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Abstract

We study the problem of online learning with a notion of regret defined with respect to
a set of strategies. We develop tools for analyzing the minimax rates and for deriving
regret-minimization algorithms in this scenario. While the standard methods for mini-
mizing the usual notion of regret fail, through our analysis we demonstrate existence of
regret-minimization methods that compete with such sets of strategies as: autoregressive
algorithms, strategies based on statistical models, regularized least squares, and follow the
regularized leader strategies. In several cases we also derive efficient learning algorithms.

1. Introduction

The common criterion for evaluating an online learning algorithm is regret, that is the
difference between the cumulative loss of the algorithm and the cumulative loss of the best
fixed decision, chosen in hindsight. While much work has been done on understanding no-
regret algorithms, such a definition of regret against a fixed decision often draws criticism:
even if regret is small, the cumulative loss of a best fixed action can be large, thus rendering
the result uninteresting. To address this problem, various generalizations of the regret
notion have been proposed, including regret with respect to the cost of a “slowly changing”
compound decision. While being a step in the right direction, such definitions are still
“static” in the sense that the decision of each compound comparator per step does not
depend on the sequence of realized outcomes.

Arguably, a more interesting (and more difficult to deal with) notion is that of performing
as well as a set of strategies (or, algorithms). A strategy π is a sequence of functions πt,
for each time period t, mapping the observed outcomes to the next action. Of course,
if the collection of such strategies is finite, we may disregard their dependence on the
actual sequence and treat each strategy as a black box expert. This is precisely the reason
the Multiplicative Weights and other expert algorithms gained such popularity. However,
this “black box” approach is not always desirable since some measure of the “effective
number” of experts must play a role in the complexity of the problem: experts that predict
similarly should not count as two independent ones. But what is a notion of closeness of two
strategies? Imagine that we would like to develop an algorithm that incurs loss comparable
to that of the best of an infinite family of strategies. To obtain such a statement, one
may try to discretize the space of strategies and invoke the black-box experts method.
As we show in this paper, such an approach will not always work. Instead, we present a
theoretical framework for the analysis of “competing against strategies” and for algorithmic
development, based on the ideas in (Rakhlin et al., 2010, 2012).
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The strategies considered in this paper are termed “simulatable experts” in (Cesa-
Bianchi and Lugosi, 2006). The authors also distinguish static and non-static experts.
In particular, for static experts and absolute loss, Cesa-Bianchi and Lugosi (1999) were
able to show that problem complexity is governed by the geometry of the class of static
experts as captured by its i.i.d. Rademacher averages. For nonstatic experts, however, the
authors note that “unfortunately we do not have a characterization of the minimax regret
by an empirical process”, due to the fact that the sequential nature of the online problems
is at odds with the i.i.d.-based notions of classical empirical process theory. In recent years,
however, a martingale generalization of empirical process theory has emerged, and these
tools were shown to characterize learnability of online supervised learning, online convex
optimization, and other scenarios (Ben-David et al., 2009; Rakhlin et al., 2010). Yet, the
machinery developed so far is not directly applicable to the case of general simulatable ex-
perts which can be viewed as mappings from an ever-growing set of histories to the space of
actions. The goal of this paper is precisely this: to extend the non-constructive as well as
constructive techniques of (Rakhlin et al., 2010, 2012) to simulatable experts. We analyze
a number of examples with the developed techniques, but we must admit that our work
only scratches the surface. We can imagine further research developing methods that com-
pete with interesting gradient descent methods (parametrized by step size choices), with
Bayesian procedures (parametrized by choices of priors), and so on. We also note the con-
nection to online algorithms, where one typically aims to prove a bound on the competitive
ratio. Our results can be seen in that light as implying a competitive ratio of one.

We close the introduction with a high-level outlook, which builds on the ideas of Merhav
and Feder (1998). Imagine we are faced with a sequence of data from a probabilistic
source, such as a k-Markov model with unknown transition probabilities. A well developed
statistical theory tells us how to estimate the parameter under the assumption that the
model is correct. We may view an estimator as a strategy for predicting the next outcome.
Suppose we have a set of possible models, with a good prediction strategy for each model.
Now, let us lift the assumption that the sequence is generated by one of these models, and
set the goal as that of performing as well as the best prediction strategy. In this case, if
the observed sequence is indeed given by one of the models, our loss will be small because
one of the strategies will perform well. If not, we still have a valid statement that does not
rely on the fact that the model is “well specified”. To illustrate the point, we will exhibit
an example where we can compete with the set of all Bayesian strategies (parametrized by
priors). We then obtain a statement that we perform as well as the best of them without
assuming that the model is correct.

The paper is organized as follows. In Section 2, we extend the minimax analysis of
online learning problems to the case of competing with a set of strategies. In Section 3,
we show that it is possible to compete with a set of autoregressive strategies, and that
the usual online linear optimization algorithms do not attain the optimal bounds. We
then derive an optimal and computationally efficient algorithm for one of the proposed
regimes. In Section 4 we describe the general idea of competing with statistical models that
use sufficient statistics, and demonstrate an example of competing with a set of strategies
parametrized by priors. For this example, we derive an optimal and efficient randomized
algorithm. In Section 5, we turn to the question of competing with regularized least squares
algorithms indexed by the choice of a shift and a regularization parameter. In Section 6,
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we consider online linear optimization and show that it is possible to compete with Follow
the Regularized Leader methods parametrized by a shift and by a step size schedule.

2. Minimax Regret and Sequential Rademacher Complexity

We consider the problem of online learning, or sequential prediction, that consists of T
rounds. At each time t = {1, . . . , T} ≜ [T ], the learner makes a prediction ft ∈ F and
observes an outcome zt ∈ Z, where F and Z are abstract sets of decisions and outcomes.
Let us fix a loss function ` ∶ F × Z ↦ R that measures the quality of prediction. A strategy
π = (πt)Tt=1 is a sequence of functions πt ∶ Zt−1 ↦ F mapping history of outcomes to a
decision. Let Π denote a set of strategies. The regret with respect to Π is the difference
between the cumulative loss of the player and the cumulative loss of the best strategy

RegT =
T

∑
t=1

`(ft, zt) − inf
π∈Π

T

∑
t=1

`(πt(z1∶t−1), zt).

where we use the notation z1∶k ≜ {z1, . . . , zk}. Let Q = ∆(F) and P = ∆(Z) be the sets of
probability distributions on F and Z. We now define the value of the game against a set Π
of strategies as

VT (Π) ≜ inf
q1∈Q

sup
z1∈Z

E
f1∼q1

. . . inf
qT ∈Q

sup
zT ∈Z

E
fT ∼qT

[RegT ] .

It was shown in (Rakhlin et al., 2010; Abernethy et al., 2009) that one can derive non-
constructive upper bounds on the value through a process of sequential symmetrization,
and in (Rakhlin et al., 2012) it was shown that these non-constructive bounds can be used
as relaxations to derive an algorithm. This is the path we take in this paper.

Let us describe an important variant of the above problem – that of supervised learn-
ing. Here, before making a real-valued prediction ŷt on round t, the learner observes side
information xt ∈ X . Simultaneously, the actual outcome yt ∈ Y is chosen by Nature. A
strategy can therefore depend on the history x1∶t−1, y1∶t−1 and the current xt, and we write
such strategies as πt(x1∶t, y1∶t−1), with πt ∶ X t × Yt−1 ↦ Y. Fix some loss function `(ŷ, y).
The value VST (Π) is then defined as

sup
x1

inf
q1∈∆(Y)

sup
y1∈Y

E
ŷ1∼q1

. . . sup
xT

inf
qT ∈∆(Y)

sup
yT ∈Y

E
ŷT ∼qT

[
T

∑
t=1

`(ŷt, yt) − inf
π∈Π

T

∑
t=1

`(πt(x1∶t, y1∶t−1), yt)] .

To proceed, we need to define a notion of a tree. A Z-valued tree z is a sequence of
mappings {z1, . . . ,zT } with zt ∶ {±1}t−1 ↦ Z. Throughout the paper, εt ∈ {±1} are i.i.d.
Rademacher variables, and a realization of ε = (ε1, . . . , εT ) defines a path on the tree, given
by z1∶t(ε) ≜ (z1(ε), . . . ,zt(ε)) for any t ∈ [T ]. We write zt(ε) for zt(ε1∶t−1). By convention,
a sum ∑ba = 0 for a > b and for simplicity assume that no loss is suffered on the first round.

Definition 1 Sequential Rademacher complexity of the set Π of strategies is defined as

R(`,Π) ≜ sup
w,z

Eε sup
π∈Π

[
T

∑
t=1

εt`(πt(w1(ε), . . . ,wt−1(ε)),zt(ε))] (1)

where the supremum is over two Z-valued trees z and w of depth T .
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The w tree can be thought of as providing “history” while z providing “outcomes”. We
shall use these names throughout the paper. The reader might notice that in the above
definition, the outcomes and history are decoupled. We now state the main result:

Theorem 2 The value of prediction problem with a set Π of strategies is upper bounded as

VT (Π) ≤ 2R(`,Π) .

While the statement is visually similar to those in Rakhlin et al. (2010, 2011), it does not
follow from these works. Indeed, the proof (which appears in Appendix) needs to deal with
the additional complications stemming from the dependence of strategies on the history.
Further, we provide the proof for a more general case when sequences z1, . . . , zT are not
arbitrary but need to satisfy constraints.

As we show below, the sequential Rademacher complexity on the right-hand side allows
us to analyze general non-static experts, thus addressing the question raised in (Cesa-
Bianchi and Lugosi, 1999). For real-valued strategies, we can “erase” a Lipschitz loss
function, leading to the sequential Rademacher complexity of Π without the loss and without
the z tree:

R(Π) ≜ sup
w

R(Π,w) ≜ sup
w

Eε sup
π∈Π

[
T

∑
t=1

εtπt(w1∶t−1(ε))]

For example, suppose Z = {0,1}, the loss function is the indicator loss, and strategies have
potentially dependence on the full history. Then one can verify that

sup
w,z

Eε sup
π∈Πk

[
T

∑
t=1

εt1{πt(w1∶t−1(ε)) ≠ zt(ε)}]

= sup
w,z

Eε sup
π∈Πk

[
T

∑
t=1

εt(πt(w1∶t−1(ε))(1 − 2zt(ε)) + zt(ε))] =R(Π) . (2)

The same result holds when F = [0,1] and ` is the absolute loss. The process of “erasing
the loss” (or, contraction) extends quite nicely to problems of supervised learning. Let us
state the second main result:

Theorem 3 Suppose the loss function ` ∶ Y × Y ↦ R is convex and L-Lipschitz in the first
argument, and let Y = [−1,1]. Then

VST (Π) ≤ 2L sup
x,y

E
ε

sup
π∈Π

[
T

∑
t=1

εtπt(x1∶t(ε),y1∶t−1(ε))]

where (x1∶t(ε),y1∶t−1(ε)) naturally takes place of w1∶t−1(ε) in Theorem 2. Further, if Y =
[−1,1] and `(ŷ, y) = ∣ŷ − y∣, VST (Π) ≥ supxEε supπ∈Π [∑Tt=1 εtπt(x1∶t(ε), ε1∶t−1)].

Let us present a few simple examples as a warm-up.

Example 1 (History-independent strategies) Let πf ∈ Π be constant history-independent
strategies πf1 = . . . = πfT = f ∈ F . Then (1) recovers the definition of sequential Rademacher
complexity in Rakhlin et al. (2010).
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Example 2 (Static experts) For static experts, each strategy π is a predetermined se-
quence of outcomes, and we may therefore associate each π with a vector in FT . A direct
consequence of Theorem 3 for any convex L-Lipschitz loss is that

V(Π) ≤ 2LEε sup
π∈Π

[
T

∑
t=1

εtπt]

which is simply the classical i.i.d. Rademacher averages. For the case of F = [0,1], Z =
{0,1}, and the absolute loss, this is the result of Cesa-Bianchi and Lugosi (1999).

Example 3 (Finite-order Markov strategies) Let Πk be a set of strategies that only
depend on the k most recent outcomes to determine the next move. Theorem 2 implies that
the value of the game is upper bounded as

V(Πk) ≤ 2 supw,zEε supπ∈Πk [∑Tt=1 εt`(πt(wt−k(ε), . . . ,wt−1(ε)),zt(ε))] .

Now, suppose that F = Z is a finite set, of cardinality s. Then there are effectively ss
k

strate-
gies π. The bound on the sequential Rademacher complexity then scales as

√
2sk log(s)T ,

recovering the result of Feder et al. (1992) (see (Cesa-Bianchi and Lugosi, 2006, Cor. 8.2)).

In addition to providing an understanding of minimax regret against a set of strategies,
sequential Rademacher complexity can serve as a starting point for algorithmic development.
As shown in Rakhlin et al. (2012), any admissible relaxation can be used to define a succinct
algorithm with a regret guarantee. For the setting of this paper, this means the following.
Let Rel ∶ Zt ↦ R, for each t, be a collection of functions satisfying two conditions:

∀t, inf
qt∈Q

sup
zt∈Z

{ E
ft∼qt

`(ft, zt) +Rel(z1∶t)} ≤ Rel(z1∶t−1), and − inf
π∈Π

T

∑
t=1

`(πt(z1∶t−1), zt) ≤ Rel(z1∶T ) .

Then we say that the relaxation is admissible. It is then easy to show that regret of any
algorithm that ensures above inequalities is bounded by Rel({}).

Theorem 4 The conditional sequential Rademacher complexity with respect to Π

R(`,Π∣z1, . . . , zt) ≜ sup
z,w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εs`(πs(z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −
t

∑
s=1

`(πs(z1∶s−1), zs)]

is admissible.

Conditional sequential Rademacher complexity can therefore be used as a starting point for
possibly deriving computationally attractive algorithms, as shown throughout the paper.

We may now define covering numbers for the set Π of strategies over the history trees.
The development is a straightforward modification of the notions developed in (Rakhlin
et al., 2010), where we replace “any tree x” with a tree of histories w1∶t−1.

Definition 5 A set V of R-valued trees is an α-cover (with respect to `p) of a set of
strategies Π on an Z-valued history tree w if

∀π ∈ Π, ∀ε ∈ {±1}T , ∃v ∈ V s.t. ( 1
T ∑

T
t=1 ∣πt(w1∶t−1(ε)) − vt(ε)∣p)

1/p ≤ α . (3)

An α-covering number Np(Π,w, α) is the size of the smallest α-cover.
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For supervised learning, (x1∶t(ε),y1∶t−1(ε)) takes place of w1∶t−1(ε). Now, for any history
tree w, sequential Rademacher averages of a class of [−1,1]-valued strategies Π satisfy

R(Π,w) ≤ inf
α≥0

{αT +
√

2 logN1(Π,w, α)T}

and the Dudley entropy integral type bound also holds:

R(Π,w) ≤ inf
α≥0

{4αT + 12
√
T ∫

1

α

√
log N2(Π,w, δ) dδ} . (4)

In particular, this bound should be compared with Theorem 7 in (Cesa-Bianchi and Lugosi,
1999), which employs a covering number in terms of a pointwise metric between strategies
that requires closeness for all histories and all time steps. Second, the results of (Cesa-
Bianchi and Lugosi, 1999) for real-valued prediction require strategies to be bounded away
from 0 and 1 by δ > 0 and this restriction spoils the rates.

In the rest of the paper, we show how the results of this section (a) yield proofs of
existence of regret-minimization strategies with certain rates and (b) guide in the develop-
ment of algorithms. For some of these examples, standard methods (such as Exponential
Weights) come close to providing an optimal rate, while for others – fail miserably.

3. Competing with Autoregressive Strategies

In this section, we consider strategies that depend linearly on the past outcomes. To this
end, we fix a set Θ ⊂ Rk, for some k > 0, and parametrize the set of strategies as

ΠΘ = {πθ ∶ πθt (z1, . . . , zt−1) = ∑k−1
i=0 θi+1zt−k+i, θ = (θ1, . . . , θk) ∈ Θ} .

For consistency of notation, we assume that the sequence of outcomes is padded with zeros
for t ≤ 0. First, as an example where known methods can recover the correct rate, we
consider the case of a constant look-back of size k. We then extend the study to cases
where neither the regret behavior nor the algorithm is known in the literature, to the best
of our knowledge.

3.1. Finite Look-Back

Suppose Z = F ⊂ Rd are `2 unit balls, the loss is `(f, z) = ⟨f, z⟩, and Θ ⊂ Rk is also a unit
`2 ball. Denoting by W(t−k∶t−1) = [wt−k(ε), . . . ,wt−1(ε)] a matrix with columns in Z,

R(`,ΠΘ) = sup
w,z

Eε sup
θ∈Θ

[
T

∑
t=1

εt ⟨πθ(wt−k∶t−1(ε)),zt(ε)⟩] = sup
w,z

Eε sup
θ∈Θ

[
T

∑
t=1

εtzt(ε)TW(t−k∶t−1) ⋅ θ]

= sup
w,z

Eε ∥
T

∑
t=1

εtzt(ε)TW(t−k∶t−1)∥ ≤
√
kT (5)

In fact, this bound against all strategies parametrized by Θ is achieved by the gradient
descent (GD) method with the simple update θt+1 = ProjΘ(θt − η [zt−k, . . . , zt−1]T zt) where
ProjΘ is the Euclidean projection onto the set Θ. This can be seen by writing the loss as

⟨[zt−k, . . . , zt−1] ⋅ θt, zt⟩ = ⟨θt, [zt−k, . . . , zt−1]T zt⟩.
The regret of GD, ∑Tt=1⟨θt, [zt−k, . . . , zt−1]T zt⟩− infθ∈Θ∑Tt=1⟨θ, [zt−k, . . . , zt−1]T zt⟩, is precisely
regret against strategies in Θ, and analysis of GD yields the rate in (5).
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3.2. Full Dependence on History

The situation becomes less obvious when k = T and strategies depend on the full history.
The regret bound in (5) is vacuous, and the question is whether a better bound can be
proved, under some additional assumptions on Θ. Can such a bound be achieved by GD?

For simplicity, consider the case of F = Z = [−1,1], and assume that Θ = Bp(1) ⊂ RT is
a unit `p ball, for some p ≥ 1. Since k = T , it is easier to re-index the coordinates so that

πθt (z1∶t−1) = ∑t−1
i=1 θizi.

The sequential Rademacher complexity of the strategy class is

R(`,ΠΘ) = sup
w,z

E sup
θ∈Θ

[
T

∑
t=1

εtπ
θ(w1∶t−1(ε)) ⋅ zt(ε)] = sup

w,z
E sup
θ∈Θ

[
T

∑
t=1

(
t−1

∑
i=1

θiwi(ε)) εtzt(ε)] .

Rearranging the terms, the last expression is equal to

sup
w,z

E sup
θ∈Θ

[
T−1

∑
t=1

θtwt(ε) ⋅ (
T

∑
i=t+1

εizi(ε))] ≤ sup
w,z

E [∥w1∶T−1(ε)∥q ⋅ max
1≤t≤T

∣
T

∑
i=t+1

εizi(ε)∣]

where q is the Hölder conjugate of p. Observe that

sup
z

E sup
1≤t≤T

∣
T

∑
i=t
εizi(ε)∣ ≤ sup

z
E [∣

T

∑
i=1

εizi(ε)∣ + sup
1≤t≤T

∣
t−1

∑
i=1

εizi(ε)∣] ≤ 2 sup
z

E sup
1≤t≤T

∣
t

∑
i=1

εizi(ε)∣

Since {εtzt(ε) ∶ t = 1, . . . , T} is a bounded martingale difference sequence, the last term is
of the order of O(

√
T ). Now, suppose there is some β > 0 such that ∥w1∶T−1(ε)∥q ≤ T β for

all ε. This assumption can be implemented if we consider constrained adversaries, where
such `q-bound is required to hold for any prefix w1∶t(ε) of history (In Appendix, we prove
Theorem 2 for the case of constrained sequences). Then R(`,ΠΘ) ≤ C ⋅ T β+1/2 for some
constant C. We now compare the rate of convergence of sequential Rademacher and the
rate of the mirror descent algorithm for different settings of q in Table 3.2. If ∥θ∥p ≤ 1
and ∥w∥q ≤ T β for q ≥ 2, the convergence rate of mirror descent with Legendre function
F (θ) = 1

2∥θ∥
2
p is

√
q − 1T β+1/2 (see (Srebro et al., 2011)).

Θ w1∶T sequential Radem. rate Mirror descent rate

B1(1) ∥w1∶T−1∥∞ ≤ 1
√
T

√
T logT

q ≥ 2 Bp(1) ∥w1∶T−1∥q ≤ T β T β+1/2 √
q − 1T β+1/2

B2(1) ∥w1∶T−1∥2 ≤ T β T β+1/2 T β+1/2

1 ≤ q ≤ 2 Bp(1) ∥w1∶T−1∥q ≤ T β T β+1/2 T β+1/q

B∞(1) ∥w1∶T−1∥1 ≤ T β T β+1/2 T

Table 1: Comparison of the rates of convergence (up to constant factors)

We observe that mirror descent, which is known to be optimal for online linear opti-
mization, and which gives the correct rate for the case of bounded look-back strategies, in
several regimes fails to yield the correct rate for more general linearly parametrized strate-
gies. Even in the most basic regime where Θ is a unit `1 ball and the sequence of data is
not constrained (other than Z = [−1,1]), there is a gap of

√
logT between the Rademacher

bound and the guarantee of mirror descent. Is there an algorithm that removes this factor?
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3.2.1. Algorithms for Θ = B1(1)
For the example considered in the previous section, with F = Z = [−1,1] and Θ = B1(1),
the conditional sequential Rademacher complexity of Theorem 4 becomes

RT (Π∣z1, . . . , zt) = sup
z,w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εsπs(z1∶t,w1∶s−t−1(ε)) ⋅ zs(ε) −
t

∑
s=1

πs(z1∶s−1) ⋅ zs]

≤ sup
w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εsπs(z1∶t,w1∶s−t−1(ε)) −
t

∑
s=1

zsπs(z1∶s−1)]

where the z tree is “erased”, as at the end of the proof of Theorem 3. Define as(ε) = 2εs for
s > t and −zs otherwise; bi(ε) = wi(ε) for i > t and zi otherwise. We can then simply write

sup
w

E
εt+1∶T

sup
θ∈Θ

[
T

∑
s=1

as(ε)
s−1

∑
i=1

θibi(ε)] = sup
w

E
εt+1∶T

sup
θ∈Θ

[
T−1

∑
s=1

θsbs(ε)
T

∑
i=s+1

ai(ε)] ≤ E
εt+1∶T

max
1≤s≤T

∣
T

∑
i=s
ai(ε)∣

which we may use as a relaxation:

Lemma 6 Define ats(ε) = 2εs for s > t, and −zs otherwise. Then,

Rel(z1∶t) = Eεt+1∶T max1≤s≤T ∣∑Ti=s ati(ε)∣

is an admissible relaxation.

With this relaxation, the following method attains O(
√
T ) regret: prediction at step t is

qt = argmin
q∈[−1,1]

sup
zt∈{±1}

{ E
ft∼q

ft ⋅ zt +Eεt+1∶T max
1≤s≤T

∣
T

∑
i=s
ati(ε)∣}

where the sup over zt ∈ [−1,1] is achieved at {±1} due to convexity. Following (Rakhlin
et al., 2012), we can also derive randomized algorithms, which can be viewed as “randomized
playout” generalizations of the Follow the Perturbed Leader algorithm.

Lemma 7 Consider the randomized strategy where at round t we first draw εt+1, . . . , εT
uniformly at random and then further draw our move ft according to the distribution

qt(ε) = argmin
q∈[−1,1]

supzt∈{−1,1} {Eft∼q ft ⋅ zt +max1≤s≤T ∣∑Ti=s ati(ε)∣}

= 1
2
( max{maxs=1,...,t ∣−∑t−1

i=s zi + 1 + 2∑Ti=t+1 εi∣ , maxs=t+1,...,T ∣2∑Ti=s εi∣}
−max{maxs=1,...,t ∣−∑t−1

i=s zi − 1 + 2∑Ti=t+1 εi∣ , maxs=t+1,...,T ∣2∑Ti=s εi∣})

The expected regret of this randomized strategy is upper bounded by sequential Rademacher
complexity: E [RegT ] ≤ 2RT (Π), which was shown to be O(

√
T ) (see Table 3.2).

The time consuming parts of the above randomized method are to draw T − t random bits
at round t and to calculate the partial sums. However, we may replace Rademacher random
variables by Gaussian N(0,1) random variables and use known results on the distributions
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of extrema of a Brownian motion. To this end, define a Gaussian analogue of conditional
sequential Rademacher complexity

GT (Π∣z1, . . . , zt) = sup
z,w

E
σt+1∶T

sup
π∈Π

[
√

2π
T

∑
s=t+1

σs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −
t

∑
s=1

`(πs(z1∶s−1), zs)]

where σt ∼ N(0,1), and ε = (sign(σ1), . . . , sign(σT )). For our example the O(
√
T ) bound

can be shown for GT (Π) by calculating the expectation of the maximum of Brownian motion.
Proofs similar to Theorem 2 and Theorem 4 show that the conditional Gaussian complexity
GT (Π∣z1, . . . , zt) is an upper bound on RT (Π∣z1, . . . , zt) and is admissible (see Theorem 11
in Appendix). Furthermore, the proof of Lemma 7 holds for Gaussian random variables,
and gives the randomized algorithm as in Lemma 7 with εt replaced by σt. It is not difficult
to see that we can keep track of the maximum and minimum of {−∑t−1

i=s zi} between rounds
in O(1) time. We can then draw three random variables from the joint distribution of
the maximum, the minimum and the endpoint of a Brownian Motion and calculate the
prediction in O(1) time per round of the game (the joint distribution can be found in
Karatzas and Shreve (1991)). In conclusion, we have derived an algorithm that for the case
of Θ = B1(1), with time complexity of O(1) per round and the optimal regret bound of
O(

√
T ). We leave it as an open question to develop efficient and optimal algorithms for the

other settings in Table 3.2.

4. Competing with Statistical Models

In this section we consider competing with a set of strategies that arise from statistical
models. For example, for the case of Bayesian models, strategies are parametrized by the
choice of a prior. Regret bounds with respect to a set of such methods can be thought of
as a robustness statement: we are aiming to perform as well as the strategy with the best
choice of a prior. We start this section with a general setup that needs further investigation.

4.1. Compression and Sufficient Statistics

Assume that strategies in Π have a particular form: they all work with a “sufficient statis-
tic”, or, more loosely, compression of the past data. Suppose “sufficient statistics” can take
values in some set Γ. Fix a set Π̄ of mappings π̄ ∶ Γ↦ F . We assume that all the strategies
in Π are of the form πt(z1, . . . , zt−1) = π̄(γ(z1, . . . , zt−1)) for some π̄ ∈ Π̄ and γ ∶ Z∗ ↦ Γ.
Such a bottleneck Γ can arise due to a finite memory or finite precision, but can also arise
if the strategies in Π are actually solutions to a statistical problem. If we assume a certain
stochastic source for the data, we may estimate the parameters of the model, and there is
often a natural set of sufficient statistics associated with it. If we collect all such solutions
to stochastic models in a set Π, we may compete with all these strategies as long as Γ is not
too large and the dependence of estimators on these sufficient statistics is smooth. With the
notation introduced in this paper, we need to study the sequential Rademacher complexity
for strategies Π, which can be upper bounded by the complexity of Π̄ on Γ-valued trees:

R(Π) ≤ sup
g,z

Eε sup
π̄∈Π̄

[
T

∑
t=1

εt`(π̄(gt(ε)),zt(ε))]

9
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This complexity corresponds to our intuition that with sufficient statistics the dependence
on the ever-growing history can be replaced with the dependence on a summary of the data.
Next, we consider one particular case of this general idea, and refer to Foster et al. (2011)
for more details on these types of bounds.

4.2. Bernoulli Model with a Beta Prior

Suppose the data zt ∈ {0,1} is generated according to Bernoulli distribution with parameter
p, and the prior on p ∈ [0,1] is p ∼ Beta(α,β). Given the data {z1, . . . , zt−1}, the maximum
a posteriori (MAP) estimator of p is p̂ = (∑t−1

i=1 zi+α−1)/(t−1+α+β −2). We now consider
the problem of competing with Π = {πα,β ∶ α > 1, β ∈ (1,Cβ]} for some Cβ, where each πα,β

predicts the corresponding MAP value for the next round:

πα,βt (z1, . . . , zt−1) = (∑t−1
i=1 zi + α − 1)/(t − 1 + α + β − 2) .

Let us consider the absolute loss, which is equivalent to probability of a mistake of the
randomized prediction1 with bias πα,βt . Thus, the loss of a strategy πα,β on round t is

∣πα,βt (z1∶t−1) − zt∣ . Using Theorem 2 and the argument in (2) to erase the outcome tree, we

conclude that there exists a regret minimization algorithm against the set Π which attains
regret of at most

2 supw Eε supα,β [∑Tt=1 εt
∑t−1i=1 wi(ε)+α−1
t−1+α+β−2 ] .

To analyze the rate exhibited by this upper bound, construct a new tree with g1(ε) = 1 and

gt(ε) = ∑
t−1
i=1 wi(ε)+α−1

t+α−2 ∈ [0,1] for t ≥ 2. With this notation, we can simply re-write the last
expression as twice

supg Eε supα,β [∑Tt=1 εtgt(ε) t+α−2
t+α+β−3]

The supremum ranges over all [0,1]-valued trees g, but we can pass to the supremum over
all [−1,1]-valued trees (thus making the value larger). We then observe that the supremum
is achieved at a {±1}-valued tree g, which can then be erased as in the end of the proof of
Theorem 3 (roughly speaking, it amounts to renaming εt into εtgt(ε1∶t−1)). We obtain an
upper bound

R(Π) ≤ Eε sup
α,β

T

∑
t=1

εt(t + α − 2)
t + α + β − 3

≤ Eε ∣
T

∑
t=1

εt∣ +Eε sup
α,β

∣
T

∑
t=1

εt(β − 1)
t + α + β − 3

∣ = (
√
Cβ + 1)

√
T (6)

where we used Cauchy-Schwartz inequality for the second term. We note that an experts
algorithm would require a discretization that depends on T and will yield a regret bound
of order O(

√
T logT ). It is therefore interesting to find an algorithm that avoids the dis-

cretization and obtains this regret. To this end, we take the derived upper bound on the
sequential Rademacher complexity and prove that it is an admissible relaxation.

1. Alternatively, we can consider strategies that predict according to 1{p̂ ≥ 1/2}, which better matches
the choice of an absolute loss. However, in this situation, an experts algorithm on an appropriate
discretization attains the bound.

10
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Lemma 8 The relaxation

Rel(z1∶t) = Eεt+1∶T sup
α,β

[2
T

∑
s=t+1

εs ⋅
s + α − 2

s + α + β − 3
−

t

∑
s=1

∣ ∑s−1
i=1 zi

s + α + β − 3
− zs∣]

is admissible.

Given that this relaxation is admissible, we have a guarantee that the following algorithm
attains the rate (

√
Cβ + 1)

√
T given in (6):

qt =arg min
q∈[0,1]

max
zt∈{0,1}

{Ef∼q ∣f − zt∣ +Eεt+1∶T sup
α,β

[2
T

∑
s=t+1

εs ⋅
s + α − 2

s + α + β − 3
−

t

∑
s=1

∣ ∑s−1
i=1 zi

s + α + β − 3
− zs∣]}

In fact, qt can be written as

qt =
1

2
{Eεt+1∶T sup

α,β
[2

T

∑
s=t+1

εs ⋅
s + α − 2

s + α + β − 3
−
t−1

∑
s=1

(1 − 2zs) ⋅
∑s−1
i=1 zi

s + α + β − 3
+ ∑t−1

i=1 zi
t + α + β − 3

]

−Eεt+1∶T sup
α,β

[2
T

∑
s=t+1

εs ⋅
s + α − 2

s + α + β − 3
−
t−1

∑
s=1

(1 − 2zs) ⋅
∑s−1
i=1 zi

s + α + β − 3
− ∑t−1

i=1 zi
t + α + β − 3

]}

For a given realization of random signs, the supremum is an optimization of a sum of
linear fractional functions of two variables. Such an optimization can be carried out in time
O(T logT ) (see Chen et al. (2005)). To deal with the expectation over random signs, one
may either average over many realizations or use the random playout idea and only draw
one sequence. Such an algorithm is admissible for the above relaxation, obtains the O(

√
T )

bound, and runs in O(T logT ) time per step. We leave it as an open problem whether a
more efficient algorithm with O(

√
T ) regret exists.

5. Competing with Regularized Least Squares

Consider the supervised learning problem with Y = [−1,1] and some set X . Consider the
Regularized Least Squares (RLS) strategies, parametrized by a regularization parameter λ
and a shift w0. That is, given data (x1, y1), . . . , (xt, yt), the strategy solves

arg minw∑ti=1(yi − ⟨xi,w⟩)2 + λ∥w −w0∥2 .

For a given pair λ and w0, the solution is

wλ,w0

t+1 = w0 + (XTX + λI)−1XTY,

where X ∈ Rt×d and Y ∈ Rt×1 are the usual matrix representations of the data x1∶t, y1∶t. We

would like to compete against a set of such RLS strategies which make prediction ⟨wλ,w0

t−1 , xt⟩,
given side information xt. Since the outcomes are in [−1,1], without loss of generality we
clip the predictions of strategies to this interval, thus making our regret minimization goal
only harder. To this end, let c(a) = a if a ∈ [−1,1] and c(a) = sign(a) for ∣a∣ > 1. Thus, given
side-information xt ∈ X , the prediction of strategies in Π = {πλ,w0 ∶ λ ≥ λmin > 0, ∥w0∥2 ≤ 1}
is simply the clipped product

πλ,w0
t (x1∶t, y1∶t−1) = c (⟨wλ,w0

t−1 , xt⟩) .

Let us take the squared loss function `(ŷ, y) = (ŷ − y)2.

11



Han Rakhlin Sridharan

Lemma 9 For the set Π of strategies defined above, the minimax regret of competing against
Regularized Least Squares strategies is

VT (Π) ≤ c
√
T log(Tλ−1

min)
for an absolute constant c.

Observe that λ−1
min enters only logarithmically, which allows us to set, for instance, λmin =

1/T . Finally, we mention that the set of strategies includes λ = ∞. This setting corresponds
to a static strategy πλ,w0

t (x1∶t, y1∶t−1) = ⟨w0, xt⟩ and regret against such a static family
parametrized by w0 ∈ B2(1) is exactly the objective of online linear regression (Vovk, 1998).
Lemma 9 thus shows that it is possible to have vanishing regret with respect to a much
larger set of strategies. It is an interesting open question of whether one can develop an
efficient algorithm with the above regret guarantee.

6. Competing with Follow the Regularized Leader Strategies

Consider the problem of online linear optimization with the loss function `(ft, zt) = ⟨ft, zt⟩
for ft ∈ F , zt ∈ Z. For simplicity, assume that F = Z = B2(1). An algorithm commonly
used for online linear and online convex optimization problems is the Follow the Regularized
Leader (FTRL) algorithm. We now consider competing with a family of FTRL algorithms
πw0,λ indexed by w0 ∈ {w ∶ ∥w∥ ≤ 1} and λ ∈ Λ where Λ is a family of functions λ ∶ R+×[T ] ↦
R+ specifying a schedule for the choice of regularization parameters. Specifically we consider
strategies πw0,λ such that πw0,λ

t (z1, . . . , zt−1) = wt where

wt = w0 + argmin
w∶∥w∥≤1

{∑t−1
i=1 ⟨w, zi⟩ + 1

2λ (∥∑t−1
i=1 zi∥ , t) ∥w∥2} (7)

This can be written in closed form as wt = w0 − (∑t−1
i=1 zi)/max{λ (∥∑t−1

i=1 zi∥ , t) , ∥∑t−1
i=1 zi∥}.

Lemma 10 For a given class Λ of functions indicating choices of the regularization param-
eters, define a class Γ of functions on [0,1] × [1/T,1] specified by

Γ = {γ ∶ ∀b ∈ [1/T,1], a ∈ [0,1], γ(a, b) = min{ a/(b − 1)
λ(a/(b − 1),1/b) ,1} , λ ∈ Λ}

Then the value of the online learning game competing against FTRL strategies given by
Equation 7 is bounded as

VT (ΠΛ) ≤ 4
√
T + 2 RT (Γ)

where RT (Γ) is the sequential Rademacher complexity (Rakhlin et al., 2010) of Γ.

Notice that if ∣Λ∣ < ∞ then the second term is bounded as RT (Γ) ≤
√
T log ∣Λ∣. However,

we may compete with an infinite set of step-size rules. Indeed, each γ ∈ Γ is a function
[0,1]2 ↦ [0,1]. Hence, even if one considers Γ to be the set of all 1-Lipschitz functions
(Lipschitz w.r.t., say, `∞ norm), it holds that RT (Γ) ≤ 2

√
T logT . We conclude that it is

possible to compete with set of FTRL strategies that pick any w0 in unit ball as starting
point and further use for regularization parameter schedule any λ ∶ R2 ↦ R that is such that

a/(b−1)
λ(a/(b−1),1/b) is a 1-Lipchitz function for every a, b ∈ [1/T,1].

Beyond the finite and Lipschitz cases shown above, it would be interesting to analyze
richer families of step size schedules, and possibly derive efficient algorithms.
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Appendix A. Proofs

Proof [of Theorem 2]
Let us prove a more general version of Theorem 2, which we do not state in the main text

due to lack of space. The extra twist is that we allow constraints on the sequences z1, . . . , zT
played by the adversary. Specifically, the adversary at round t can only play xt that satisfy
constraint Ct(z1, . . . , zt) = 1 where (C1, . . . ,CT ) is a predetermined sequence of constraints
with Ct ∶ Zt ↦ {0,1}. When each Ct is the function that is always 1 then we are in the
setting of the theorem statement where we play an unconstrained/worst case adversary.
However the proof here allows us to even analyze constrained adversaries which come in
handy in many cases. Following (Rakhlin et al., 2011), a restriction P1∶T on the adversary is
a sequence P1, . . . ,PT of mappings Pt ∶ Zt−1 ↦ 2P such that Pt(z1∶t−1) is a convex subset of
P for any z1∶t−1 ∈ Zt−1. In the present proof we will only consider constrained adversaries,
where Pt = ∆(Ct(z1∶t−1)) the set of all distributions on the constrained subset

Ct(z1∶t−1) ≜ {z ∈ Z ∶ Ct(z1, . . . , zt−1, z) = 1}.

defined at time t via a binary constraint Ct ∶ Zt ↦ {0,1}. Notice that the set Ct(z1∶t−1) is the
subset of Z from which the adversary is allowed to pick instance zt from given the history
so far. It was shown in Rakhlin et al. (2011) that such constraints can model sequences
with certain properties, such as slowly changing sequences, low-variance sequences, and so
on. Let C be the set of Z-valued trees z such that for every ε ∈ {±1}T and t ∈ [T ],

Ct(z1(ε), . . . ,zt(ε)) = 1,

that is, the set of trees such that the constraint is satisfied along any path. The statement
we now prove is that the value of the prediction problem with respect to a set Π of strategies
and against constrained adversaries (denoted by VT (Π,C1∶T )) is upper bounded by twice
the sequential complexity

sup
w∈C,z

Eε sup
π∈Π

T

∑
t=1

εt`(πt(w1(ε), . . . ,wt−1(ε))),zt(ε)) (8)

where it is crucial that the w tree ranges over trees that respect the constraints along all
paths, while z is allowed to be an arbitrary Z-valued tree. This fact that w respects the
constraints is the only difference with the original statement of Theorem 2 in the main body
of the paper.

For ease of notation we use ⟪ ⟫Tt=1 to denote repeated application of operators such

has sup or inf. For instance, ⟪supat∈A infbt∈B Ert∼P⟫
T

t=1
[F (a1, b1, r1, ..., aT , bT , rT )] denotes

supa1∈A infb1∈B Er1∼P . . . supaT ∈A infbT ∈B ErT ∼P [F (a1, b1, r1, ..., aT , bT , rT )].
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The value of a prediction problem with respect to a set of strategies and against con-
strained adversaries can be written as :

VT (Π,C1∶T ) = ⟪ inf
qt∈Q

sup
pt∈Pt(z1∶t−1)

E
ft∼qt,zt∼pt

⟫
T

t=1

[
T

∑
t=1

`(ft, zt) − inf
π∈Π

`(πt(z1∶t−1), zt)]

= ⟪ sup
pt∈Pt(z1∶t−1)

E
zt∼pt

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

inf
ft∈F

Ez′t`(ft, z
′
t) − `(πt(z1∶t−1), zt)]

≤ ⟪ sup
pt∈Pt(z1∶t−1)

E
zt∼pt

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

Ez′t`(πt(z1∶t−1), z′t) − `(πt(z1∶t−1), zt)]

≤ ⟪ sup
pt∈Pt(z1∶t−1)

E
zt,z′t

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

`(πt(z1∶t−1), z′t) − `(πt(z1∶t−1), zt)]

Let us now define the “selector function” χ ∶ Z × Z × {±1} ↦ Z by

χ(z, z′, ε) = { z′ if ε = −1
z if ε = 1

In other words, χt selects between zt and z′t depending on the sign of ε. We will use the
shorthand χt(εt) ≜ χ(zt, z′t, εt) and χ1∶t(ε1∶t) ≜ (χ(z1, z

′
1, ε1), . . . , χ(zt, z′t, εt)). We can then

re-write the last statement as

⟪ sup
pt∈Pt(χ1∶t−1(ε1∶t−1))

E
zt,z′t

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εt (`(πt(χ1∶t−1(ε1∶t−1)), χt(−εt)) − `(πt(χ1∶t−1(ε1∶t−1)), χt(εt)))]

One can indeed verify that we simply used χt to switch between zt and z′t according to εt.
Now, we can replace the second argument of the loss in both terms by a larger value to
obtain an upper bound

⟪ sup
pt∈Pt(χ1∶t−1(ε1∶t−1))

E
zt,z′t

sup
z′′t ,z

′′′
t

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εt (`(πt(χ1∶t−1(ε1∶t−1)), z′′t ) − `(πt(χ1∶t−1(ε1∶t−1)), z′′′t ))]

≤ 2⟪ sup
pt∈Pt(χ1∶t−1(ε1∶t−1))

E
zt,z′t

sup
z′′t

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εt`(πt(χ1∶t−1(ε1∶t−1)), z′′t )]

since the two terms obtained by splitting the suprema are the same. We now pass to the
suprema over zt, z

′
t, noting that the constraints need to hold:

2⟪ sup
zt,z′t∈Ct(χ1∶t−1(ε1∶t−1))

sup
z′′t

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εt`(πt(χ1∶t−1(ε1∶t−1)), z′′t )]

= 2 sup
(z,z′)∈C′

sup
z′′

E
ε

sup
π∈Π

[
T

∑
t=1

εtπt(χ(z1,z
′
1, ε1), . . . , χ(zt−1(ε),z′t−1(ε), εt−1)),z′′(ε)] = (∗)

where in the last step we passed to the tree notation. Importantly, the pair (z,z′) of trees
does not range over all pairs, but only over those which satisfy the constraints:

C′ = {(z,z′) ∶ ∀ε ∈ {±1}T ,∀t ∈ [T ], zt(ε),z′t(ε) ∈ Ct(χ(z1,z
′
1, ε1), . . . , χ(zt−1(ε),z′t−1(ε), εt−1))}
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Now, given the pair (z,z′) ∈ C′, define a Z-valued tree of depth T as:

w̃1 = ∅, w̃t(ε) = χ(zt−1(ε),z′t−1(ε), εt−1) for all t > 1

Clearly, this is a well-defined tree, and we now claim that it satisfies the constraints along
every path. Indeed, we need to check that for any ε and t, both w̃t(ε1∶t−2,+1), w̃t(ε1∶t−2,−1) ∈
Ct(w̃1, . . . , w̃t−1(ε1∶t−2)). This amounts to checking, by definition of w̃ and the selector χ,
that

zt−1(ε1∶t−2),z′t−1(ε1∶t−2) ∈ Ct−1(χ(z1,z
′
1, ε1), . . . , χ(zt−2(ε),z′t−2(ε), εt−2)) .

But this is true because (z,z′) ∈ C′. Hence, w̃ constructed from z,z′ satisfies the constraints
along every path.

We can therefore upper bound the expression in (∗) by twice

sup
w̃∈C

sup
z′′

E
ε

sup
π∈Π

[
T

∑
t=1

εt`(πt(w̃1(ε), . . . , w̃t−1(ε)),z′′(ε))] .

Define w∗ = w̃(−1) and w∗∗ = w̃(+1), we can expend the expectation with respect to ε1 of
the above expression by

1

2
sup
w∗∈C

sup
z′′

E
ε2∶T

sup
π∈Π

[−`(π1(⋅),z′′1(⋅)) +
T

∑
t=2

εt`(πt(w∗(ε)),z′′(ε))]

+ 1

2
sup

w∗∗∈C
sup
z′′

E
ε2∶T

sup
π∈Π

[`(π1(⋅),z′′1(⋅)) +
T

∑
t=2

εt`(πt(w∗∗(ε)),z′′(ε))] .

With the assumption that we do not suffer lose at the first round, which means `(π1(⋅),z′′1(⋅)) =
0, we can see that both terms achieve the suprema with the same w∗ = w∗∗. Therefore, the
above expression can be rewrite as

sup
w∈C

sup
z′′

E
ε2∶T

sup
π∈Π

[
T

∑
t=1

εt`(πt(w(ε)),z′′(ε))]

which is precisely (8). This concludes the proof of Theorem 2.

Proof [of Theorem 3] By convexity of the loss,

⟪sup
xt∈X

inf
qt∈∆(Y)

sup
yt∈Y

E
ŷt∼qt

⟫
T

t=1

[
T

∑
t=1

`(ŷt, yt) − inf
π∈Π

T

∑
t=1

`(πt(x1∶t, y1∶t−1), yt)]

≤ ⟪sup
xt∈X

inf
qt∈∆(Y)

sup
yt∈Y

E
ŷt∼qt

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

`′(ŷt, yt)(ŷt − πt(x1∶t, y1∶t−1))]

≤ ⟪sup
xt∈X

inf
qt∈∆(Y)

sup
yt∈Y

E
ŷt∼qt

sup
st∈[−L,L]

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

st(ŷt − πt(x1∶t, y1∶t−1))]

where in the last step we passed to an upper bound by allowing for the worst-case choice
st of the derivative. We will often omit the range of the variables in our notation, and it
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is understood that st’s range over [−L,L], while yt, ŷt over Y and xt’s over X . Now, by
Jensen’s inequality, we pass to an upper bound by exchanging Eŷt and supyt∈Y :

⟪sup
xt

inf
qt∈∆(Y)

E
ŷt∼qt

sup
yt

sup
st

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

st(ŷt − πt(x1∶t, y1∶t−1))]

= ⟪sup
xt

inf
ŷt∈Y

sup
yt,st

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

st(ŷt − πt(x1∶t, y1∶t−1))]

Consider the last step, assuming all the other variables fixed:

sup
xT

inf
ŷT

sup
yT ,sT

sup
π∈Π

[
T

∑
t=1

st(ŷt − πt(x1∶t, y1∶t−1))]

= sup
xT

inf
ŷT

sup
pT ∈∆(Y×[−L,L])

E
(yT ,sT )∼pT

sup
π∈Π

[
T

∑
t=1

st(ŷt − πt(x1∶t, y1∶t−1))]

where the distribution pT ranges over all distributions on Y × [−L,L]. Now observe that
the function inside the infimum is convex in ŷT , and the function inside suppT is linear in
the distribution pT . Hence, we can appeal to the minimax theorem, obtaining equality of
the last expression to

sup
xT

sup
pT ∈∆(Y×[−L,L])

inf
ŷT

E
(yT ,sT )∼pT

[
T

∑
t=1

stŷt − inf
π∈Π

T

∑
t=1

stπt(x1∶t, y1∶t−1))]

=
T−1

∑
t=1

stŷt + sup
xT

sup
pT

inf
ŷT

E
(yT ,sT )∼pT

[sT ŷT − inf
π∈Π

T

∑
t=1

stπt(x1∶t, y1∶t−1))]

=
T−1

∑
t=1

stŷt + sup
xT

sup
pT

⎡⎢⎢⎢⎢⎣
inf
ŷT

⎛
⎝

E
(yT ,sT )∼pT

sT
⎞
⎠
ŷT − E

(yT ,sT )∼pT
inf
π∈Π

T

∑
t=1

stπt(x1∶t, y1∶t−1))
⎤⎥⎥⎥⎥⎦

=
T−1

∑
t=1

stŷt + sup
xT

sup
pT

E
(yT ,sT )∼pT

⎡⎢⎢⎢⎢⎣
inf
ŷT

⎛
⎝

E
(yT ,sT )∼pT

sT
⎞
⎠
ŷT − inf

π∈Π

T

∑
t=1

stπt(x1∶t, y1∶t−1))
⎤⎥⎥⎥⎥⎦

We can now upper bound the choice of ŷT by that given by πT , yielding an upper bound

T−1

∑
t=1

stŷt + sup
xT ,pT

E
(yT ,sT )∼pT

sup
π∈Π

⎡⎢⎢⎢⎢⎣
inf
ŷT

⎛
⎝

E
(yT ,sT )∼pT

sT
⎞
⎠
ŷT −

T

∑
t=1

stπt(x1∶t, y1∶t−1))
⎤⎥⎥⎥⎥⎦

=
T−1

∑
t=1

stŷt + sup
xT ,pT

E
(yT ,sT )∼pT

sup
π∈Π

⎡⎢⎢⎢⎢⎣

⎛
⎝

E
(y′T ,s′T )∼pT

s′T − sT
⎞
⎠
πT (x1∶T , y1∶T−1) −

T−1

∑
t=1

stπt(x1∶t, y1∶t−1))
⎤⎥⎥⎥⎥⎦
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It is not difficult to verify that this process can be repeated for T − 1 and so on. The
resulting upper bound is therefore

VST (Π) ≤ ⟪sup
xt,pt

E
(yt,st)∼pt

⟫
T

t=1

sup
π∈Π

⎡⎢⎢⎢⎢⎣

T

∑
t=1

⎛
⎝

E
(y′t,s′t)∼pt

s′t − st
⎞
⎠
πt(x1∶t, y1∶t−1)

⎤⎥⎥⎥⎥⎦

≤ ⟪sup
xt,pt

E
(yt,st)∼pt
(y′
t
,s′
t
)∼pt

⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

(s′t − st)πt(x1∶t, y1∶t−1)]

= ⟪sup
xt,pt

E
(yt,st)∼pt
(y′
t
,s′
t
)∼pt

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εt (s′t − st)πt(x1∶t, y1∶t−1)]

≤ ⟪sup
xt

sup
(yt,st)
(y′
t
,s′
t
)

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εt (s′t − st)πt(x1∶t, y1∶t−1)]

≤ ⟪sup
xt,yt

sup
s′t,st

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εt (s′t − st)πt(x1∶t, y1∶t−1)]

≤ 2⟪sup
xt,yt

sup
st∈[−L,L]

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εtstπt(x1∶t, y1∶t−1)]

Since the expression is convex in each st, we can replace the range of st by {−L,L}, or,
equivalently,

VST (Π) ≤ 2L⟪sup
xt,yt

sup
st∈{−1,1}

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εtstπt(x1∶t, y1∶t−1)] (9)

Now consider any arbitrary function ψ ∶ {±1} ↦ R, we have that

sup
s∈{±1}

Eε [ψ(s ⋅ ε)] = sup
s∈{±1}

1

2
(ψ(+s) + ψ(−s)) = 1

2
(ψ(+1) + ψ(−1)) = Eε [ψ(ε)]

Since in Equation (9), for each t, st and εt appear together as εt ⋅st using the above equation
repeatedly, we conclude that

VST (Π) ≤ 2L⟪sup
xt,yt

E
εt
⟫
T

t=1

sup
π∈Π

[
T

∑
t=1

εtπt(x1∶t, y1∶t−1)] = sup
x,y

E
ε

sup
π∈Π

[
T

∑
t=1

εtπt(x1∶t(ε),y1∶t−1(ε))]

The lower bound is obtained by the same argument as in Rakhlin et al. (2010).

Proof [of Theorem 4] Denote Lt(π) = ∑ts=1 `(πs(z1∶s−1), zs). The first step of the proof is
an application of the minimax theorem (we assume the necessary conditions hold):

inf
qt∈∆(F)

sup
zt∈Z

{ E
ft∼qt

[`(ft, zt)] + sup
z,w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt(π)]}

= sup
pt∈∆(Z)

inf
ft∈F

{ E
zt∼pt

[`(ft, zt)] + E
zt∼pt

sup
z,w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt(π)]}
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For any pt ∈ ∆(Z), the infimum over ft of the above expression is equal to

E
zt∼pt

sup
z,w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+ inf
ft∈F

E
zt∼pt

[`(ft, zt)] − `(πt(z1∶t−1), zt)]

≤ E
zt∼pt

sup
z,w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+ E
zt∼pt

[`(πt(z1∶t−1), zt)] − `(πt(z1∶t−1), zt)]

≤ E
zt,z′t∼pt

sup
z,w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+`(πt(z1∶t−1), z′t) − `(πt(z1∶t−1), zt)]

We now argue that the independent zt and z′t have the same distribution pt, and thus we
can introduce a random sign εt. The above expression then equals to

E
zt,z′t∼pt

E
εt

sup
z,w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+εt(`(πt(z1∶t−1), χt(−εt))) − `(πt(z1∶t−1), χt(εt)))]

≤ E
zt,z′t∼pt

sup
z′′,z′′′

E
εt

sup
z,w

E
εt+1∶T

sup
π∈Π

[2
T

∑
s=t+1

εs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+εt(`(πt(z1∶t−1), z′′t ) − `(πt(z1∶t−1), z′′′t ))]

Splitting the resulting expression into two parts, we arrive at the upper bound of

2 E
zt,z′t∼pt

sup
z′′

E
εt

sup
z,w

E
εt+1∶T

sup
π∈Π

[
T

∑
s=t+1

εs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε)) −
1

2
Lt−1(π) + εt`(πt(z1∶t−1), z′′t )]

≤ sup
z,z′,z′′

E
εt

sup
z,w

E
εt+1∶T

sup
π∈Π

[
T

∑
s=t+1

2εs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π) + εt`(πt(z1∶t−1), z′′t )]

≤RT (Π∣z1, . . . , zt−1).

The first inequality is true as we upper bounded the expectation by the supremum. The
last inequality is easy to verify, as we are effectively filling in a root zt and z′t for the two
subtrees, for εt = +1 and εt = −1, respectively, and jointing the two trees with a ∅ root.

One can see that the proof of admissibility corresponds to one step minimax swap and
symmetrization in the proof of Rakhlin et al. (2010). In contrast, in the latter paper, all T
minimax swaps are performed at once, followed by T symmetrization steps.
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Proof [of Lemma 6 ] The first step of the proof is an application of the minimax theorem
(we assume the necessary conditions hold):

inf
qt∈∆(F)

sup
zt∈Z

{ E
ft∼qt

ft ⋅ zt + E
εt+1∶T

max
1≤s≤T

∣
T

∑
i=s
ati(ε)∣} = sup

pt∈∆(Z)
inf
ft∈F

{ft ⋅ E
zt∼pt

zt + E
zt∼pt

E
εt+1∶T

max
1≤s≤T

∣
T

∑
i=s
ati(ε)∣}

For any pt ∈ ∆(Z), the infimum over ft of the above expression is equal to

− ∣ E
zt∼pt

zt∣ + E
zt∼pt

E
εt+1∶T

max{max
s>t

∣
T

∑
i=s
ati(ε)∣ ,max

s≤t
∣
T

∑
i=s
ati(ε)∣}

≤ E
zt∼pt

E
εt+1∶T

max{max
s>t

∣
T

∑
i=s
ati(ε)∣ ,max

s≤t
∣
T

∑
i=s
ati(ε) + E

z′t∼pt
z′t∣}

≤ E
zt,z′t∼pt

E
εt+1∶T

max

⎧⎪⎪⎨⎪⎪⎩
max
s>t

∣
T

∑
i=s
ati(ε)∣ ,max

s≤t

RRRRRRRRRRR
∑

i≥s,i≠t
ati(ε) + (z′t − zt)

RRRRRRRRRRR

⎫⎪⎪⎬⎪⎪⎭
We now argue that the independent zt and z′t have the same distribution pt, and thus we
can introduce a random sign εt. The above expression then equals to

E
zt,z′t∼pt

E
εt∶T

max

⎧⎪⎪⎨⎪⎪⎩
max
s>t

∣
T

∑
i=s
ati(ε)∣ ,max

s≤t

RRRRRRRRRRR
∑

i≥s,i≠t
ati(ε) + εt(z′t − zt)

RRRRRRRRRRR

⎫⎪⎪⎬⎪⎪⎭

≤ E
zt∼pt

E
εt∶T

max

⎧⎪⎪⎨⎪⎪⎩
max
s>t

∣
T

∑
i=s
ati(ε)∣ ,max

s≤t

RRRRRRRRRRR
∑

i≥s,i≠t
ati(ε) + 2εtzt

RRRRRRRRRRR

⎫⎪⎪⎬⎪⎪⎭
Now, the supremum over pt is achieved at a delta distribution, yielding an upper bound

sup
zt∈[−1,1]

E
εt∶T

max

⎧⎪⎪⎨⎪⎪⎩
max
s>t

∣
T

∑
i=s
ati(ε)∣ ,max

s≤t

RRRRRRRRRRR
∑

i≥s,i≠t
ati(ε) + 2εtzt

RRRRRRRRRRR

⎫⎪⎪⎬⎪⎪⎭

≤ E
εt∶T

max

⎧⎪⎪⎨⎪⎪⎩
max
s>t

∣
T

∑
i=s
ati(ε)∣ ,max

s≤t

RRRRRRRRRRR
∑

i≥s,i≠t
ati(ε) + 2εt

RRRRRRRRRRR

⎫⎪⎪⎬⎪⎪⎭

= E
εt∶T

max
1≤s≤T

∣
T

∑
i=s
at−1
i (ε)∣

Proof [of Lemma 8] Denote

Lt(α,β) =
t

∑
s=1

RRRRRRRRRRRRR

∑s−1i=1 zi
s+α−2

1 + β−1
s+α−2

− zs
RRRRRRRRRRRRR
.

The first step of the proof is an application of the minimax theorem:

inf
qt∈∆(F)

sup
zt∈Z

⎧⎪⎪⎨⎪⎪⎩
E

ft∼qt
∣ft − zt∣ + E

εt+1∶T
sup
α,β

⎡⎢⎢⎢⎢⎣
2

T

∑
s=t+1

εs ⋅
1

1 + β−1
s+α−2

−Lt(α,β)
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭

= sup
pt∈∆(Z)

inf
ft∈F

⎧⎪⎪⎨⎪⎪⎩
E

zt∼pt
∣ft − zt∣ + E

zt∼pt
E

εt+1∶T
sup
α,β

⎡⎢⎢⎢⎢⎣
2

T

∑
s=t+1

εs ⋅
1

1 + β−1
s+α−2

−Lt(α,β)
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
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For any pt ∈ ∆(Z), the infimum over ft of the above expression is equal to

E
zt∼pt

Eεt+1∶T sup
α,β

⎡⎢⎢⎢⎢⎣
2

T

∑
s=t+1

εs ⋅
1

1 + β−1
s+α−2

−Lt−1(α,β) + inf
ft∈F

E
zt∼pt

∣ft − zt∣ −
RRRRRRRRRRRRR

∑t−1i=1 zi
t+α−2

1 + β−1
t+α−2

− zt
RRRRRRRRRRRRR

⎤⎥⎥⎥⎥⎦

≤ E
zt∼pt

Eεt+1∶T sup
α,β

⎡⎢⎢⎢⎢⎣
2

T

∑
s=t+1

εs ⋅
1

1 + β−1
s+α−2

−Lt−1(α,β) + E
z′t∼pt

RRRRRRRRRRRRR

∑t−1i=1 zi
t+α−2

1 + β−1
t+α−2

− z′t
RRRRRRRRRRRRR
−
RRRRRRRRRRRRR

∑t−1i=1 zi
t+α−2

1 + β−1
t+α−2

− zt
RRRRRRRRRRRRR

⎤⎥⎥⎥⎥⎦

≤ E
zt,z′t∼pt

Eεt+1∶T sup
α,β

⎡⎢⎢⎢⎢⎣
2

T

∑
s=t+1

εs ⋅
1

1 + β−1
s+α−2

−Lt−1(α,β) +
RRRRRRRRRRRRR

∑t−1i=1 zi
t+α−2

1 + β−1
t+α−2

− z′t
RRRRRRRRRRRRR
−
RRRRRRRRRRRRR

∑t−1i=1 zi
t+α−2

1 + β−1
t+α−2

− zt
RRRRRRRRRRRRR

⎤⎥⎥⎥⎥⎦

We now argue that the independent zt and z′t have the same distribution pt, and thus we
can introduce a random sign εt. The above expression then equals to

E
zt,z′t∼pt

EεtEεt+1∶T sup
α,β

⎡⎢⎢⎢⎢⎢⎣
2

T

∑
s=t+1

εs ⋅
1

1 + β−1
s+α−2

−Lt−1(α,β) + εt
⎛
⎜
⎝

RRRRRRRRRRRRR

∑t−1i=1 zi
t+α−2

1 + β−1
t+α−2

− z′t
RRRRRRRRRRRRR
−
RRRRRRRRRRRRR

∑t−1i=1 zi
t+α−2

1 + β−1
t+α−2

− zt
RRRRRRRRRRRRR

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦

≤ sup
zt,z′t∈Z

Eεt∶T sup
α,β

⎡⎢⎢⎢⎢⎢⎣
2

T

∑
s=t+1

εs ⋅
1

1 + β−1
s+α−2

−Lt−1(α,β) + εt
⎛
⎜
⎝

RRRRRRRRRRRRR

∑t−1i=1 zi
t+α−2

1 + β−1
t+α−2

− z′t
RRRRRRRRRRRRR
−
RRRRRRRRRRRRR

∑t−1i=1 zi
t+α−2

1 + β−1
t+α−2

− zt
RRRRRRRRRRRRR

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
where we upper bounded the expectation by the supremum. Splitting the resulting expres-
sion into two parts, we arrive at the upper bound of

2 sup
zt∈Z

Eεt∶T sup
α,β

⎡⎢⎢⎢⎢⎣

T

∑
s=t+1

εs ⋅
1

1 + β−1
s+α−2

− 1

2
Lt−1(α,β) + εt

RRRRRRRRRRRRR

∑t−1i=1 zi
t+α−2

1 + β−1
t+α−2

− zt
RRRRRRRRRRRRR

⎤⎥⎥⎥⎥⎦

= 2 sup
zt∈Z

Eεt∶T sup
α,β

⎡⎢⎢⎢⎢⎣

T

∑
s=t+1

εs ⋅
1

1 + β−1
s+α−2

− 1

2
Lt−1(α,β) + εt ⋅

∑t−1i=1 zi
t+α−2

1 + β−1
t+α−2

(1 − 2zt) − εtzt
⎤⎥⎥⎥⎥⎦

= 2Eεt∶T sup
α,β

⎡⎢⎢⎢⎢⎣

T

∑
s=t+1

εs ⋅
1

1 + β−1
s+α−2

− 1

2
Lt−1(α,β) + εt ⋅

∑t−1i=1 zi
t+α−2

1 + β−1
t+α−2

⎤⎥⎥⎥⎥⎦

where the last step is due to the fact that for any zt ∈ {0,1}, εt(1 − 2zt) has the same
distribution as εt. We then proceed to upper bound

2 sup
p

Ea∼pEεt∶T sup
α,β

⎡⎢⎢⎢⎢⎣

T

∑
s=t+1

εs ⋅
1

1 + β−1
s+α−2

− 1

2
Lt−1(α,β) + εt ⋅

a

1 + β−1
t+α−2

⎤⎥⎥⎥⎥⎦

≤ 2 sup
a∈{±1}

Eεt∶T sup
α,β

⎡⎢⎢⎢⎢⎣

T

∑
s=t+1

εs ⋅
1

1 + β−1
s+α−2

− 1

2
Lt−1(α,β) + εt ⋅

a

1 + β−1
t+α−2

⎤⎥⎥⎥⎥⎦

≤ 2Eεt∶T sup
α,β

⎡⎢⎢⎢⎢⎣

T

∑
s=t
εs ⋅

1

1 + β−1
s+α−2

− 1

2
Lt−1(α,β)

⎤⎥⎥⎥⎥⎦
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The initial condition is trivially satisfied as

Rel(z1∶T ) = − inf
α,β

T

∑
s=1

RRRRRRRRRRRRR

∑s−1i=1 zi
s+α−2

1 + β−1
s+α−2

− zs
RRRRRRRRRRRRR

Theorem 11 The conditional sequential Rademacher complexity with respect to Π

GT (`,Π∣z1, . . . , zt) ≜ sup
z,w

E
σt+1∶T

sup
π∈Π

[
√

2π
T

∑
s=t+1

σs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −
t

∑
s=1

`(πs(z1∶s−1), zs)]

is admissible.

Proof [of Theorem 11] Denote Lt(π) = ∑ts=1 `(πs(z1∶s−1), zs). Let c = Eσ ∣σ∣ =
√

2/π. The
first step of the proof is an application of the minimax theorem (we assume the necessary
conditions hold):

inf
qt∈∆(F)

sup
zt∈Z

{ E
ft∼qt

[`(ft, zt)] + sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

σs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt(π)]}

= sup
pt∈∆(Z)

inf
ft∈F

{ E
zt∼pt

[`(ft, zt)] + E
zt∼pt

sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

σs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt(π)]}

For any pt ∈ ∆(Z), the infimum over ft of the above expression is equal to

E
zt∼pt

sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

σs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+ inf
ft∈F

E
zt∼pt

[`(ft, zt)] − `(πt(z1∶t−1), zt)]

≤ E
zt∼pt

sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

σs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+ E
zt∼pt

[`(πt(z1∶t−1), zt)] − `(πt(z1∶t−1), zt)]

≤ E
zt,z′t∼pt

sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

σs`(πs((z1∶t,w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+`(πt(z1∶t−1), z′t) − `(πt(z1∶t−1), zt)]

We now argue that the independent zt and z′t have the same distribution pt, and thus we
can introduce a gaussian random variable σt and a random sign εt = sign(σt). The above
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expression then equals to

E
zt,z′t∼pt

E
σt

sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

σs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+εt(`(πt(z1∶t−1), χt(−εt))) − `(πt(z1∶t−1), χt(εt)))]

≤ E
zt,z′t∼pt

E
σt

sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

σs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+εt E
σt

∣σt
c
∣ (`(πt(z1∶t−1), χt(−εt))) − `(πt(z1∶t−1), χt(εt)))]

Put the expectation outside and use the fact εt∣σt∣ = σt, we get

E
zt,z′t∼pt

E
σt

sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

σs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+σt
c
(`(πt(z1∶t−1), χt(−εt))) − `(πt(z1∶t−1), χt(εt)))]

≤ E
zt,z′t∼pt

sup
z′′,z′′′

E
σt

sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

εs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+σt
c
(`(πt(z1∶t−1), z′′t ) − `(πt(z1∶t−1), z′′′t ))]

Splitting the resulting expression into two parts, we arrive at the upper bound of

2 E
zt,z′t∼pt

sup
z′′

E
σt

sup
z,w

E
σt+1∶T

sup
π∈Π

[1

c

T

∑
s=t+1

σs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε)) −
1

2
Lt−1(π)

+σt
c
`(πt(z1∶t−1), z′′t )]

≤ sup
z,z′,z′′

E
σt

sup
z,w

E
σt+1∶T

sup
π∈Π

[2

c

T

∑
s=t+1

σs`(πs((z1∶t−1, χt(εt),w1∶s−t−1(ε)),zs−t(ε)) −Lt−1(π)

+2σt
c
`(πt(z1∶t−1), z′′t )]

≤ GT (`,Π∣z1, . . . , zt−1).

Proof [of Lemma 7] Let qt be the randomized strategy where we draw εt+1, . . . , εT uniformly
at random and pick

qt(ε) = argmin
q∈[−1,1]

sup
zt∈{−1,1}

{ E
ft∼q

ft ⋅ zt + max
1≤s≤T

∣
T

∑
i=s
ati(ε)∣} (10)
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Then,

sup
zt∈{−1,1}

{ E
ft∼qt

ft ⋅ zt +Eεt+1∶T max
1≤s≤T

∣
T

∑
i=s
ati(ε)∣}

= sup
zt∈{−1,1}

⎧⎪⎪⎨⎪⎪⎩
Eεt+1∶T E

ft∼qt(ε)
ft ⋅ zt +Eεt+1∶T max

1≤s≤T
∣
T

∑
i=s
ati(ε)∣

⎫⎪⎪⎬⎪⎪⎭

≤ Eεt+1∶T
⎡⎢⎢⎢⎢⎣
sup
zt

⎧⎪⎪⎨⎪⎪⎩
E

ft∼qt(ε)
ft ⋅ zt + max

1≤s≤T
∣
T

∑
i=s
ati(ε)∣

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦

= Eεt+1∶T
⎡⎢⎢⎢⎣

inf
qt∈∆(F)

sup
zt

{ E
ft∼qt

ft ⋅ zt + max
1≤s≤T

∣
T

∑
i=s
ati(ε)∣}

⎤⎥⎥⎥⎦

where the last step is due to the way we pick our predictor ft(ε) given random draw of ε’s
in Equation (10). We now apply the minimax theorem, yielding the following upper bound
on the term above:

Eεt+1∶T
⎡⎢⎢⎢⎣

sup
pt∈∆(Z)

inf
ft

{ E
zt∼pt

ft ⋅ zt + E
zt∼pt

max
1≤s≤T

∣
T

∑
i=s
ati(ε)∣}

⎤⎥⎥⎥⎦

This expression can be re-written as

Eεt+1∶T
⎡⎢⎢⎢⎢⎣

sup
pt∈∆(Z)

E
zt∼pt

inf
ft

⎧⎪⎪⎨⎪⎪⎩
E

z′t∼pt
ft ⋅ z′t + max

1≤s≤T
∣
T

∑
i=s
ati(ε)∣

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦

≤ Eεt+1∶T
⎡⎢⎢⎢⎢⎣

sup
pt∈∆(Z)

E
zt∼pt

⎧⎪⎪⎨⎪⎪⎩
−
RRRRRRRRRRR
E

z′t∼pt
z′t

RRRRRRRRRRR
+ max

1≤s≤T
∣
T

∑
i=s
ati(ε)∣

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦

≤ Eεt+1∶T
⎡⎢⎢⎢⎢⎣

sup
pt∈∆(Z)

E
zt∼pt

max

⎧⎪⎪⎨⎪⎪⎩
max
s≤t

RRRRRRRRRRR

T

∑
i=s
ati(ε) + E

z′t∼pt
z′t

RRRRRRRRRRR
,max
s>t

∣
T

∑
i=s
ati(ε)∣

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦

≤ Eεt+1∶T
⎡⎢⎢⎢⎢⎣

sup
pt∈∆(Z)

E
zt,z′t∼pt

max

⎧⎪⎪⎨⎪⎪⎩
max
s≤t

RRRRRRRRRRR

T

∑
i≥s,i≠t

ati(ε) + (z′t − zt)
RRRRRRRRRRR
,max
s>t

∣
T

∑
i=s
ati(ε)∣

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦

We now argue that the independent zt and z′t have the same distribution pt, and thus
we can introduce a random sign εt. The above expression then equals to

Eεt+1∶T
⎡⎢⎢⎢⎢⎣

sup
pt∈∆(Z)

E
zt,z′t∼pt

E
εt

max

⎧⎪⎪⎨⎪⎪⎩
max
s≤t

RRRRRRRRRRR

T

∑
i≥s,i≠t

ati(ε) + εt(z′t − zt)
RRRRRRRRRRR
,max
s>t

∣
T

∑
i=s
ati(ε)∣

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦

≤ E
εt+1∶T

sup
zt∈{−1,1}

E
εt

max
1≤s≤T

∣
T

∑
i=s
at−1
i (ε)∣ = E

εt∶T
max
1≤s≤T

∣
T

∑
i=s
at−1
i (ε)∣
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Proof [of Lemma 9] Given an X -valued tree x and a Y-valued tree y, let us write Xt(ε)
for the matrix consisting of (x1(ε), . . . ,xt−1(ε)) and Yt for the vector (y1(ε), . . . ,yt−1(ε)).
By Theorem 3, the minimax regret is bounded by

4 sup
x,y

Eε sup
πλ,w0∈Π

[
T

∑
t=1

εtπ
λ,w0
t (x1∶t(ε),y1∶t−1(ε))]

= 4 sup
x,y

Eε sup
λ,w0

[
T

∑
t=1

εtc (⟨(Xt(ε)TXt(ε) + λI)−1Xt(ε)TYt(ε),xt(ε)⟩ + ⟨w0,xt(ε)⟩)]

Since the output of the clipped strategies in Π is between −1 and 1, the Dudley integral
gives an upper bound

R(Π, (x,y)) ≤ inf
α≥0

{4αT + 12
√
T ∫

1

α

√
log N2(Π, (x,y), δ) dδ}

Define the set of strategies before clipping:

Π′ = {π′ ∶ π′t(x1∶t, y1∶t−1) = ⟨w0 + (XTX + λI)−1XTY,xt⟩ , ∥w0∥ ≤ 1, λ > λmin}

If V is a δ-cover of Π′ on (x,y), then V is also an δ-cover of Π as ∣c(x) − c(x′)∣ ≤ ∣x − y∣.
Therefore, for any (x,y),

N2(Π, (x,y), δ) ≤ N2(Π′, (x,y), δ)

and

R(Π, (x,y)) ≤ inf
α≥0

{4αT + 12
√
T ∫

1

α

√
log N2(Π′, (x,y), δ) dδ} .

If W is a δ/2-cover of the set of strategies Πw0 = {⟨w0,xt(ε)⟩ ∶ ∥w0∥ ≤ 1} on a tree x, and
Λ is a δ/2-cover of the set of strategies

Πλ = {π ∶ πt(x1∶t, y1∶t−1) = ⟨(XTX + λI)−1XTY,xt⟩ ∶ λ > λmin}

then W ×Λ is an δ-cover of Π′. Therefore,

N2(Π′, (x,y), δ) ≤ N2(Πw0 , (x,y), δ/2) ×N2(Πλ, (x,y), δ/2).

Hence,

R(Π, (x,y)) ≤ inf
α≥0

{4αT + 12
√
T ∫

1

α

√
log N2(Πw0 , (x,y), δ/2) + log N2(Πλ, (x,y), δ/2) dδ}

≤ inf
α≥0

{4αT + 12
√
T ∫

1

α

√
log N2(Πw0 , (x,y), δ/2) dδ}

+ 12
√
T ∫

1

0

√
log N2(Πλ, (x,y), δ/2) dδ

The first term is the Dudley integral of the set of static strategies Πw0 given by w0 ∈ B2(1),
and it is exactly the complexity studied in Rakhlin et al. (2010) where it is shown to be
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O(
√
T log(T )). We now provide a bound on the covering number for the second term. It

is easy to verify that the following identity holds

(XTX + λ2Id)−1 − (XTX + λ1Id)−1 = (λ1 − λ2)(XTX + λ1Id)−1(XTX + λ2Id)−1

by right- and left-multiplying both sides by (XTX + λ2Id) and (XTX + λ1Id), respectively.
Let λ1, λ2 > 0. Then, assuming that ∥xt∥2 ≤ 1 and yt ∈ [−1,1] for all t,

∥(XtX + λ2Id)−1XTY − (XTX + λ1Id)−1XTY ∥
2

= ∣λ2 − λ1∣ ∥(XTX + λ1Id)−1(XTX + λ2Id)−1XTY ∥
2
≤ ∣λ2 − λ1∣

1

λ1λ2
∥XTY ∥

2
≤ ∣λ−1

1 − λ−1
2 ∣ t

Hence, for ∣λ−1
1 − λ−1

2 ∣ ≤ δ/T , we have ∥(XTX + λ2Id)−1XTY − (XTX + λ1Id)−1XTY ∥
2
≤ δ,

and thus the discretization of λ−1 on (0, λ−1
min] gives an `∞-cover, and the size of the cover

at scale δ is λ−1
minTδ

−1. The Dudley entropy integral yields the bound of,

R(Π, (x,y)) ≤ 12
√
T ∫

1

0

√
log(2Tλ−1

minδ
−1)dδ ≤ 12

√
T (1 +

√
log(2Tλ−1

min)) .

This concludes the proof.

Proof [of Lemma 10] Using Theorem 2,

VT (ΠΛ) ≤ 2R(`,ΠΛ) = 2 sup
z,z′

Eε sup
w0∶∥w0∥≤1,λ∈Λ

⎡⎢⎢⎢⎣

T

∑
t=1

εt ⟨w0 −
∑t−1
i=1 zi(ε)

max{λ (∥∑t−1
i=1 zi(ε)∥ , t) , ∥∑t−1

i=1 zi(ε)∥}
,z′t(ε)⟩

⎤⎥⎥⎥⎦

which we can upper bound by splitting the supremum into two:

2 sup
z′

Eε sup
w0∶∥w0∥≤1

[
T

∑
t=1

εt ⟨w0,z
′

t(ε)⟩] + 2 sup
z,z′

Eε sup
λ∈Λ

⎡⎢⎢⎢⎣

T

∑
t=1

εt ⟨
∑t−1
i=1 zi(ε)

max{λ (∥∑t−1
i=1 zi(ε)∥ , t) , ∥∑t−1

i=1 zi(ε)∥}
,z′t(ε)⟩

⎤⎥⎥⎥⎦

The first term is simply

2 sup
z′

Eε ∥
T

∑
t=1

εtz
′
t(ε)∥ ≤ 2

√
T .

The second term can be written as

2 sup
z,z′

Eε sup
λ∈Λ

⎡⎢⎢⎢⎣

T

∑
t=1

εt ⟨
∑t−1
i=1 zi(ε)

∥∑t−1
i=1 zi(ε)∥

,z′t(ε)⟩
∥∑t−1

i=1 zi(ε)∥
max{λ (∥∑t−1

i=1 zi(ε)∥ , t) , ∥∑t−1
i=1 zi(ε)∥}

⎤⎥⎥⎥⎦

≤ 2 sup
z

sup
s

Eε sup
λ∈Λ

⎡⎢⎢⎢⎣

T

∑
t=1

εtst(ε)
∥∑t−1

i=1 zi(ε)∥
max{λ (∥∑t−1

i=1 zi(ε)∥ , t) , ∥∑t−1
i=1 zi(ε)∥}

⎤⎥⎥⎥⎦
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and the tree s can be erased (see end of the proof of Theorem 3), yielding an upper bound

2 sup
z

Eε sup
λ∈Λ

⎡⎢⎢⎢⎣

T

∑
t=1

εt ∥∑t−1
i=1 zi(ε)∥

max{λ (∥∑t−1
i=1 zi(ε)∥ , t) , ∥∑t−1

i=1 zi(ε)∥}

⎤⎥⎥⎥⎦

≤ 2 sup
a

Eε sup
λ∈Λ

[
T

∑
t=1

εtat(ε)
max{λ (at(ε), t) ,at(ε)}

]

≤ 2 sup
a

Eε sup
λ∈Λ

⎡⎢⎢⎢⎢⎢⎣

T

∑
t=1

εt

max{λ(at(ε),t)at(ε) ,1}

⎤⎥⎥⎥⎥⎥⎦

= 2 sup
a

Eε sup
λ∈Λ

[
T

∑
t=1

εtmin{ at(ε)
λ (at(ε), t)

,1}]

= 2 sup
b

Eε sup
γ∈Γ

[
T

∑
t=1

εtγ (bt(ε),1/t)]

≤ 2 RT (Γ)

where in the above a is a R+-valued tree such that at ∶ {±1}t−1 ↦ [0, t − 1], b is a [1/T,1]-
value tree and Γ = {γ ∶ ∀b ∈ [1/T,1], a ∈ [0,1], γ(a, b) = min{ a/(b−1)

λ(a/(b−1),1/b) ,1} , λ ∈ Λ}.
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