x(1), which occurs with probability at most (1/2α)Φβin(q, {x1, . . . , xn}) by
Corollary 4. The lemma follows by summing over all levels i.

The argument for the virtual spill tree is identical, except that we use β = 1/2 and we
swap the roles of q and x(1); for instance, we consider the root-to-leaf path of x(1).

The generalization to k nearest neighbors is immediate for spill trees. The probability
of something going wrong at level i of the tree is, by Theorem 5, at most

k

2(α− (k − 1)/no)
Φk,βin ≤

k

α
Φk,βin.

Virtual spill trees require a slightly more careful argument. If the root-to-leaf path of each
x(j), for 1 ≤ j ≤ k, is considered separately, it can be shown that the total probability of
failure at level i is again bounded by the same expression.

9

Dasgupta Sinha

We will encounter two functional forms of Φm: either 1/m1/do where do is the intrinsic
dimension of a doubling measure, or a small constant 1/

√
L, where L is the expected

document size under a topic model. In the former case, the failure probability of the spill

tree is roughly 1/(αn
1/do
o), and in the latter case it is (1/(α

√
L)) log(n/no). Further details

are in Sections 4.1 and 4.2.

3.2. Random projection trees

In an RP tree, a cell is split by choosing a direction uniformly at random from the unit
sphere Sd−1, projecting the points in the cell onto that direction, and then splitting at the
β fractile, for β chosen uniformly at random from [1/4, 3/4]. As in a k-d tree, each point
is mapped to a single leaf. Likewise, a query point is routed to a particular leaf, and its
nearest neighbor within that leaf is returned.

In many of the statements below, we will drop the arguments (q, {x1, . . . , xn}) of Φ in
the interest of readability.

Theorem 7 Suppose an RP tree is built using points {x1, . . . , xn} and is then used to
answer a query q. Define β = 3/4 and ` = log1/β(n/no). Then:

Prtree(NN query does not return x(1)) ≤
∑̀
i=0

Φβin ln
2e

Φβin

Prtree(k-NN query doesn’t return x(1), . . . , x(k)) ≤ 2k
∑̀
i=0

Φk,βin ln
2e

kΦk,βin
+

16(k − 1)

no
.

Proof Consider any internal node of the tree that contains q as well as m of the data
points, including x(1). What is the probability that the split at that node separates q from
x(1)? To analyze this, let F denote the fraction of the m points that fall between q and x(1)

along the randomly-chosen split direction. Since the split point is chosen at random from
an interval of mass 1/2, the probability that it separates q from x(1) is at most F/(1/2).
Integrating out F , we get

Pr(q is separated from x(1)) ≤
∫ 1

0
Pr(F = f)

f

1/2
df

= 2

∫ 1

0
Pr(F > f) df ≤ 2

∫ 1

0
min

(
1,

Φm

2f

)
df

= 2

∫ Φm/2

0
df + 2

∫ 1

Φm/2

Φm

2f
df = Φm ln

2e

Φm
,

where the second inequality uses Corollary 4. The lemma follows by taking a union bound
over the path that conveys q from root to leaf, in which the number of data points per level
shrinks geometrically, by a factor of 3/4 or better.

For the k-nearest neighbor case, see the appendix.

10

Randomized trees for NN search

3.3. Could coordinate directions be used?

The tree data structures we have studied make crucial use of random projection for splitting
cells. It would not suffice to use coordinate directions, as in k-d trees.

To see this, consider a simple example. Let q, the query point, be the origin, and suppose
the data points x1, . . . , xn ∈ Rd are chosen as follows:

• x1 is the all-ones vector.

• Each xi, i > 1, is chosen by picking a coordinate at random, setting its value to M ,
and then setting all remaining coordinates to uniform-random numbers in the range
(0, 1). Here M is some very large constant.

For large enough M , the nearest neighbor of q is x1. By letting M grow further, we can
let Φ(q, {x1, . . . , xn}) get arbitrarily close to zero, which means that the random projection
methods will work well. However, any coordinate projection will create a disastrously large
separation between q and x1: on average, a (1 − 1/d) fraction of the data points will fall
between them.

4. Bounding Φ

The exact nearest neighbor schemes we analyze have error probabilities related to Φ, which
lies in the range [0, 1]. The worst case is when all points are equidistant, in which case Φ
is exactly 1, but this is a pathological situation. Is it possible to bound Φ under simple
assumptions on the data?

In this section we study two such assumptions. In each case, query points are arbitrary,
but the data are assumed to have been drawn i.i.d. from an underlying distribution.

4.1. Data drawn from a doubling measure

Suppose the data points are drawn from a distribution µ on Rd which is a doubling measure:
that is, there exist a constant C > 0 and a subset X ⊆ Rd such that

µ(B(x, 2r)) ≤ C · µ(B(x, r)) for all x ∈ X and all r > 0.

Here B(x, r) is the closed Euclidean ball of radius r centered at x. To understand this
condition, it is helpful to also look at an alternative formulation that is essentially equivalent:
there exist a constant do > 0 and a subset X ⊂ Rd such that for all x ∈ X , all r > 0, and
all α ≥ 1, we have µ(B(x, αr)) ≤ αdo · µ(B(x, r)). In other words, the probability mass of
a ball grows polynomially in the radius. Comparing this to the standard formula for the
volume of a ball, we see that the degree of this polynomial, do (= log2C), can reasonably
be thought of as the “dimension” of measure µ.

Theorem 8 Suppose µ is continuous on Rd and is a doubling measure of dimension do ≥ 2.
Pick any q ∈ X and draw x1, . . . , xn ∼ µ. Pick any 0 < δ < 1/2. With probability ≥ 1− 3δ

11

Dasgupta Sinha

over the choice of the xi, for all 2 ≤ m ≤ n, and any k ≥ 1,

Φm(q, {x1, . . . , xn}) ≤ 6

(
2

m
ln

1

δ

)1/do

Φk,m(q, {x1, . . . , xn}) ≤ 6

(
8

m
max

(
k, ln

1

δ

))1/do

.

By combining this with Theorems 6 and 7, and using Lemma 12 from the appendix to
bound the resulting summation, we get the following bounds on the failure probabilities of
the three tree data structures.

Theorem 9 There is an absolute constant co for which the following holds. Suppose µ is
a doubling measure on Rd of intrinsic dimension do ≥ 2. Pick any query q ∈ X and draw
x1, . . . , xn independently from µ. With probability ≥ 1− 3δ over the choice of data:

(a) For either variant of the spill tree, if k ≤ αno/2,

Pr(tree fails to return k nearest neighbors) ≤ codok

α

(
8 max(k, ln 1/δ)

no

)1/do

.

(b) For the RP tree with no ≥ co(3k)do max(k, ln 1/δ),

Pr(tree fails to return k nearest neighbors) ≤ cok(do+lnno)

(
8 max(k, ln 1/δ)

no

)1/do

.

These probabilities are over the randomness in tree construction.

The failure probability can be made an arbitrarily small constant by taking the leaf size to
be no = O(dok)do max(k, ln 1/δ) for spill trees and no = O(dok ln(dok))do max(k, ln 1/δ) for
RP trees.

4.2. A document model

In a bag-of-words model, a document is represented as a binary vector in {0, 1}N , where N
is the size of the vocabulary and the ith coordinate is 1 if the document happens to contain
the corresponding word. This is a sparse representation in which the number of nonzero
positions is typically much smaller than N .

Pick any query document q ∈ {0, 1}N , and suppose that x1, . . . , xn are generated i.i.d.
from a topic model µ. We will consider a simple such model with t topics, each of which
follows a product distribution. The distribution µ is parametrized by the mixing weights

over topics, w1, . . . , wt, which sum to one, and the word probabilities (p
(j)
1 , . . . , p

(j)
N) for each

topic 1 ≤ j ≤ t. Here is the generative process for a document X:

• Pick a topic 1 ≤ j ≤ t, where the probability of picking j is wj .

• The coordinates of X ∈ {0, 1}N are chosen independently. The ith coordinate is 1

with probability p
(j)
i .

12

Randomized trees for NN search

The overall distribution is thus a mixture µ = w1µ1 + · · · + wtµt whose jth component is

a Bernoulli product distribution µj = B(p
(j)
1) × · · · × B(p

(j)
N). Here B(p) is a shorthand

for the distribution on {0, 1} with expected value p. It will simplify things to assume that

0 < p
(j)
i < 1/2; this is not a huge assumption if, say, stopwords have been removed.

For the purposes of bounding Φ, we are interested in the distribution of dH(q,X), where
X is chosen from µ and dH denotes Hamming distance. This is a sum of small independent
quantities, and it is customary to approximate such sums by a Poisson distribution. In the
current context, however, this approximation is rather poor, and we instead use counting
arguments to directly bound how rapidly the distribution grows. The results stand in stark
contrast to those we obtained for doubling measures, and reveal this to be a substantially
more difficult setting for nearest neighbor search. For a doubling measure, the probability
mass of a ball B(q, r) doubles whenever r is multiplied by a constant. In our present setting,
it doubles whenever r is increased by an additive constant:

Theorem 10 Suppose that all p
(j)
i ∈ (0, 1/2). Let Lj =

∑
i p

(j)
i denote the expected number

of words in a document from topic j, and let L = min(L1, . . . , Lt). Pick any query q ∈
{0, 1}N , and draw X ∼ µ. For any ` ≥ 0,

Pr(dH(q,X) = `+ 1)

Pr(dH(q,X) = `)
≥ L− `/2

`+ 1
.

Now, fix a particular query q ∈ {0, 1}N , and draw x1, . . . , xn from distribution µ.

Lemma 11 There is an absolute constant co for which the following holds. Pick any 0 <
δ < 1 and any k ≥ 1, and let v denote the smallest integer for which PrX∼µ(dH(q,X) ≤
v) ≥ (8/n) max(k, ln 1/δ). Then with probability at least 1−3δ over the choice of x1, . . . , xn,
for any m ≤ n,

Φk,m(q, {x1, . . . , xn}) ≤ 4

√
v

coL− log2(n/m)
.

The implication of this lemma is that for any of the three tree data structures, the
failure probability at a single level is roughly

√
v/L. This means that the tree can only be

grown to depth O(
√
L/v), and thus the query time is dominated by no = n · 2−O(

√
L/v).

When n is large, we expect v to be small, and thus the query time improves over

exhaustive search by a factor of roughly 2−
√
L.

Acknowledgments

We thank the National Science Foundation for support under grant IIS-1162581.

References

N. Ailon and B. Chazelle. The fast Johnson-Lindenstrauss transform and approximate
nearest neighbors. SIAM Journal on Computing, 39:302–322, 2009.

13

Dasgupta Sinha

A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. Communications of the ACM, 51(1):117–122, 2008.

S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu. An optimal algorithm
for approximate nearest neighbor searching. Journal of the ACM, 45:891–923, 1998.

J.L. Bentley. Multidimensional binary search trees used for associative searching. Commu-
nications of the ACM, 18(9):509–517, 1975.

A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In 23rd
International Conference on Machine Learning, 2006.

S. Dasgupta and Y. Freund. Random projection trees and low dimensional manifolds. In
ACM Symposium on Theory of Computing, pages 537–546, 2008.

D.R. Karger and M. Ruhl. Finding nearest neighbors in growth-restricted metrics. In ACM
Symposium on Theory of Computing, pages 741–750, 2002.

J. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. In 29th ACM
Symposium on Theory of Computing, 1997.

R. Krauthgamer and J.R. Lee. Navigating nets: simple algorithms for proximity search. In
ACM-SIAM Symposium on Discrete Algorithms, 2004.

T. Liu, A.W. Moore, A. Gray, and K. Yang. An investigation of practical approximate
nearest neighbor algorithms. In Neural Information Processing Systems, 2004.

S. Maneewongvatana and D.M. Mount. The analysis of a probabilistic approach to nearest
neighbor searching. In Seventh International Worshop on Algorithms and Data Struc-
tures, pages 276–286, 2001.

Appendix A. Proof of Theorem 5

Set m = |S|. As in Corollary 4, the probability of the bad event is maximized when
S = {x(1), . . . , x(m)}, so we will assume as much.

For any 1 ≤ j ≤ k, let Nj denote the number of points in {x(k+1), . . . , x(m)} that fall
(strictly) between q and x(j) in the projection. Reasoning as in Theorem 3, we have

PrU (Nj ≥ αm− (k − 1)) ≤ EUNj

αm− (k − 1)
≤ 1

2(αm− (k − 1))

m∑
i=k+1

‖q − x(j)‖
‖q − x(i)‖

.

Taking a union bound over all 1 ≤ j ≤ k,

PrU (∃1 ≤ j ≤ k : Nj ≥ αm− (k − 1))

≤ 1

2(αm− (k − 1))

m∑
i=k+1

‖q − x(1)‖+ · · ·+ ‖q − x(k)‖
‖q − x(i)‖

=
k

2(α− (k − 1)/m)
Φk,m(q, {x1, . . . , xn}),

as claimed.

14

Randomized trees for NN search

Appendix B. Proof of Theorem 7

Consider any internal node of the tree that contains q as well as m of the data points,
including x(1). What is the probability that the split at that node separates q from x(1)?
To analyze this, let F denote the fraction of the m points that fall between q and x(1)

along the randomly-chosen split direction. Since the split point is chosen at random from
an interval of mass 1/2, the probability that it separates q from x(1) is at most F/(1/2).
Integrating out F , we get

Pr(q is separated from x(1)) ≤
∫ 1

0
Pr(F = f)

f

1/2
df

= 2

∫ 1

0
Pr(F > f) df ≤ 2

∫ 1

0
min

(
1,

Φm

2f

)
df

= 2

∫ Φm/2

0
df + 2

∫ 1

Φm/2

Φm

2f
df = Φm ln

2e

Φm
,

where the second inequality uses Corollary 4.
The lemma follows by taking a union bound over the path that conveys q from root to

leaf, in which the number of data points per level shrinks geometrically, by a factor of 3/4
or better.

The same reasoning generalizes to k nearest neighbors. This time, F is defined to be
the fraction of the m points that lie between q and the furthest of x(1), . . . , x(k) along the
random splitting direction. Then q is separated from one of these neighbors only if the split
point lies in an interval of mass F on either side of q, an event that occurs with probability
at most 2F/(1/2). Using Theorem 5,

Pr(q is separated from some x(j), 1 ≤ j ≤ k)

≤
∫ 1

0
Pr(F = f)

2f

1/2
df

= 4

∫ 1

0
Pr(F > f) df ≤ 4

∫ 1

0
min

(
1,

kΦk,m

2(f − (k − 1)/m)

)
df

≤ 4

∫ (kΦk,m/2)+(k−1)/m

0
df + 4

∫ 1

(kΦk,m/2)+(k−1)/m

kΦk,m

2(f − (k − 1)/m)
df

≤ 2kΦk,m ln
2e

kΦk,m
+

4(k − 1)

m
,

and as before, we sum this over a root-to-leaf path in the tree.

Appendix C. Proof of Theorem 8

C.1. The k = 1 case

We will consider a collection of balls Bo, B1, B2, . . . centered at q, with geometrically in-
creasing radii ro, r1, r2, . . ., respectively. For i ≥ 1, we will take ri = 2iro. Thus by the
doubling condition, µ(Bi) ≤ Ciµ(Bo), where C = 2do ≥ 4.

15

Dasgupta Sinha

Define ro to be the radius for which µ(B(q, ro)) = (1/n) ln(1/δ). This choice implies
that x(1) is likely to fall in Bo: when points X = {x1, . . . , xn} are drawn randomly from µ,

Pr(no point falls in Bo) = (1− µ(Bo))
n ≤ δ.

Next, for i ≥ 1, the expected number of points falling in ball Bi is at most nCiµ(Bo) =
Ci ln(1/δ), and by a multiplicative Chernoff bound,

Pr(|X ∩Bi| ≥ 2nCiµ(Bo)) ≤ exp(−(nCiµ(Bo)/3)) = δC
i/3 ≤ δiC/3.

Summing over all i, we get

Pr(∃i ≥ 1 : |X ∩Bi| ≥ 2nCiµ(Bo)) ≤ 2δC/3 ≤ 2δ.

We will henceforth assume that x(1) lies in Bo and that each Bi has at most 2nµ(Bo)C
i =

2Ci ln(1/δ) points.
Pick any 2 ≤ m ≤ n, and recall the expression for Φ:

Φm(q, {x1, . . . , xn}) =
1

m

m∑
i=2

‖q − x(1)‖
‖q − x(i)‖

.

Once x(1) is fixed, moving other points closer to q can only increase Φ. Therefore, the
maximizing configuration has 2nµ(Bo)C points in B1, followed by 2nµ(Bo)C

2 points in B2,
and then 2nµ(Bo)C

3 points in B3, and so on. Each point in Bj \Bj−1 contributes at most
1/2j−1 to the Φ summation.

Under the worst-case configuration, points x(1), . . . , x(m) lie within B`, for ` such that

2nµ(Bo)C
`−1 < m ≤ 2nµ(Bo)C

`. (*)

We then have

Φm ≤ 1

m

|X ∩B1|+

`−1∑
j=2

|X ∩ (Bj \Bj−1)| · 1

2j−1

+ (m− |X ∩B`−1|) ·
1

2`−1


=

1

m

|X ∩B1|+
`−1∑
j=2

(|X ∩Bj |
2j−1

− |X ∩Bj−1|
2j−1

)
+ (m− |X ∩B`−1|) ·

1

2`−1


=

1

m

 m

2`−1
+

`−1∑
j=1

|X ∩Bj |
2j


=

1

m

 m

2`−1
+ 2nµ(Bo)

`−1∑
j=1

(
C

2

)j
≤ 1

m

(
m

2`−1
+ 4nµ(Bo)

(
C

2

)`−1
)

≤ 1

m

(
m

2`−1
+

2m

2`−1

)
=

6

2`
,

16

Randomized trees for NN search

where the last inequality comes from (*). To lower-bound 2`, we again use (*) to get
C` ≥ m/(2nµ(Bo)), whereupon

2` ≥
(

m

2nµ(Bo)

)1/ log2 C

=

(
m

2 ln(1/δ)

)1/ log2 C

and we’re done.

C.2. The k > 1 case

The only big change is in the definition of ro; it is now the radius for which

µ(Bo) =
4

n
max

(
k, ln

1

δ

)
.

Thus, when x1, . . . , xn are drawn independently at random from µ, the expected number
of them that fall in Bo is at least 4k, and by a multiplicative Chernoff bound is at least k
with probability ≥ 1− δ.

The balls B1, B2, . . . are defined as before, and once again, we can conclude that with
probability ≥ 1− 2δ, each Bi contains at most 2nCiµ(Bo) of the data points.

Any point x(i) 6∈ Bo lies in some annulus Bj\Bj−1, and its contribution to the summation
in Φk,m is

(‖q − x(1)‖+ · · ·+ ‖q − x(k)‖)/k
‖q − x(i)‖

≤ 1

2j−1
.

The relationship (*) and the remainder of the argument are exactly as before.

Appendix D. A useful technical lemma

Lemma 12 Suppose that for some constants A,B > 0 and do ≥ 1,

F (m) ≤ A

(
B

m

)1/do

for all m ≥ no. Pick any 0 < β < 1 and define ` = log1/β(n/no). Then:

∑̀
i=0

F (βin) ≤ Ado
1− β

(
B

no

)1/do

and, if no ≥ B(A/2)do,

∑̀
i=0

F (βin) ln
2e

F (βin)
≤ Ado

1− β

(
B

no

)1/do (1

1− β ln
1

β
+ ln

2e

A
+

1

do
ln
no
B

)
.

17

Dasgupta Sinha

Proof Writing the first series in reverse,

∑̀
i=0

F (βin) =
∑̀
i=0

F

(
no
βi

)
≤

∑̀
i=0

A

(
Bβi

no

)1/do

= A

(
B

no

)1/do ∑̀
i=0

βi/do

≤ A

1− β1/do

(
B

no

)1/do

≤ Ado
1− β

(
B

no

)1/do

.

The last inequality is obtained by using

(1− x)p ≥ 1− px for 0 < x < 1, p ≥ 1

to get (1− (1− β)/do)
do ≥ β and thus 1− β1/do ≥ (1− β)/do.

Now we move on to the second bound. The lower bound on no implies thatA(B/m)1/do ≤
2 for all m ≥ no. Since x ln(2e/x) is increasing when x ≤ 2, we have

∑̀
i=0

F (βin) ln
2e

F (βin)
≤

∑̀
i=0

A

(
B

βin

)1/do

ln
2e

A(B/(βin))1/do
.

The lemma now follows from algebraic manipulations that invoke the first bound as well as
the inequality ∑̀

i=0

iF

(
no
βi

)
≤ Ad2

o

(1− β)2

(
B

no

)1/do

,

which in turn follows from∑̀
i=0

iβi/do ≤
∞∑
i=1

iβi/do =

∞∑
i=1

∞∑
j=i

βj/do =

∞∑
i=1

βi/do

1− β1/do
=

β1/do

(1− β1/do)2
≤ d2

o

(1− β)2
.

Appendix E. Proof of Theorem 10

We start with the case of a single topic.

E.1. Growth rate for one topic

Let q ∈ {0, 1}N be any fixed document and let X be drawn from a Bernoulli product
distribution B(p1)× · · · ×B(pN). Then the Hamming distance dH(q,X) is distributed as a
sum of Bernoullis,

dH(q,X) ∼ B(a1) + · · ·+B(aN),

where

ai =

{
pi if qi = 0
1− pi if qi = 1

18

Randomized trees for NN search

To understand this distribution, we start with a general result about sums of Bernoulli
random variables. Notice that the result is exactly correct in the situation where all pi = 1/2.

Lemma 13 Suppose Z1, . . . , ZN are independent, where Zi ∈ {0, 1} is a Bernoulli random
variable with mean 0 < ai < 1, and a1 ≥ a2 ≥ · · · ≥ aN . Let Z = Z1 + · · ·+ ZN . Then for
any ` ≥ 0,

Pr(Z = `+ 1)

Pr(Z = `)
≥ 1

`+ 1

N∑
i=`+1

ai
1− ai

.

Proof Define ri = ai/(1− ai) ∈ (0,∞); then r1 ≥ r2 ≥ · · · ≥ rN . Now, for any ` ≥ 0,

Pr(Z = `) =
∑

{i1, . . . , i`} ⊂ [N]

ai1ai2 · · · ai`
∏

j 6∈{i1,...,i`}

(1− aj)

=

N∏
i=1

(1− ai)
∑

{i1, . . . , i`} ⊂ [N]

ai1
1− ai1

ai2
1− ai2

· · · ai`
1− ai`

=

N∏
i=1

(1− ai)
∑

{i1, . . . , i`} ⊂ [N]

ri1ri2 · · · ri`

where the summations are over subsets {i1, . . . , i`} of ` distinct elements of [N]. In the final
line, the product of the (1− ai) does not depend upon ` and can be ignored. Let’s focus on
the summation; call it S`. We would like to compare it to S`+1.

S`+1 is the sum of
(
N
`+1

)
distinct terms, each the product of `+ 1 ri’s. These terms also

appear in the quantity S`(r1 + · · ·+ rN); in fact, each term of S`+1 appears multiple times,
`+1 times to be precise. The remaining terms in S`(r1 + · · ·+rN) each contain `−1 unique
elements and one duplicated element. By accounting in this way, we get

S`(r1 + · · ·+ rN) = (`+ 1)S`+1 +
∑

{i1, . . . , i`} ⊂ [N]

ri1ri2 · · · ri`(ri1 + · · ·+ ri`)

≤ (`+ 1)S`+1 + S`(r1 + · · ·+ r`)

since the ri’s are arranged in decreasing order. Hence

Pr(Z = `+ 1)

Pr(Z = `)
=

S`+1

S`
≥ 1

`+ 1
(r`+1 + · · ·+ rN),

as claimed.

We now apply this result directly to the sum of Bernoulli variables Z = dH(q,X).

Lemma 14 Suppose that p1, . . . , pN ∈ (0, 1/2). Pick any query q ∈ {0, 1}N , and draw X
from distribution µ = B(p1)× · · · ×B(pN). Then for any ` ≥ 0,

Pr(dH(q,X) = `+ 1)

Pr(dH(q,X) = `)
≥ L− `/2

`+ 1
,

where L =
∑

i pi is the expected number of words in X.

19

Dasgupta Sinha

Proof Suppose q contains ko nonzero entries. Without loss of generality, these are
q1, . . . , qko .

As we have seen, dH(q,X) is distributed as the Bernoulli sum B(1− p1) + · · ·+B(1−
pko) +B(pko+1) + · · ·+B(pN). Define

ri =

{
(1− pi)/pi if i ≤ ko
pi/(1− pi) if i > ko

Notice that ri > 1 for i ≤ ko, and ≤ 1 for i > ko; and that ri > pi always.
By Lemma 13, we have that for any ` ≥ 0,

Pr(dH(q,X) = `+ 1)

Pr(dH(q,X) = `)
≥ 1

`+ 1

∑
i>`

r(i),

where r(1) ≥ · · · ≥ r(N) denotes the reordering of r1, . . . , rN into descending order. Since
each ri > pi, and each pi is at most 1/2,∑

i>`

r(i) ≥ (sum of N − ` smallest pi’s) ≥ (
∑
i

pi)− `/2 = L− `/2.

E.2. Growth rate for multiple topics

Now let’s return to the original model, in which X is chosen from a mixture of t topics

µ = w1µ1 + · · ·+ wtµt, with µj = B(p
(j)
1)× · · · ×B(p

(j)
N). Then for any `,

Pr(dH(q,X) = ` | X ∼ µ) =
t∑

j=1

wjPr(dH(q,X) = ` | X ∼ µj).

Combining this relation with Lemma 14, we immediately get Theorem 10.

Appendix F. Proof of Lemma 11

Let the random variable S` denote the points at Hamming distance exactly ` from q, so
that E|S`| = nPrX∼µ(dH(q,X) = `).

We first assert that with probability at least 1− 3δ, the following conditions hold:

(a) |S0|+ · · ·+ |Sv| ≥ k.

(b) If v ≤ coL then |S0|+ · · ·+ |Sv−1| ≤ |Sv|.

(c) For all v ≤ ` ≤ coL, we have |S`+1|/|S`| ≥ 2.

These are shown by applying multiplicative Chernoff bounds to the result of Theorem 10.
The details are very similar to those of Theorem 8, and hence we omit them and turn to
bounding Φ.

20

Randomized trees for NN search

Suppose that for some i > k, point x(i) is at Hamming distance ` from q, that is,
x(i) ∈ S`. Then

(‖q − x(1)‖+ · · ·+ ‖q − x(k)‖)/k
‖q − x(i)‖

≤
√
v

`

since Euclidean distance is the square root of Hamming distance. In bounding Φk,m, we
need to gauge the range of Hamming distances spanned by x(k+1), . . . , x(m).

The geometric growth rate of part (c) implies that most points lie at Hamming distance
coL or greater from q. It also means that dH(q, x(m)) > coL− log2(n/m). Thus,

Φk,m(q, {x1, . . . , xn}) =
1

m

∑
i>k

(‖q − x(1)‖+ · · ·+ ‖q − x(k)‖)/k
‖q − x(i)‖

≤ 1

m

∑
`≥v
|S` ∩ {x(1), . . . , x(m)}|

√
v

`
≤ 4

√
v

coL− log2(n/m)

where the last step follows by lower-bounding |S`| by an increasing geometric series.

21

	Introduction
	Three randomized tree structures for exact NN search
	Analysis of failure probability

	A potential function for point configurations
	How random projection affects the relative placement of three points
	By how much does random projection separate nearest neighbors?
	Extension to k nearest neighbors

	Randomized partition trees
	Randomized spill trees
	Random projection trees
	Could coordinate directions be used?

	Bounding
	Data drawn from a doubling measure
	A document model

	Proof of Theorem 5
	Proof of Theorem 7
	Proof of Theorem 8
	The k=1 case
	The k > 1 case

	A useful technical lemma
	Proof of Theorem 10
	Growth rate for one topic
	Growth rate for multiple topics

	Proof of Lemma 11

