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Abstract

The problem of stochastic convex optimization with bandit feedback (in the learning com-
munity) or without knowledge of gradients (in the optimization community) has received
much attention in recent years, in the form of algorithms and performance upper bounds.
However, much less is known about the inherent complexity of these problems, and there
are few lower bounds in the literature, especially for nonlinear functions. In this paper,
we investigate the attainable error/regret in the bandit and derivative-free settings, as a
function of the dimension d and the available number of queries T . We provide a precise
characterization of the attainable performance for strongly-convex and smooth functions,
which also imply a non-trivial lower bound for more general problems. Moreover, we prove
that in both the bandit and derivative-free setting, the required number of queries must
scale at least quadratically with the dimension. Finally, we show that on the natural class of
quadratic functions, it is possible to obtain a “fast” O(1/T ) error rate in terms of T , under
mild assumptions, even without having access to gradients. To the best of our knowledge,
this is the first such rate in a derivative-free stochastic setting, and holds despite previous
results which seem to imply the contrary.

Keywords: Stochastic Convex Optimization; Derivative-Free Optimization; Bandit Con-
vex Optimization; Regret

1. Introduction

This paper considers the following fundamental question: Given an unknown convex func-
tion F , and the ability to query for (possibly noisy) realizations of its values at various
points, how can we optimize F with as few queries as possible?

This question, under different guises, has played an important role in several communi-
ties. In the optimization community, this is usually known as “zeroth-order” or “derivative-
free” convex optimization, since we only have access to function values rather than gradients
or higher-order information. The goal is to return a point with small optimization error
on some convex domain, using a limited number of queries. Derivative-free methods were
among the earliest algorithms to numerically solve unconstrained optimization problems,
and have recently enjoyed increasing interest, being especial useful in black-box situations
where gradient information is hard to compute or does not exist Nesterov (2011); Stich et al.
(2011). In a stochastic framework, we can only obtain noisy realizations of the function
values (for instance, due to running the optimization process on sampled data). We refer
to this setting as derivative-free SCO (short for stochastic convex optimization).

In the learning community, these kinds of problems have been closely studied in the
context of multi-armed bandits and (more generally) bandit online optimization, which are
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powerful models for sequential decision making under uncertainty Cesa-Bianchi and Lugosi
(2006); Bubeck and Cesa-Bianchi (2012). In a stochastic framework, these settings corre-
spond to repeatedly choosing points in some convex domain, obtaining noisy realizations
of some underlying convex function’s value. However, rather than minimizing optimization
error, our goal is to minimize the (average) regret: roughly speaking, that the average of
the function values we obtain is not much larger than the minimal function value. For
example, the well-known multi-armed bandit problem corresponds to a linear function over
the simplex. We refer to this setting as bandit SCO. As will be more explicitly discussed
later on, any algorithm which attains small average regret can be converted to an algo-
rithm with the same optimization error. In other words, bandit SCO is only harder than
derivative-free SCO. We note that in the context of stochastic multi-armed bandits, the
potential gap between the two settings (under the terms “cumulative regret” and “simple
regret”) was introduced and studied in Bubeck et al. (2011).

When one is given gradient information, the attainable optimization error / average
regret is well-known: under mild conditions, it is Θ(1/

√
T ) for convex functions and Θ(1/T )

for strongly-convex functions, where T is the number of queries Zinkevich (2003); Hazan
and Kale (2011); Rakhlin et al. (2012). Note that these bounds do not explicitly depend
on the dimension of the domain.

The inherent complexity of bandit/derivative-free SCO is not as well-understood. An
important exception is multi-armed bandits, where the attainable error/regret is known
to be exactly Θ(

√
d/T ), where d is the dimension and T is the number of queries1 Auer

et al. (2002); Audibert and Bubeck (2009). Linear functions over other convex domains
has also been explored, with upper bounds on the order of O(

√
d/T ) to O(

√
d2/T ) (e.g.

Abbasi-Yadkori et al. (2011); Bubeck et al. (2012)). For linear functions over general do-
mains, information-theoretic Ω(

√
d2/T ) lower bounds have been proven in Dani et al. (2007,

2008); Audibert et al. (2011). However, these lower bounds are either on the regret (not
optimization error); shown for non-convex domains; or are implicit and rely on artificial,
carefully constructed domains. In contrast, we focus here on simple, natural domains and
convex problems.

When dealing with more general, non-linear functions, much less is known. The problem
was originally considered over 30 years ago, in the seminal work by Yudin and Nemirovsky
on the complexity of optimization Nemirovsky and Yudin (1983). The authors provided
some algorithms and upper bounds, but as they themselves emphasize (cf. pg. 359), the
attainable complexity is far from clear. Quite recently, Jamieson et al. (2012) provided an
Ω(
√
d/T ) lower bound for strongly-convex functions, which demonstrates that the “fast”

O(1/T ) rate in terms of T , that one enjoys with gradient information, is not possible here. In
contrast, the current best-known upper bounds are O( 4

√
d2/T ),O( 3

√
d2/T ),O(

√
d2/T ) for

convex, strongly-convex, and strongly-convex-and-smooth functions respectively (Flaxman
et al. (2005); Agarwal et al. (2010)); And aO(

√
d32/T ) bound for convex functions (Agarwal

1. In a stochastic setting, a more common bound in the literature is O(d log(T )/T ), but the O-notation
hides a non-trivial dependence on the form of the underlying linear function (in multi-armed bandits
terminology, a gap between the expected rewards bounded away from 0). Such assumptions are not
natural in a nonlinear bandits SCO setup, and without them, the regret is indeed Θ(

√
d/T ). See for

instance (Bubeck and Cesa-Bianchi, 2012, Chapter 2) for more details.
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et al. (2011)), which is better in terms of dependence on T but very bad in terms of the
dimension d.

In this paper, we investigate the complexity of bandit and derivative-free stochastic
convex optimization, focusing on nonlinear functions, with the following contributions (see
also the summary in Table 1):

� We prove that for strongly-convex and smooth functions, the attainable error/regret
is exactly Θ(

√
d2/T ). This has three important ramifications: First of all, it set-

tles the question of attainable performance for such functions, and is the first sharp
characterization of complexity for a general nonlinear bandit/derivative-free class of
problems. Second, it proves that the required number of queries T in such problems
must scale quadratically with the dimension, even in the easier optimization setting,
and in contrast to the linear case which often allows linear scaling with the dimension.
Third, it formally provides a natural Ω(

√
d2/T ) lower bound for more general classes

of convex problems.

� We analyze an important special case of strongly-convex and smooth functions, namely
quadratic functions. We show that for such functions, one can (efficiently) attain
Θ(d2/T ) optimization error, and that this rate is sharp. To the best of our knowledge,
it is the first general class of nonlinear functions for which one can show a “fast rate”
(in terms of T ) in a derivative-free stochastic setting. In fact, this may seem to
contradict the result in Jamieson et al. (2012), which shows an Ω(

√
d/T ) lower bound

on quadratic functions. However, as we explain in more detail later on, there is no
contradiction, since the example establishing the lower bound of Jamieson et al. (2012)
imposes an extremely small domain (which actually decays with T ), while our result
holds for a fixed domain. Although this result is tight, we also show that under more
restrictive assumptions on the noise process, it is sometimes possible to obtain better
error bounds, as good as O(d/T ).

� We prove that even for quadratic functions, the attainable average regret is exactly
Θ(
√
d2/T ), in contrast to the Θ(d2/T ) result for optimization error. This shows there

is a real gap between what can be obtained for derivative-free SCO and bandit SCO,
without any specific distributional assumptions. Again, this stands in contrast to
settings such as multi-armed bandits, where there is no difference in their distribution-
free performance.

We emphasize that our upper bounds are based on the assumption that the function
minimizer is bounded away from the domain boundary, or that we can query points slightly
outside the domain. However, we argue that this assumption is not very restrictive in the
context of strongly-convex functions (especially in learning applications), where the domain
is often Rd, and a minimizer always exists.

The paper is structured as follows: In Sec. 2, we formally define the setup and introduce
the notation we shall use in the remainder of the paper. For clarity of exposition, we begin
with the case of quadratic functions in Sec. 3, providing algorithms, upper and lower bounds.
The tools and insights we develop for the quadratic case will allow us to tackle the more
general strongly-convex-and-smooth setting in Sec. 4. We end the main part of the paper
with a summary and discussion of open problems in Sec. 5. In Appendix A, we demonstrate
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Optimization Error Average Regret

Function Type O(·) Ω(·) O(·) Ω(·)

Quadratic d2

T

√
d2

T

Str. Convex and Smooth
√

d2

T

Str. Convex min

{
3

√
d2

T ,
√

d32

T

} √
d2

T min

{
3

√
d2

T ,
√

d32

T

} √
d2

T

Convex min

{
4

√
d2

T ,
√

d32

T

} √
d2

T min

{
4

√
d2

T ,
√

d32

T

} √
d2

T

Table 1: A summary of the complexity upper bounds (O(·)) and lower bounds (Ω(·)),
for derivative-free stochastic convex optimization (optimization error) and ban-
dit stochastic convex optimization (average regret), for various function classes,
in terms of the dimension d and the number of queries T . The boxed results are
shown in this paper. The upper bounds for the convex and strongly convex case
combine results from Flaxman et al. (2005); Agarwal et al. (2010, 2011). The table
shows dependence on d, T only and ignores other factors and constants.

that one can obtain improved performance in the quadratic case, if we’re considering more
specific natural noise processes. Additional proofs are presented in Appendix B.

2. Preliminaries

Let ‖ · ‖ denote the standard Euclidean norm. We let F (·) : W 7→ R denote the convex
function of interest, where W ⊆ Rd is a (closed) convex domain. We say that F is λ-
strongly convex, for λ > 0, if for any w,w′ ∈ W and any subgradient g of F at w, it
holds that F (w′) ≥ F (w) + 〈g,w′ − w〉 + λ

2‖w
′ − w‖2. Intuitively, this means that we

can lower bound F everywhere by a quadratic function of fixed curvature. We say that
F is µ-smooth if for any w,w′ ∈ W, and any subgradient g of F at w, it holds that
F (w′) ≤ F (w) + 〈g,w′ − w〉 + µ

2‖w
′ − w‖2. Intuitively, this means that we can upper-

bound F everywhere by a quadratic function of fixed curvature. We let w∗ ∈ W denote a
minimizer of F on w. To prevent trivialities, we consider in this paper only functions whose
optimum w∗ is known beforehand to lie in some bounded domain (even if W is large or all
of Rd), and the function is Lipschitz in that domain.

The learning/optimization process proceeds in T rounds. Each round t, we pick and
query a point wt ∈ W, obtaining an independent realization of F (w) + ξw, where ξw is
an unknown zero-mean random variable, such2 that E[ξ2

w] ≤ max
{

1, ‖w‖2
}

. In the bandit

2. We note that this slightly deviates from the more common assumption in the bandits/derivative-free
SCO setting that E[ξ2w] ≤ O(1). While such assumptions are equivalent for bounded W, we also wish
to consider cases with unrestricted domains W = Rd. In that case, assuming E[ξ2w] ≤ O(1) may lead to
trivialities in the derivative-free setting. For example, consider the case where F (w) = w>Aw + b>w.
Then for any w and any ξw with uniformly bounded variance, we can get a virtually noiseless estimate
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SCO setting, our goal is to minimize the expected average regret, namely

E

[
1

T

T∑
t=1

F (wt)− F (w∗)

]
,

whereas in the derivative-free SCO setting, our goal is to compute, based on w1, . . . ,wT

and the observed values, some point w̄T ∈ W, such that the expected optimization error

E [F (w̄T )− F (w∗)] ,

is as small as possible. We note that given a bandit SCO algorithm with some regret bound,
one can get a derivative-free SCO algorithm with the same optimization error bound: we
simply run the stochastic bandit algorithm, getting w1, . . . ,wT , and returning 1

T

∑T
t=1 wt.

By Jensen’s inequality, the expected optimization error is at most the expected average
regret with respect to w1, . . . ,wT . Thus, bandit SCO is only harder than derivative-free
SCO.

In this paper, we provide upper and lower bounds on the attainable optimization error
/ average regret, as a function of the dimension d and the number of rounds/queries T . For
simplicity, we focus here on bounds which hold in expectation, and an interesting point for
further research is to extend these to bounds on the actual error/regret, which hold with
high probability.

3. Quadratic Functions

In this section, we consider the class of quadratic functions, which have the form

F (w) = w>Aw + b>w + c

where A is positive-definite (with a minimal eigenvalue bounded away from 0). Moreover,
to make the problem well-behaved, we assume that A has a spectral norm of at most 1, and
that ‖b‖ ≤ 1, |c| ≤ 1. We note that if the norms are bounded but larger than 1, this can
be easily handled by rescaling the function. It is easily seen that such functions are both
strongly convex and smooth. Moreover, this is a natural and important class of functions,
which in learning applications appears, for instance, in the context of least squares and
ridge regression. Besides providing new insights for this class, we will use the techniques
developed here later on, in the more general case of strongly-convex and smooth functions.

3.1. Upper Bounds

We begin by showing that for derivative-free SCO, one can obtain an optimization error
bound of O(d2/T ). To the best of our knowledge, this is the first example of a derivative-free
stochastic bound scaling as O(1/T ) for a general class of nonlinear functions, as opposed to
O(1/

√
T ). However, to achieve this result, we need to make the following mild assumption:

of w>Aw by picking w′ = cw for some large c and computing 1
c2

(F (w′) + ξw′). Variants of this idea
will also allow virtually noiseless estimates of the linear term.
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Assumption 1 At least one of the following holds for some fixed ε ∈ (0, 1]:

� The quadratic function attains its minimum w∗ in the domain W, and the Euclidean
distance of w∗ from the domain boundary is at least ε.

� We can query not just points in W, but any point whose distance from W is at most
ε.

With strongly-convex functions, the most common case is that W = Rd, and then both
cases actually hold for any value of ε. Even in other situations, one of these assumptions
virtually always holds. Note that we crucially rely here on the strong-convexity assumption:
with (say) linear functions, the domain must always be bounded and the optimum always
lies at the boundary of the domain.

With this assumption, the bound we obtain is on the order of d2/ε2T . As discussed
earlier, Jamieson et al. (2012) recently proved a Ω(

√
d/T ) lower bound for derivative-free

SCO, which actually applies to quadratic functions. This does not contradict our result,
since in their example the diameter of W (and hence also ε) decays with T . In contrast,
our O(d2/T ) bound holds for fixed ε, which we believe is natural in most applications.

To obtain this behavior, we utilize a well-known 1-point gradient estimate technique,
which allows us to get an unbiased estimate of the gradient at any point by randomly
querying for a (noisy) value of the function around it (see Nemirovsky and Yudin (1983);
Flaxman et al. (2005)). Our key insight is that whereas for general functions one must query
very close to the point of interest (scaling to 0 with T ), quadratic functions have additional
structure which allows us to query relatively far away, allowing gradient estimates with
much smaller variance.

The algorithm we use is presented as Algorithm 1, and is computationally efficient. It
uses a modification W̄ of the domain W, defined as follows. First, we let B denote some
known upper bound on ‖w∗‖. If the first alternative of assumption 1 holds, then W̄ consists
of all points in W ∩{w : ‖w‖ ≤ B}, whose distance from W’s boundary is at least ε. If the
second alternative holds, then W̄ =W ∩ {w : ‖w‖ ≤ B}. Note that under any alternative,
it holds that W̄ is convex, that ‖wt‖ ≤ B, that w∗ ∈ W̄, and that our algorithm always
queries at legitimate points. In the pseudocode, we use ΠW̄ to denote projection on W̄. For
simplicity, we assume that T/2 is an integer and that W̄ includes the origin 0.

Algorithm 1 Derivative-Free SCO Algorithm for Strongly-Convex Quadratic Functions

Input: Strong convexity parameter λ > 0; Distance parameter ε ∈ (0, 1]
Initialize w1 = 0.
for t = 1, . . . , T − 1 do

Pick r ∈ {−1,+1}d uniformly at random
Query noisy function value v at point wt + ε√

d
r

Let g̃ =
√
dv
ε r

Let wt+1 = ΠW̄
(
wt − 1

λt g̃
)

end for
Return w̄T = 2

T

∑T
t=T/2 wt.

The following theorem quantifies the optimization error of our algorithm.
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Theorem 1 Let F (w) = w>Aw+b>w+c be a λ-strongly convex function, where ‖A‖2, ‖b‖, |c|
are all at most 1, and suppose the optimum w∗ has a norm of at most B. Then under As-
sumption 1, the point w̄T returned by Algorithm 1 satisfies

E [F (w̄T )− F (w∗)] ≤ 4(4 + 5 log(2))(B + 1)4

λε2
d2

T
.

Note that returning w̄T as the average over the last T/2 iterates (as opposed to averaging
over all iterates) is necessary to avoid log(T ) factors Rakhlin et al. (2012).

As an interesting side-note, we conjecture that a gradient-based approach is crucial here
to obtain O(1/T ) rates (in terms of T ). For example, a different family of derivative-free
methods (see for instance Nemirovsky and Yudin (1983); Agarwal et al. (2011); Jamieson
et al. (2012)) is based on a type of noisy binary search, where a few strategically selected
points are repeatedly sampled in order to estimate which of them has a larger/smaller
function value. This is used to shrink the feasible region where the optimum w∗ might lie.
Since it is generally impossible to estimate the mean of noisy function values at a rate better
than O(1/

√
T ), it is not clear if one can get an optimization rate faster than O(1/

√
T ) with

such methods.
The proof of the theorem relies on the following key lemma, whose proof appears in the

appendix.

Lemma 2 For any wt, we have that

Er,v[g̃] = ∇F (wt)

and

Er,v[‖g̃‖2] ≤ 4d2(B + 1)4

ε2
.

This lemma implies that Algorithm 1 essentially performs stochastic gradient descent
over the strongly-convex function F (w), where the gradient estimates are unbiased and with
bounded second moments. The returned point is a suffix-average of the last T/2 iterates.
Using a convergence analysis for stochastic gradient descent with suffix-averaging (Rakhlin
et al., 2012, Theorem 5), and plugging in the bounds of Lemma 2, we get Thm. 1.

3.2. Lower Bounds

In this subsection, we prove that the upper bound obtained in Thm. 1 is essentially tight:
namely, up to constants, the worst-case error rate one can obtain for derivative-free SCO of
quadratic functions is order of d2/T . Besides showing that the algorithm above is essentially
optimal, it implies that even for extremely nice strongly-convex functions and domains,
the number of queries required to reach some fixed accuracy scales quadratically with the
dimension d. This stands in contrast to the case of linear functions, where the provable
query complexity often scales linearly with d.

Theorem 3 Let the number of rounds T be fixed. Then for any (possibly randomized)
querying strategy, there exists a quadratic function of the form F (w) = 1

2‖w‖
2 − 〈e,w〉,

which is minimized at e where ‖e‖ ≤ 1, such that the resulting w̄T satisfies

E[F (w̄T )− F (w∗)] ≥ 0.01 min

{
1,
d2

T

}
.
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Note that since ‖e‖ ≤ 1, we know in advance that the optimum must lie in the unit
Euclidean ball. Despite this, the lower bound holds even if we do not restrict at all the
domain in which we are allowed to query - i.e., it can even be all of Rd.
Proof The proof technique is inspired by a lower bound which appears in Arias-Castro
et al. (2011), in the different context of compressed sensing. The argument also bears some
close similarities to the proof of Assouad’s lemma (see Cybakov (2009)).

We will exhibit a distribution over quadratic functions F , such that in expectation over
this distribution, any querying strategy will attain Ω(d2/T ) optimization error. This implies
that for any querying strategy, there exists some deterministic F for which it will have this
amount of error.

The functions we shall consider are

Fe(w) =
1

2
‖w‖2 − 〈e,w〉,

where e is drawn uniformly from {−µ, µ}d, with µ ∈ (0, 1/
√
d) being a parameter to be

specified later. Moreover, we will assume that the noise ξw is a Gaussian random variable
with zero mean and standard deviation max

{
1, ‖w‖2

}
.

By definition of 1-strong convexity, it is easy to verify that Fe(w)−Fe(e) ≥ 1
2‖w−e‖2.

Thus, the expected optimization error (over the querying strategy) is at least

E[Fe(w̄T )− Fe(e)] ≥ E
[

1

2
‖w̄T − e‖2

]
≥ E

[
1

2

d∑
i=1

(w̄i − ei)2

]
≥ E

[
µ2

2

d∑
i=1

1w̄iei<0

]
. (1)

We will assume that the querying strategy is deterministic: wt is a deterministic function
of the previous query values v1, v2, . . . , vt−1 at w1, . . . ,wt−1. This assumption is without
loss of generality, since any random querying strategy can be seen as a randomization
over deterministic querying strategy. Thus, a lower bound which holds uniformly for any
deterministic querying strategy would also hold over a randomization.

To lower bound Eq. (1), we use the following key lemma, which relates this to the
question of how informative are the query values (as measured by Kullback-Leibler or KL
divergence) for determining the sign of e’s coordinates. Intuitively, the more similar the
query values are, the smaller is the KL divergence and the harder it is to distinguish the
true sign of each ei, leading to a larger lower bound. The proof appears in the appendix.

Lemma 4 Let e be a random vector, none of whose coordinates is supported on 0, and let
v1, v2, . . . , vT be a sequence of query values obtained by a deterministic strategy returning a
point w̄T (so that the query location wt is a deterministic function of v1, . . . , vt−1, and w̄T

is a deterministic function of v1, . . . , vT ). Then we have

E

[
d∑
i=1

1w̄iei<0

]
≥ d

2

1−

√√√√1

d

d∑
i=1

T∑
t=1

Ut,i

 ,

where

Ut,i = sup
{ej}j 6=i

Dkl

(
Pr
(
vt|ei > 0, {ej}j 6=i, {vl}t−1

l=1

)
|| Pr

(
vt|ei < 0, {ej}j 6=i, {vl}t−1

l=1

))
and Dkl represents the KL divergence between two distributions.
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Using Lemma 4, we can get a lower bound for the above, provided an upper bound on
the Ut,i’s. To analyze this, consider any fixed values of {ej}j 6=i, and any fixed values of
v1, . . . , vt−1. Since the querying strategy is assumed to be deterministic, it follows that wt

is uniquely determined. Given this wt, the function value vt equals

Fe(wt) =

1

2
‖wt‖2 +

∑
j 6=i

ejwt,j

+ µwt,i + ξwt (2)

conditioned on ei > 0, and

Fe(wt) =

1

2
‖wt‖2 +

∑
j 6=i

ejwt,j

− µwt,i + ξwt (3)

conditioned on ei < 0. Comparing Eq. (2) and Eq. (3), we notice that they both represent a
Gaussian distribution (due to the ξwt noise term), with standard deviation max

{
1, ‖wt‖2

}
and means seperated by 2µwt,i. To bound the divergence, we use the following standard
result on the KL divergence between two Gaussians Kullback (1959):

Lemma 5 Let N (µ, σ2) represent a Gaussian distribution variable with mean µ and vari-
ance σ2. Then

Dkl

(
N (µ1, σ

2)||N (µ2, σ
2)
)

=
(µ1 − µ2)2

2σ2

Using this lemma, it follows that

Dkl (P (vt|v1, . . . , vt−1)||Q(vt|v1, . . . , vt−1)) ≤ (2µwt,i)
2

2 max {1, ‖wt‖4}
=

2µ2w2
t,i

max {1, ‖wt‖4}
.

Plugging this upper bound on the Ut,i’s in Lemma 4, we can further lower bound on the
expected optimization error from Eq. (1) by

dµ2

4

1−

√√√√1

d

T∑
t=1

d∑
i=1

2µ2w2
t,i

max {1, ‖wt‖4}

 =
dµ2

4

1−

√√√√2µ2

d

T∑
t=1

‖w‖2t
max {1, ‖wt‖4}


=

dµ2

4

1−

√√√√2µ2

d

T∑
t=1

min

{
‖wt‖2,

1

‖wt‖2

} ≥ dµ2

4

(
1−

√
2Tµ2

d

)
. (4)

Finally, we choose µ = min{1/
√
d,
√
d/4T}, and obtain a lower bound of

1

4

(
1− 1√

2

)
min

{
1,
d2

4T

}
> 0.01 min

{
1,
d2

T

}
as required.

The theorem above applies to the optimization error for derivative-free SCO. We now
turn to deal with the case of bandit SCO and regret, showing an Ω(

√
d2/T ) lower bound.
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Since the derivative-free SCO bound was Θ(d2/T ), the result implies a real gap between
what can be obtained in terms of average regret, as opposed to optimization error, without
any specific distributional assumptions. This stands in contrast to settings such as multi-
armed bandits, where the construction implying the known Ω(

√
d/T ) lower bound (e.g.

Cesa-Bianchi and Lugosi (2006)) applies equally well to derivative-free and bandit SCO
(see Bubeck et al. (2011)).

Theorem 6 Let the number of rounds T be fixed. Then for any (possibly randomized)
querying strategy, there exists a quadratic function of the form F (w) = 1

2‖w‖
2 − 〈e,w〉,

which is minimized at e where ‖e‖ ≤ 1/2, such that

E

[
1

T

T∑
t=1

F (wt)− F (w∗)

]
≥ 0.02 min

{
1,

√
d2

T

}
.

Note that our lower bound holds even when the domain is unrestricted (the algorithm can
pick any point in Rd). Moreover, the lower bound coincides (up to a constant) with the
O(
√
d2/T ) regret upper-bound shown for strongly-convex and smooth functions in Agarwal

et al. (2010). This shows that for strongly-convex and smooth functions, the minimax
average regret is Θ(

√
d2/T ). Also, the lower bound implies that one cannot hope to obtain

average regret better than
√
d2/T for more general bandit problems, such as strongly-convex

or even convex problems.
The proof relies on techniques similar to the lower bound of Thm. 3, with a key additional

insight. Specifically, in Thm. 3, the lower bound obtained actually depends on the norm of
the points w1, . . . ,wT (see Eq. (4)), and the optimal w∗ has a very small norm. In a regret
minimization setting the points w1, . . . ,wT cannot be too far from w∗, and thus must have
a small norm as well, leading to a stronger lower bound than that of Thm. 3. The formal
proof appears in the appendix.

4. Strongly Convex and Smooth Functions

We now turn to the more general case of strongly convex and smooth functions. First, we
note that in the case of functions which are both strongly convex and smooth, (Agarwal
et al., 2010, Theorem 14) already provided an O(

√
d2/T ) average regret bound (which

holds even in a non-stochastic setting). The main result of this section is a matching lower
bound, which holds even if we look at the much easier case of derivative-free SCO. This
lower bound implies that the attainable error for strongly-convex and smooth functions is
order of

√
d2/T , and at least

√
d2/T for any harder setting.

Theorem 7 Let the number of rounds T be fixed. Then for any (possibly randomized)
querying strategy, there exists a function F over Rd which is 0.5-strongly convex and 3.5-
smooth; Is 4-Lipschitz over the unit Euclidean ball; has a global minimum in the unit ball;
And such that the resulting w̄T satisfies

E[F (w̄T )− F (w∗)] ≥ 0.004 min

{
1,

√
d2

T

}
.

10
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Note that we made no attempt to optimize the constant.
The general proof technique is rather similar to that of Thm. 3, but the construction is

a bit more intricate. Specifically, letting µ > 0 be a parameter to be determined later, we
look at functions of the form

Fe(w) = ‖w‖2 −
d∑
i=1

eiwi
1 + (wi/ei)2

,

where e is uniformly distributed on {−µ,+µ}d. To see the intuition behind this choice,
let us consider the one-dimensional case (d = 1). Recall that in the quadratic setting, the
function we considered (in one dimension) was of the form

Fe(w) =
1

2
w2 − ew,

where e was chosen uniformly at random from {−µ,+µ}, and µ is a “small” number. Thus,
the optimum is at either −µ or µ, and the difference |Fµ(w) − F−µ(w)| at these optima
is order of µ2. However, by picking w = Θ(1), the difference |Fµ(w) − F−µ(w)| is on the
order of µ - much larger than the difference close to the optimum, which is order of µ2.
Therefore, by querying for w far from the optimum, and getting noisy values of Fe, it is
easier to distinguish whether we are dealing with e = +µ or e = −µ, leading to a d2/T
optimization error bound. In contrast, the function we consider here (in the one-dimensional
case) is of the form

Fe(w) = w2 − ew

1 + (w/e)2
. (5)

This form is carefully designed so that |Fµ(w)−F−µ(w)| is order of µ2, not just at the optima
of Fµ and F−µ, but for all w. This is because of the additional denominator, which makes
the function closer and closer to w2 the larger w is - see Fig. 1 for a graphical illustration.
As a result, no matter how the function is queried, distinguishing the choice of µ is difficult,
leading to the strong lower bound of Thm. 7. A formal proof is presented in the appendix.

5. Discussion

In this paper, we considered the dual settings of bandit and derivative-free stochastic con-
vex optimization. We provided a sharp characterization of the attainable performance for
strongly-convex and smooth functions. The results also provide useful lower-bounds for
more general settings. We also considered the case of quadratic functions, showing that a
“fast” O(1/T ) rate is possible in a stochastic setting, even without knowledge of deriva-
tives. Our results have several qualitative differences compared to previously known results
which focus on linear functions, such as quadratic dependence on the dimension even for ex-
tremely “nice” functions, and a provable gap between the attainable performance in bandit
optimization and derivative-free optimization.

Our work leaves open several questions. For example, we have only dealt with bounds
which hold in expectation, and our lower bounds focused on the dependence on d, T , where
other problem parameters, such as the Lipschitz constant and strong convexity parameter,
are fixed constants. While this follows the setting of previous works, it does not cover

11
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Figure 1: The two solid blue lines represents Fe(w) as in Eq. (5), for e = 0.1 and e = −0.1,
whereas the two dashed black lines represent two quadratic functions with similar
minimum points. Close to the minima, Fe(w) and the quadratic functions behave
rather similarly. However, as we increase |w|, the two quadratic functions become
rather distinguishable, whereas Fe(w) become more and more indistinguishable
for the two choices of e. Thus, distinguishing whether e = 0.1 or e = −0.1, based
only on function values is of Fe(w), is much harder than the quadratic case

situations where these parameters scale with d. Finally, while this paper settles the case
of strongly-convex and smooth functions, we still don’t know what is the attainable per-
formance for general convex functions, as well as the more specific case of strongly-convex

(possibly non-smooth) functions. Our Ω
(√

d2/T
)

lower bound still holds, but the ex-

isting upper bounds are much larger: min
{

4
√
d2/T ,

√
d32/T

}
for convex functions, and

min
{

3
√
d2/T ,

√
d32/T

}
for strongly-convex functions (see table 1). We don’t know if the

lower bound or the existing upper bounds are tight. However, it is the current upper bounds
which seem less “natural”, and we suspect that they are the ones that can be considerably
improved, using new algorithms which remain undiscovered.
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Appendix A. Improved Results for Quadratic Functions

In Sec. 3, we showed a tight Θ(d2/T ) bound on the achievable error for quadratic functions,
in the derivative-free SCO setting. This was shown under the assumption that the noise ξw
is zero-mean and has a second moment bounded by max{1, ‖w‖2}. In this appendix, we
show how under additional natural assumptions on the noise, one can improve on this result
with an efficient algorithm. The main message here is not so much the algorithmic result,
but rather to show that the generic noise assumption is important for our lower bounds,
and that better algorithms may still be possible for more specific settings.

To give a concrete example, consider the classic setting of ridge regression, where we
have labeled training examples (x, y) sampled i.i.d. from some distribution over Rd × R,
and our goal is to find some w ∈ Rd minimizing

F (w) =
λ

2
‖w‖2 + E(x,y)

[(
w>x− y

)2
]
.

In a bandit / derivative-free SCO setting, we can think of each query as giving as the value
of

F̂ (w) =
λ

2
‖w‖2 +

(
w>x− y

)2
. (6)

for some specific example (x, y), and note that its expected value (over the random draw
of (x, y)) equals F (w). Thus, it falls within the setting considered in this paper. However,
the noise process is not generic, but has a particular structure. We will show here that one
can actually attain an error rate as good as O(d/T ) for this problem.

To formally present our result, it would be useful to consider a more general setting, the
ridge regression setting above being a special case. Suppose we can write F (w) as E[F̂ (w)],
where F̂ (w) decomposes into a deterministic term R(w) and a stochastic quadratic term
Ĝ(w):

F̂ (w) = R(w) + Ĝ(w) = R(w) +
(
w>Âw + b̂>w + ĉ

)
,

where Â, b̂, ĉ are random variables. We assume that whenever we query a point w, we get
F̂ (w) for some random realization of Â, b̂, ĉ. In general, R(w) can be a strongly-convex
regularization term, such as λ

2‖w‖
2 in Eq. (6).
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The algorithm we consider, Algorithm 2, is a slight variant of Algorithm 1, which takes
this decomposition of F (w) into account when constructing its unbiased gradient estimate.
Compared to Algorithm 1, this algorithm also queries at random points further away from
wt, up to a distance of

√
d. We will assume here that we can always query at such points3.

We also let W̄ = W ∩ {w : ‖w‖ ≤ B} in the algorithm, where we recall that B is some
known upper bound on ‖w∗‖.

Algorithm 2 Derivative-Free SCO Algorithm for Decomposable-Quadratic Functions

Input: Deterministic term R(·); Strong convexity parameter λ > 0
Initialize w1 = 0.
for t = 1, . . . , T − 1 do

Pick r ∈ {−1,+1}d uniformly at random
Query noisy function value v at point wt + r
Let g̃ = (v −R (wt + r)) r + gR(wt), where gR(w) is a subgradient of R(·) at w
Let wt+1 = ΠW̄

(
wt − 1

λt g̃
)

end for
Return w̄T = wT

2
T

∑T
t=T/2 wt.

We now show that with this algorithm, one can improve on our O(d2/T ) error upper
bound from (Thm. 1).

Theorem 8 In the setting described above, suppose ‖Â‖2, ‖b̂‖, |ĉ| are all at most 1 with
probability 1, the optimum w∗ has a norm of at most B, and ‖gR(w)‖ ≤ N for any w ∈ W̄.
Then under Assumption 1, the point w̄T returned by Algorithm 2 satisfies

E [F (w̄T )− F (w∗)] ≤ 4(4 + 5 log(2))
N2 + 3d

(
(B + 1)4 + E

[
‖Â‖2F

])
λT

,

where ‖ · ‖F is the Frobenius norm.

Note that if we only assume ‖Â‖2 ≤ 1, then ‖Â‖2F can be as high as d, which leads to
an O(d2/T ) bound, same as in Thm. 1. However, it may be much smaller than that.
In particular, for the ridge regression case we considered earlier, Â corresponds to xx>

where x is a randomly drawn instance. Under the common assumption that ‖x‖ ≤ O(1)
(independent of the dimension), it follows that ‖xx>‖2F = ‖x‖4 = O(1). Therefore, ‖Â‖2F
is independent of the dimension, leading to an O(d/T ) error upper bound in terms of d, T .

We remark that even in this specific setting, the O(d/T ) bound does not carry over to
the bandit SCO setting (i.e. in terms of regret), since the algorithm requires us to query
far away from wt. Also, we again emphasize that this result does not contradict our lower
bound in the quadratic case (Thm. 3), since the setting there included a generic noise term,
while here the stochastic “noise” has a very specific structure.

As to the proof of Thm. 8, it is very similar to that of Thm. 1, the key difference being
a better moment upper bound on the gradient estimate ḡ2, as formalized in the following
lemma. Plugging this improved bound into the calculations results in the theorem.

3. Similar to Algorithm 1, if one can only query at some distance ε
√
d, where ε ∈ (0, 1], then one can modify

the algorithm to handle such cases, with the resulting error bound depending on ε.
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Lemma 9 For any wt, we have that Er,v[g̃] is a subgradient of F (wt), and

Er,v[‖g̃‖2] ≤ 4
(
N2 + 3d

(
(B + 1)4 + E

[
‖Â‖2F

]))
.

Proof By definition of F (wt), we note that

g̃ =
(

(wt + r)> Â (wt + r) + b̂> (wt + r) + ĉ
)
r + gR(wt).

Using a similar calculation to the one in the proof of Lemma 2, we have that the expected
value of this expression over r and Â, b̂, ĉ is

2w>t E[Â] + E[b̂>] + gR(wt),

which is a subgradient of F (wt). As to the moment bound, we have

E[‖g̃‖2] ≤ E
[
4
(

(wt + r)> Â (wt + r)
)2
‖r‖2 + 4

(
b̂>(wt + r)

)2
‖r‖2 + 4ĉ2‖r‖2 + 4‖gR(wt)‖2

]
≤ 4d E

[(
‖Â‖2‖wt‖2 + 2w>t Âr + r>Âr

)2
+ 2

((
b̂>wt

)2
+
(
b̂>r

)2
)

+ 1

]
+ 4N2

= 4d E
[(
B2 + 2w>t Âr + r>Ar

)2
+ 2

(
B2 +

(
b̂>r

)2
)

+ 1

]
+ 4N2

= 12d

(
B4 + 4E

[(
w>t Âr

)2
]

+ E
[(

r>Ar
)2
])

+ 8d

(
B2 + E

[(
b̂>r

)2
])

+ 4d+ 4N2.

(7)

Letting âi,j denote entry (i, j) in Â, and recalling that by definition of r, E[rirj ] = 1i=j , we
have that

E
[(

r>Ar
)2
]

= E

∑
i,j

rirj âi,j

2 = E

 ∑
i,j,i′,j′

rirjri′rj′ âi,j âi′,j′


= E

∑
i,j

r2
i r

2
j â

2
i,j

 = E

∑
i,j

â2
i,j

 = E
[
‖Â‖2F

]
.

Also, using the fact that E[rr>] is the identity matrix, we have

E
[(

w>t Âr
)2
]

= E
[
w>t Ârr

>Â>wt

]
= E

[
w>t ÂÂ

>wt

]
≤ E

[
‖wt‖2‖Â‖22

]
≤ B2.

Finally, we have

E
[(

b̂>r
)2
]

= E
[
b̂>rr>b̂

]
= E

[
‖b̂‖2

]
≤ 1.

Plugging these inequalities back into Eq. (7), we get that

E[‖g‖2] ≤ 12d
(
B4 + 4B2 + E[‖Â‖2F ]

)
+ 8d

(
B2 + 1

)
+ 4d+ 4N2

= 4d
(

3B4 + 14B2 + 3 + 3 E
[
‖Â‖2F

])
+ 4N2

≤ 12d
(

(B + 1)4 + E
[
‖Â‖2F

])
+ 4N2,
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from which the lemma follows.

Appendix B. Additional Proofs

B.1. Proof of Lemma 2

By the way r is picked, we have that Er[rirj ] = 1i=j and that Er[rirjrk] = 0 for all i, j, k.
Thus, letting E denote expectation w.r.t. r and the random function values, we have

E[g̃] = E

[√
dv

ε
r

]

= E

[√
d

ε

((
w +

ε√
d
r

)>
A

(
w +

ε√
d
r

)
+ b>

(
w +

ε√
d
r

)
+ c+ ξwt+ ε√

d
r

)
r

]

= E

[√
d

ε

(
w>Aw + b>w + c+ ξwt+ ε√

d
r

)
r +

ε√
d

(
r>Ar

)
r

]
+ E

[(
2w>Ar

)
r +

(
b>r

)
r
]

= 0 + 2w>A+ b> + 0 = ∇F (w).

Also, by the assumptions on A,b, c and the assumptions on the noise ξw, we have

E[‖g̃‖2] = E
[
dv2

ε2
‖r‖2

]
=

d2

ε2
E[v2] =

d2

ε2
E

[(
F

(
wt +

ε√
d
r

)
+ ξwt+ ε√

d
r

)2
]

≤ d2

ε2
E

[
2

(
F

(
wt +

ε√
d
r

))2

+ 2ξ2
wt+

ε√
d
r

]

≤ 2d2

ε2

(
sup

w:‖w‖≤B+ε
(F (w))2 + max

{
1, ‖wt +

ε√
d
r‖2
})

≤ 2d2

ε2

(
sup

w:‖w‖≤B+ε

(
w>Aw + b>w + c

)2
+ (B + 1)2

)

≤ 2d2

ε2

((
(B + ε)2+(B + ε) + 1

)2
+ (B + 1)2

)
≤ 4d2

ε2
(B + 1)4

as required.
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B.2. Proof of Lemma 4

We have the following:

E

[
d∑
i=1

1w̄iei<0

]
=

d∑
i=1

Pr (w̄iei < 0)

=
1

2

d∑
i=1

(Pr(w̄i < 0|ei > 0) + Pr(w̄i > 0|ei < 0))

=
1

2

(
d−

d∑
i=1

(Pr(w̄i > 0|ei > 0)− Pr(w̄i > 0|ei < 0))

)

≥ d

2

(
1− 1

d

d∑
i=1

|Pr(w̄i > 0|ei > 0)− Pr(w̄i > 0|ei < 0)|

)

≥ d

2

1−

√√√√1

d

d∑
i=1

(Pr(w̄i > 0|ei > 0)− Pr(w̄i > 0|ei < 0))2

 , (8)

where the last inequality is by the fact that for any values a1, . . . , ad, it holds that |a1| +
. . .+ |ad| ≤

√
d
√
a2

1 + . . .+ a2
d.

Consider (without loss of generality) the term corresponding to the first coordinate,
namely

(Pr(w̄1 > 0|e1 > 0)− Pr(w̄1 > 0|e1 < 0))2 .

This term equals( ∑
e2,...,ed

Pr({ej}dj=2)
(

Pr
(
w̄1 > 0|e1 > 0, {ej}dj=2

)
− Pr

(
w̄1 > 0|e1 < 0, {ej}dj=2

)))2

≤
∑

e2,...,ed

Pr({ej}dj=2)
(

Pr
(
w̄1 > 0|e1 > 0, {ej}dj=2

)
− Pr

(
w̄1 > 0|e1 < 0, {ej}dj=2

))2

≤ sup
e2,...,ed

(
Pr
(
w̄1 > 0|e1 > 0, {ej}dj=2

)
− Pr

(
w̄1 > 0|e1 < 0, {ej}dj=2

))2

By Pinsker’s inequality and the assumption that w̄T is a deterministic function of v1, . . . , vT ,
this expression is at most

1

2
Dkl

(
Pr
(
v1, . . . , vT |e1 > 0, {ej}dj=2

)
||Pr

(
v1, . . . , vT |e1 < 0, {ej}dj=2

))
,

where Dkl(P ||Q) is the Kullback-Leibler divergence between the two distributions. By the
chain rule (see e.g. Cover and Thomas (2006)), we can upper bound the above by

1

2

T∑
t=1

Dkl

(
Pr
(
vt|e1 > 0, {ej}dj=2, {vl}t−1

l=1

)
|| Pr

(
vt|e1 < 0, {ej}dj=2, {vl}t−1

l=1

))
.

Plugging these bounds back into Eq. (8), the result follows.
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B.3. Proof of Thm. 6

We may assume without loss of generality that T ≥ d2, and it is enough to show that the
expected average regret is at least 0.02

√
d2/T . This is because if there was a strategy with

< 0.02 average regret after T < d2 rounds, then for the case of d2 rounds, we could just run
that strategy for T rounds, compute the average w̄T of all points played so far, and then
repeatedly choose w̄T in the remaining rounds. By Jensen’s inequality, this would imply a
< 0.02 average regret after d2 rounds, in contradiction.

Let w̄T be an arbitrary deterministic function of w1, . . . ,wT . A proof identical to that
of Thm. 3, up to Eq. (4), implies that for any µ > 0, there exists a quadratic function of
the form

Fe =
1

2
‖w‖2 − 〈e,w〉,

with e ∈ {−µ, µ}d, such that

E[Fe(w̄T )− Fe(w∗)] ≥ E

dµ2

4

1−

√√√√µ2

d

T∑
t=1

min

{
‖wt‖2,

1

‖wt‖2

} .
In particular, letting w̄T = 1

T

∑T
t=1 wt, using Jensen’s inequality, and discarding the min,

we get that

E

[
1

T

T∑
t=1

Fe(wt)− Fe(w∗)

]
≥ dµ2

4

1−

√√√√µ2

d

T∑
t=1

‖wt‖2

 . (9)

However, we also know that by strong convexity of Fe, we have

E

[
1

T

T∑
t=1

Fe(wt)− Fe(w∗)

]
≥ 1

2T

T∑
t=1

‖wt − e‖2. (10)

Using the fact that

‖wt‖2 = ‖wt − e + e‖2 ≤ (‖wt − e‖+ ‖e‖)2 ≤ 2‖wt − e‖2 + 2‖e‖2,

we get that

‖wt − e‖2 ≥ 1

2
‖wt‖2 − ‖e‖2 =

1

2
‖wt‖2 − dµ2.

Substituting into Eq. (10) and slightly manipulating the resulting inequality, we get

T∑
t=1

‖wt‖2 ≤ 4TE

[
1

T

T∑
t=1

Fe(wt)− Fe(w∗)

]
+ 2Tdµ2.

For simplicity, denote the average regret term E
[

1
T

∑T
t=1 Fe(wt)− Fe(w∗)

]
by R. Substi-

tuting the expression above into Eq. (9), we get

R ≥ dµ2

4

(
1−

√
µ2

d
(4TR+ 2Tdµ2)

)
≥ dµ2

4

(
1−

√
4µ2TR

d
−
√

2Tµ4

)
.
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Rearranging and simplifying, we get

R+

√
dT

2
µ3
√
R+

dµ2

4

(
µ2
√

2T − 1
)
≥ 0.

The equation above can be seen as a quadratic function of
√
R, with the roots

1

2

−√dT
2

µ3 ±

√√√√(√dT
2

µ3

)2

+ dµ2
(

1− µ2
√

2T
) .

Now, recall that µ is a free parameter that we can choose at will. If we choose it so that
1− µ2

√
2T > 0, then it is easy to show that we get two roots, one strictly positive and one

strictly negative. Since we know
√
R is a nonnegative quantity, we get that

√
R ≥ 1

2

−√dT
2

µ3 +

√√√√(√dT
2

µ3

)2

+ dµ2
(

1− µ2
√

2T
)

=

√
dµ

2

(
−
√
T

2
µ2 +

√
T

4
µ4 + 1− µ2

√
2T

)
.

Finally, choosing µ = T−1/4/2 (which indeed satisfies 1− µ2
√

2T > 0), and simplifying, we
get

√
R ≥ 0.17

√
d√
T
.

Recalling that R is the expected average regret, it only remains to take the square of the

two sides. We note that since we assume T ≥ d2, then ‖e‖ =
√
dµ =

√√
d2/T/2 ≤ 1/2, as

specified in the theorem statement.

B.4. Proof of Thm. 7

Let µ > 0 be a parameter to be determined later. As discussed in the text, we will look at
functions of the form

Fe(w) = ‖w‖2 −
d∑
i=1

eiwi
1 + (wi/ei)2

, (11)

where e is uniformly distributed on {−µ,+µ}d. Our goal will be to prove a lower bound
on the expected optimization error over the randomized choice of Fe, with respect to de-
terministic querying strategies. As explained in the proof of Thm. 3, this would imply
the existence of some fixed Fe such that the expected optimization error over a (possibly
randomized) querying strategy is the same.

We will need the following properties of Fe:

Lemma 10 For any µ > 0 and any e ∈ {−µ,+µ}d, the function Fe in Eq. (11) is:

� 0.5-Strongly convex and 3.5-smooth
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� 2 +
√

2dµ-Lipschitz for any w such that ‖w‖ ≤ 1.

� Fe is globally minimized at w∗ = ce, where c = 0.3489... ≥ 1/3

� For any e′ ∈ {−µ,+µ}d which differs from e in a single coordinate, and for any
w ∈ Rd, it holds that |Fe(w)− Fe′(w)| ≤ µ2.

Proof Note that we can write the function Fe(w) as
∑d

i=1 gei(wi), where

ga(x) = x2 − ax

1 + (x/a)2
.

It is not hard to realize that to prove the lemma, it is enough to prove that:

1. ga(x) is 0.5-strongly convex and 3.5-smooth;

2. |g′a(x)| is at most4 2|x|+ |a|;

3. For all µ, |gµ(x)− g−µ(x)| ≤ µ2;

4. ga(x) is minimized at ca where c = 0.3489....

To show item 1, we calculate the second derivative of ga(x), which is

2

(
1 +

a3x(3a2 − x2)

(a2 + x2)3

)
.

By definition of strong convexity and smoothness, it is enough to show that this term is
always at least 0.5 and at most 3.5. Substituting x = ay and simplifying, we get

2

(
1 +

y(3− y2)

(1 + y2)3

)
.

It is a straightforward exercise to verify that
∣∣∣y(3−y2)

(1+y2)3

∣∣∣ is at most 3/4 for all y ∈ R, hence

the expression above is always in [0.5, 3.5] as required.
As to item 2, we note that

g′a(x) = 2x− a5 − a3x2

(a2 + x2)2
= 2x− a 1− (x/a)2

(1 + (x/a)2)2
.

For any value of x/a, the value of the fraction above is easily verified to be at most 1, hence
we can upper bound |g′a(x)| by 2|x|+ |a| as required.

As to item 3, we have

|gµ(x)− g−µ(x)| = 2|µx|
1 + (x/µ)2

= µ2 2|µx|
µ2 + x2

≤ µ2,

where the last step uses µ2 + x2 ≥ 2|µx|, which follows from the identity (µ+ |x|)2 ≥ 0.

4. Since this would imply that ‖∇Fe(w)‖ is at most
√∑d

i=1(2|wi|+ µ)2 ≤
√∑d

i=1(4w2
i + 2µ2) ≤√∑d

i=1(4w2
i ) +

√∑d
i=1(2µ2) = 2‖w‖+

√
2dµ, which is at most 2 +

√
2dµ for any w in the unit ball.
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Finally, as to item 4, we note that this function can be equivalently written as

ga(x) = a2

(
(x/a)2 − (x/a)

1 + (x/a)2

)
.

Substituting x = ay, we get a2(y2 − y/(1 + y2)). A numerical calculation reveals that the
minimizing value of y is 0.3489..., hence the minimizing value of x is 0.3489...∗a as required.

We now begin to derive the lower bound. Using strong convexity and the lemma, we
have

E[F (w̄T )− F (w∗)] ≥ E
[

1

4
‖w̄T −w∗‖2

]
=

1

4
E

[
d∑
i=1

(w̄i − w∗i )2

]
≥ 1

4
E

[
d∑
i=1

(w∗i )
21w̄iw∗i<0

]

≥ 1

4
E

[
d∑
i=1

(ei
3

)2
1w̄iei<0

]
=

µ2

36
E

[
d∑
i=1

1w̄iei<0

]
(12)

We now lower bound this term using Lemma 4. To do so, we need to upper bound
the KL divergence of the query values at round t under the two hypotheses ei = +µ and
ei = −µ, the other coordinates being fixed. We assume each noise term ξw is a standard
Gaussian random variable. Thus, the query value that we see is distributed as

Fe(wt) + ξw = ‖w‖2 −
d∑
j=1

ejwj
1 + (wj/ej)2

+ ξw.

where one of the coordinates i of e is either +µ or −µ and the other coordinates are fixed.
This is a Gaussian distribution, with mean Fe(wt) and variance 1. By Lemma 10, the
difference between the two means under the two cases ei = +µ, ei = −µ is at most µ2, so
by Lemma 5, the KL-divergence is at most µ4/2. Using Lemma 4, this implies that Eq. (12)
is at least

dµ2

72

1−

√√√√1

d

d∑
i=1

T∑
t=1

µ4

2

 =
dµ2

72

(
1−

√
Tµ4

2

)
.

Picking µ = T−1/4, we get a lower bound of d/144
√

2T > 0.004
√
d2/T .

Finally, note that for this choice of µ, by Lemma 10, our function Fe (for any realization

of e) is 2 +
√

2d/
√
T - Lipschitz in the unit ball, and has a global minimum with norm at

most 0.35
√
d/
√
T . If T ≥ d2, the Lipschitz parameter is at most 4 and the global minimum

is inside the unit ball, satisfying the requirements in the theorem statement. If T < d2,
then the bound cannot be better than what we would obtain for T = d2 (the argument is
similar to the one in the proof of Thm. 6), which is 0.004. Thus, for any T , the bound is at
least

min

{
0.004, 0.004

√
d2

T

}
= 0.004 min

{
1,

√
d2

T

}
as required.
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