
JMLR: Workshop and Conference Proceedings vol 30 (2013) 1–22

Subspace Embeddings and `p-Regression
Using Exponential Random Variables

David P. Woodruff DPWOODRU@US.IBM.COM
IBM Research Almaden

Qin Zhang QINZHANG@CSE.UST.HK

IBM Research Almaden

Abstract
Oblivious low-distortion subspace embeddings are a crucial building block for numerical linear algebra
problems. We show for any real p, 1 ≤ p <∞, given a matrix M ∈ Rn×d with n� d, with constant prob-
ability we can choose a matrix Π with max(1, n1−2/p)poly(d) rows and n columns so that simultaneously
for all x ∈ Rd, ‖Mx‖p ≤ ‖ΠMx‖∞ ≤ poly(d)‖Mx‖p. Importantly, ΠM can be computed in the optimal
O(nnz(M)) time, where nnz(M) is the number of non-zero entries of M . This generalizes all previous
oblivious subspace embeddings which required p ∈ [1, 2] due to their use of p-stable random variables. Us-
ing our matrices Π, we also improve the best known distortion of oblivious subspace embeddings of `1 into
`1 with Õ(d) target dimension in O(nnz(M)) time from Õ(d3) to Õ(d2), which can further be improved to
Õ(d3/2) log1/2 n if d = Ω(log n), answering a question of Meng and Mahoney (STOC, 2013).

We apply our results to `p-regression, obtaining a (1+ε)-approximation inO(nnz(M) log n)+poly(d/ε)
time, improving the best known poly(d/ε) factors for every p ∈ [1,∞) \ {2}. If one is just interested in
a poly(d) rather than a (1 + ε)-approximation to `p-regression, a corollary of our results is that for all
p ∈ [1,∞) we can solve the `p-regression problem without using general convex programming, that is,
since our subspace embeds into `∞ it suffices to solve a linear programming problem. Finally, we give
the first protocols for the distributed `p-regression problem for every p ≥ 1 which are nearly optimal in
communication and computation.

1. Introduction

An oblivious subspace embedding with distortion κ is a distribution over linear maps Π : Rn → Rt for
which for any fixed d-dimensional subspace of Rn, represented as the column space of an n× d matrix M ,
with constant probability, ‖Mx‖p ≤ ‖ΠMx‖p ≤ κ‖Mx‖p simultaneously for all vectors x ∈ Rd. The goal
is to minimize t, κ, and the time to compute Π ·M . For a vector v, ‖v‖p = (

∑n
i=1 |vi|p)1/p is its p-norm.

Oblivious subspace embeddings have proven to be an essential ingredient for quickly and approximately
solving numerical linear algebra problems. One of the canonical problems is regression, which is well-
studied in the learning community, see [13, 15, 16, 20] for some recent advances. Sárlos [28] observed
that oblivious subspace embeddings could be used to approximately solve least squares regression and low
rank approximation, and he used fast Johnson-Lindenstrauss transforms [2, 1] to obtain the fastest known
algorithms for these problems at the time. Optimizations to this in the streaming model are in [10, 19].

As an example, in least squares regression, one is given an n × d matrix M which is usually overcon-
strained, i.e., n � d, as well as a vector b ∈ Rn. The goal is to output x∗ = argminx‖Mx − b‖2, that
is, to find the vector x∗ so that Mx∗ is the (Euclidean) projection of b onto the column space of M . This
can be solved exactly in O(nd2) time. Using fast Johnson-Lindenstrauss transforms, Sárlos was able to
find a vector x′ with ‖Mx′ − b‖2 ≤ (1 + ε)‖Mx∗ − b‖2 in O(nd log d) + poly(d/ε) time, providing a

c© 2013 D.P. Woodruff & Q. Zhang.

substantial improvement. The application of oblivious subspace embeddings (to the space spanned by the
columns of M together with b) is immediate: given M and b, compute ΠM and Πb, and solve the problem
minx ‖ΠMx − Πb‖2. If κ = (1 + ε) and t � n, one obtains a relative error approximation by solving a
much smaller instance of regression.

Another line of work studied `p-regression for p 6= 2. One is given an n × d matrix M and an n × 1
vector b, and one seeks x∗ = argminx‖Mx − b‖p. For 1 ≤ p < 2, this provides a more robust form of
regression than least-squares, since the solution is less sensitive to outliers. For 2 < p ≤ ∞, this is even
more sensitive to outliers, and can be used to remove outliers. While `p-regression can be solved in poly(n)
time for every 1 ≤ p ≤ ∞ using convex programming, this is not very satisfying if n � d. For p = 1 and
p =∞ one can use linear programming to solve these problems, though for p = 1 the complexity will still
be superlinear in n. Clarkson [9] was the first to achieve an n · poly(d) time algorithm for `1-regression,
which was then extended to `p-regression for every 1 ≤ p ≤ ∞ with the same running time [14].

The bottleneck of these algorithms for `p-regression was a preprocessing step, in which one well-
conditions the matrix M by choosing a different basis for its column space. Sohler and Woodruff [29]
got around this for the important case of p = 1 by designing an oblivious subspace embedding Π for which
‖Mx‖1 ≤ ‖ΠMx‖1 = O(d log d)‖Mx‖1 in which Π has O(d log d) rows. Here, Π was chosen to be a
matrix of Cauchy random variables. Instead of running the expensive conditioning step on M , it is run on
ΠM , which is much smaller. One obtains a d × d change of basis matrix R−1. Then one can show the
matrix ΠMR−1 is well-conditioned. This reduced the running time for `1-regression to ndω−1 +poly(d/ε),
where ω < 3 is the exponent of matrix multiplication. The dominant term is the ndω−1, which is the cost of
computing ΠM when Π is a matrix of Cauchy random variables.

In [12], Clarkson et. al combined the ideas of Cauchy random variables and Fast Johnson Lindenstrauss
transforms to obtain a more structured family of subspace embeddings, referred to as the FCT1 in their
paper, thereby improving the running time for `1-regression to O(nd log n) + poly(d/ε). An alternate
construction, referred to as the FCT2 in their paper, gave a family of subspace embeddings that was obtained
by partitioning the matrix M into n/poly(d) blocks and applying a fast Johnson Lindenstrauss transform
on each block. Using this approach, the authors were also able to obtain an O(nd log n) + poly(d/ε) time
algorithm for `p-regression for every 1 ≤ p ≤ ∞.

While the above results are nearly optimal for dense matrices, one could hope to do better if the number
of non-zero entries ofM , denoted nnz(M), is much smaller than nd. Indeed,M is often a sparse matrix, and
one could hope to achieve a running time ofO(nnz(M))+poly(d/ε). Clarkson and Woodruff [11] designed
a family of sparse oblivious subspace embeddings Π with poly(d/ε) rows, for which ‖Mx‖2 ≤ ‖ΠMx‖2 ≤
(1 + ε)‖Mx‖2 for all x. Importantly, the time to compute ΠM is only nnz(M), that is, proportional to the
sparsity of the input matrix. The poly(d/ε) factors were optimized by Meng and Mahoney [22], Nelson and
Nguyen [25], and Miller and Peng [24]. Combining this idea with that in the FCT2, they achieved running
time O(nnz(M) log n) + poly(d/ε) for `p-regression for any constant p, 1 ≤ p <∞.

Meng and Mahoney [22] gave an alternate subspace embedding family to solve the `p-regression prob-
lem in O(nnz(M) log n) + poly(d/ε) time for 1 ≤ p < 2. One feature of their construction is that the
number of rows in the subspace embedding matrix Π is only poly(d), while that of Clarkson and Woodruff
[11] for 1 ≤ p < 2 is n/poly(d). This feature is important in the distributed setting, for which there are
multiple machines, each holding a subset of the rows of M , who wish to solve an `p-regression problem by
communicating with a central server. The natural solution is to use shared randomness to agree upon an em-
bedding matrix Π, then apply Π locally to each of their subsets of rows, then add up the sketches using the
linearity of Π. The communication is proportional to the number of rows of Π. This makes the algorithm of
Meng and Mahoney more communication-efficient, since they achieve poly(d/ε) communication. However,

2

one drawback of the construction of Meng and Mahoney is that their solution only works for 1 ≤ p < 2.
This is inherent since they use p-stable random variables, which only exist for p ≤ 2.

1.1. Our Results

In this paper, we improve all previous low-distortion oblivious subspace embedding results for every p ∈
[1,∞)\{2}. We note that the case p = 2 is already resolved in light of [11, 22, 25]. All results hold with
arbitrarily large constant probability. γ is an arbitrarily small constant. In all results ΠM can be computed
in O(nnz(M)) time (for the third result, we assume that nnz(M) ≥ d2+γ).

• A matrix Π ∈ RO(n1−2/p logn(d log d)1+2/p+d5+4p)×n for p > 2 such that givenM ∈ Rn×d, for ∀x ∈ Rd,

Ω(1/(d log d)1/p) · ‖Mx‖p ≤ ‖ΠMx‖∞ ≤ O((d log d)1/p) · ‖Mx‖p .

• A matrix Π ∈ RO(d1+γ)×n for 1 ≤ p < 2 such that given M ∈ Rn×d, for ∀x ∈ Rd,

Ω
(

max
{

1/(d log d log n)
1
p
− 1

2 , 1/(d log d)1/p
})
· ‖Mx‖p ≤ ‖ΠMx‖2 ≤ O((d log d)1/p) · ‖Mx‖p .

Note that since ‖ΠMx‖∞ ≤ ‖ΠMx‖2 ≤ O(d(1+γ)/2) ‖ΠMx‖∞, we can always replace the 2-norm
estimator by the∞-norm estimator with the cost of another d(1+γ)/2 factor in the distortion.

• A matrix Π ∈ RO(d logO(1) d)×n such that given M ∈ Rn×d, for ∀x ∈ Rd,

Ω
(

max
{

1/(d log d), 1/
√
d log d log n

})
· ‖Mx‖1 ≤ ‖ΠMx‖1 ≤ O(d logO(1) d) · ‖Mx‖1 .

In [22] the authors asked whether a distortion Õ(d3) 1 is optimal for p = 1 for mappings ΠM that
can be computed in O(nnz(M)) time. Our result shows that the distortion can be further improved to
Õ(d2), and if one also has d > log n, even further to Õ(d3/2) log1/2 n. Our embedding also improves
the Õ(d2+γ) distortion of the much slower [12]. In Table 1 we compare our result with previous
results for `1 oblivious subspace embeddings. Our lower distortion embeddings for p = 1 can also be
used in place of the Õ(d3) distortion embedding of [22] in the context of quantile regression [30].

Our oblivious subspace embeddings directly lead to improved (1 + ε)-approximation results for `p-
regression for every p ∈ [1,∞)\{2}. We further implement our algorithms for `p-regression in a distributed
setting, where we have k machines and a centralized server. The sites want to solve the regression problem
via communication. We state both the communication and the time required of our distributed `p-regression
algorithms. One can view the time complexity of a distributed algorithm as the sum of the time complexities
of all sites including the centralized server (see Section 5 for details).

Given an `p-regression problem specified by M ∈ Rn×(d−1), b ∈ Rn, ε > 0 and p, let M̄ = [M,−b] ∈
Rn×d. Let φ(t, d) be the time of solving `p-regression problem on t vectors in d dimensions.

• For p > 2, we obtain a distributed algorithm with communication Õ
(
kn1−2/pd2+2/p + d4+2p/ε2

)
and running time Õ

(
nnz(M̄) + (k + d2)(n1−2/pd2+2/p + d6+4p) + φ(Õ(d3+2p/ε2), d)

)
.

• For 1 ≤ p < 2, we obtain a distributed algorithm with communication Õ
(
kd2+γ + d5 + d3+p/ε2

)
and running time Õ

(
nnz(M̄) + kd2+γ + d7−p/2 + φ(Õ(d2+p/ε2), d

)
.

1. We use Õ(f) to denote a function of the form f · logO(1)(f).

3

Time Distortion Dimemsion
[29] ndω−1 Õ(d) Õ(d)

[12] nd log d Õ(d2+γ) Õ(d5)

[11] + [25] nnz(A) log n Õ
(
d(x+1)/2

)
(x ≥ 1) Õ(n/dx)

[11] + [12] + [25] nnz(A) log n Õ(d3) Õ(d)

[11] + [29] + [25] nnz(A) log n Õ(d1+ω/2) Õ(d)

[22] nnz(A) Õ(d3) Õ(d5)

[22] + [25] nnz(A) + Õ(d6) Õ(d3) Õ(d)

This paper nnz(A) + Õ(d2+γ) Õ(d2) Õ(d)

nnz(A) + Õ(d2+γ) Õ(d3/2) log1/2 n Õ(d)

Table 1: Results for `1 oblivious subspace embeddings. ω < 3 is the exponent of matrix multiplication. γ
is an arbitrarily small constant.

We comment on several advantages of our algorithms over standard iterative methods for solving regression
problems. We refer the reader to Section 4.5 of the survey [21] for more details.

• In our algorithm, there is no assumption on the input matrix M , i.e., we do not assume it is well-
conditioned. Iterative methods are either much slower than our algorithms if the condition number of
M is large, or would result in an additive ε approximation instead of the relative error ε approximation
that we achieve.

• Our work can be used in conjunction with other `p-regression algorithms. Namely, since we find a
well-conditioned basis, we can run iterative methods on our well-conditioned basis to speed them up.

1.2. Our Techniques

Meng and Mahoney [22] achieve O(nnz(M) log n) + poly(d) time for `p-regression with sketches of the
form S ·D ·M , where S is a t×n hashing matrix for t = poly(d), that is, a matrix for which in each column
there is a single randomly positioned entry which is randomly either 1 or −1, and D is a diagonal matrix of
p-stable random variables. The main issues with using p-stable random variables X are that they only exist
for 1 ≤ p ≤ 2, and that the random variable |X|p is heavy-tailed in both directions.

We replace the p-stable random variable with the reciprocal of an exponential random variable. Ex-
ponential random variables have stability properties with respect to the minimum operation, that is, if
u1, . . . , un are exponentially distributed and λi > 0 are scalars, then min{u1/λ1, . . . , un/λn} is distributed
as u/λ, where λ =

∑
i λi. This property was used to estimate the p-norm of a vector, p > 2, in an elegant

work of Andoni [3]. In fact, by replacing the diagonal matrix D in the sketch of [22] with a diagonal matrix
with entries 1/u

1/p
i for exponential random variables ui, the sketch coincides with the sketch of Andoni,

up to the setting of t. Importantly, this new setting of D has no restriction on p ∈ [1,∞). We note that
while Andoni’s analysis for vector norms requires the variance of 1/u

1/p
i to exist, which requires p > 2, in

our setting this restriction can be removed. If X ∼ 1/u1/p, then Xp is only heavy-tailed in one direction,
while the lower tail is exponentially decreasing. This results in a simpler analysis than [22] for 1 ≤ p < 2
and an improved distortion. The analysis of the expansion follows from the properties of a well-conditioned
basis and is by now standard [29, 22, 12], while for the contraction by observing that S is an `2-subspace
embedding, for any fixed x, ‖SDMx‖1 ≥ ‖SDMx‖2 ≥ 1

2‖DMx‖2 ≥ 1
2‖DMx‖∞ ∼ ‖Mx‖1/(2u),

where u is an exponential random variable. Given the exponential tail of u, the bound for all x follows from

4

a standard net argument. While this already improves the distortion of [22], a more refined analysis gives a
distortion of Õ(d3/2) log1/2 n provided d > log n.

For p > 2, we need to embed our subspace into `∞. A feature is that it implies one can obtain a poly(d)-
approximation to `p-regression by solving an `∞-regression problem, in O(nnz(M)) + poly(d) time. As
`∞-regression can be solved with linear programming, this may result in significant practical savings over
convex program solvers for general p. This is also why we use the `∞-estimator for vector p-norms rather
than the estimators of previous works [18, 4, 6, 8] which were not norms, and therefore did not have efficient
optimization procedures, such as finding a well-conditioned basis, in the sketch space. Our embedding is
into n1−2/ppoly(d) dimensions, whereas previous work was into n/poly(d) dimensions. This translates
into near-optimal communication and computation protocols for distributed `p-regression for every p. A
parallel least squares regression solver LSRN was developed in [23], and the extension to 1 ≤ p < 2 was
a motivation of [22]. Our result gives the analogous result for every 2 < p < ∞, which is near-optimal in
light of an Ω(n1−2/p) sketching lower bound for estimating the p-norm of a vector over the reals [27].

2. Preliminaries

In this paper we only consider the real RAM model of computation, and state our running times in terms of
the number of arithmetic operations.

Given a matrix M ∈ Rn×d, let M1, . . . ,Md be the columns of M , and M1, . . . ,Mn be the rows of M .
Define `i =

∥∥M i
∥∥
p

(i = 1, . . . , n), where the `pi are known as the leverage scores of M . Let range(M) =

{y | y = Mx, x ∈ Rd}. W.l.o.g., we constrain ‖x‖1 = 1, x ∈ Rd; by scaling our results will hold for
all x ∈ Rd. Define ‖M‖p to be the element-wise `p norm of M . That is, ‖M‖p = (

∑
i∈[d] ‖Mi‖pp)1/p =

(
∑

j∈[n]

∥∥M j
∥∥p
p
)1/p.

Let [n] = {1, . . . , n}. Let ω denote the exponent of matrix multiplication.

2.1. Well-Conditioning of A Matrix

We introduce two definitions on the well-conditioning of matrices.

Definition 1 ((α, β, p)-well-conditioning [14]) Given a matrix M ∈ Rn×d and p ∈ [1,∞), let q be the
dual norm of p, that is, 1/p+ 1/q = 1. We say M is (α, β, p)-well-conditioned if (1) ‖x‖q ≤ β ‖Mx‖p for
any x ∈ Rd, and (2) ‖M‖p ≤ α. Define ∆′p(M) = αβ.

It is well known that the Auerbach basis [5] (denoted by A throughout this paper) for a d-dimensional
subspace (Rn, ‖·‖p) is (d1/p, 1, p)-well-conditioned. Thus by definition we have ‖x‖q ≤ ‖Ax‖p for any
x ∈ Rd, and ‖A‖p ≤ d1/p. In addition, the Auerbach basis also has the property that ‖Ai‖p = 1 for all
i ∈ [d].

Definition 2 (`p-conditioning [12]) Given a matrix M ∈ Rn×d and p ∈ [1,∞), define ζmax
p (M) =

max‖x‖2≤1 ‖Mx‖p and ζmin
p (M) = min‖x‖2≥1 ‖Mx‖p. Define ∆p(M) = ζmax

p (M)/ζmin
p (M) to be the

`p-norm condition number of M .

The following lemma states the relationship between the two definitions.

Lemma 3 ([14]) Given a matrix M ∈ Rn×d and p ∈ [1,∞), we have

d−|1/2−1/p|∆p(M) ≤ ∆′p(M) ≤ dmax{1/2,1/p}∆p(M).

5

2.2. Oblivious Subspace Embeddings

An oblivious subspace embedding (OSE) for the Euclidean norm, given a parameter d, is a distribution D
over m × n matrices such that for any d-dimensional subspace S ⊂ Rn, with probability 0.99 over the
choice of Π ∼ D, we have

1/2 · ‖x‖2 ≤ ‖Πx‖2 ≤ 3/2 · ‖x‖2 , ∀x ∈ S.

Note that OSE’s only work for the 2-norm, while in this paper we get similar results for `p-norms for all
p ∈ [1,∞)\{2}. Two important parameters that we want to minimize in the construction of OSE’s are: (1)
The number of rows of Π, that is, m. This is the dimension of the embedding. (2) The number of non-zero
entries in the columns of Π, denoted by s. This affects the running time of the embedding.

In [25], buiding upon [11], several OSE constructions are given. In particular, they show that there exist
OSE’s with (m, s) =

(
O(d2), 1

)
and (m, s) =

(
O(d1+γ), O(1)

)
for any constant γ > 0 and (m, s) =

(Õ(d), logO(1) d).

2.3. Distributions

Given two random variables X,Y , we write X ' Y if X and Y have the same distribution.

p-stable Distribution. We say a distribution Dp is p-stable, if for any vector α = (α1, . . . , αn) ∈ Rn

and X1, . . . , Xn
i.i.d.∼ Dp, we have

∑
i∈[n] αiXi ' ‖α‖pX , where X ∼ Dp. It is well-known that p-stable

distribution exists if and only if p ∈ [1, 2] (see. e.g., [17]). For p = 2 it is the Gaussian distribution and for
p = 1 it is the Cauchy distribution. We say a random variable X is p-stable if X is chosen from a p-stable
distribution.

Exponential Distribution. An exponential distribution has support x ∈ [0,∞), probability density func-
tion (PDF) f(x) = e−x and cumulative distribution function (CDF) F (x) = 1 − e−x. We say a random
variable X is exponential if X is chosen from the exponential distribution.

Property 1 The exponential distribution has the following properties.

1. (max stability) If u1, . . . , un are exponentially distributed, and αi > 0 (i = 1, . . . , n) are real
numbers, then max{α1/u1, . . . , αn/un} '

(∑
i∈[n] αi

)
/u , where u is exponential.

2. (lower tail bound) For any X that is exponential, there exist absolute constants ce, c′e such that,
min{0.5, c′et} ≤ Pr[X ≤ t] ≤ cet, ∀t ≥ 0.

The second property holds since the median of the exponential distribution is the constant ln 2 (that is,
Pr[x ≤ ln 2] = 50%), and the PDFs on x = 0, x = ln 2 are f(0) = 1, f(ln 2) = 1/2, differing by a factor
of 2. Here we use that the PDF is monotone decreasing.

Given two random variables X,Y chosen from two probability distributions, we say X � Y if for
∀t ∈ R we have Pr[X ≥ t] ≥ Pr[Y ≥ t]. The following lemma shows a relationship between the p-stable
distribution and the exponential distribution. The proof can be found in Appendix A.1.

Lemma 4 For any p ∈ [1, 2), there exists a constant κp such that |Xp| � κp · 1/U1/p, where Xp is p-stable
and U is an exponential.

The following lemma characterizes the sum of inverse exponentials. See Appendix A.2 for the proof.

6

Lemma 5 Let u1, . . . , ud be d exponentials. Let X =
∑

i∈[d] 1/ui. Then, for any t > 1.

Pr[X > td/κ1] ≤ (1 + o(1)) log(td)/t,

where κ1 is defined in Lemma 4.

Conventions. In the paper we will define several events E0, E1, . . . in the early analysis, which we will
condition on in the later analysis. Each of these events holds with probability 0.99, and there will be no more
than ten of them. Thus by a union bound all of them hold simultaneously with probability 0.9. Therefore
these conditions will not affect our overall error probability by more than 0.1.

Global Parameters. We set a few parameters which will be used throughout the paper: ρ = c1d log d;
ι = 1/(2ρ1/p); η = c2d log d log n; τ = ι/(dη).

3. p-norm with p > 2

3.1. Algorithm

We set the subspace embedding matrix Π = SD, whereD ∈ Rn×n is a diagonal matrix with 1/u
1/p
1 , . . . , 1/u

1/p
n

on the diagonal such that all ui (i = 1, 2, . . . , n) are i.i.d. exponentials. And S is an (m, s)-OSE with
(m, s) =

(
6n1−2/pη/ι2 + d5+4p, 1

)
. More precisely, we pick random hash functions h : [n] → [m] and

σ : [n]→ {−1, 1}. For each i ∈ [n], we set Sh(i),i = σ(i). Since m = ω(d2), by [25] such an S is an OSE.

3.2. Analysis

In this section we prove the following Theorem.

Theorem 6 Let A ∈ Rd×n be an Auerbach basis of a d-dimensional subspace of (Rn, ‖·‖p). Given the

above choices of Π ∈ R(6n1−2/pη/ι2+d5+4p)×n, for any p > 2 we have

Ω(1/(d log d)1/p) · ‖Ax‖p ≤ ‖ΠAx‖∞ ≤ O((d log d)1/p) · ‖Ax‖p , ∀x ∈ Rd.

Remark 7 Note that since the inequality holds for all x ∈ Rd, this theorem also holds if we replace the
Auerbach basis A by any matrix M whose column space is a d-dimensional subspace of (Rn, ‖·‖p).

Property 2 LetA ∈ Rd×n be a (d1/p, 1, p)-well-conditioned Auerbach basis. For an x ∈ Rd, let y = Ax ∈
range(A) ⊆ Rn. Each such y has the following properties. Recall that we can assume ‖x‖1 = 1.

1. ‖y‖p ≤
∑

i∈d ‖Ai‖p · |xi| = ‖x‖1 = 1.

2. ‖y‖p = ‖Ax‖p ≥ ‖x‖q ≥ ‖x‖1 /d1−1/q = 1/d1/p.

3. For all i ∈ [n], |yi| =
∣∣(Ai)Tx∣∣ ≤ ∥∥Ai∥∥

1
· ‖x‖∞ ≤ d1−1/p

∥∥Ai∥∥
p
· ‖x‖1 = d1−1/p`i.

Let H be the set of indices i ∈ [n] such that `i/u
1/p
i ≥ τ . Let L = [n]\H . Then

E[|H|] =
∑

i∈[n] Pr[`i/u
1/p
i ≥ τ]

=
∑

i∈[n] Pr[ui ≤ `pi /τp]
≤

∑
i∈[n] ce`

p
i /τ

p (Property 1)

≤ ced/τ
p. (

∑
i∈[n] `

p
i = ‖A‖pp ≤ d)

7

Therefore with probability 0.99, we have |H| ≤ 100ced/τ
p. Let E0 denote this event, which we will

condition on in the rest of the proof.
For a y ∈ range(A), let wi = 1/u

1/p
i · yi. For all i ∈ L, we have

|wi| = 1/u
1/p
i · |yi| ≤ d1−1/p`i/u

1/p
i < d1−1/pτ ≤ d1−1/pτ · d1/p ‖y‖p = dτ ‖y‖p .

In the first and third inequalities we use Property 2, and the second inequality follows from the definition of
L. For j ∈ [m], let

zj(y) =
∑

i:(i∈L)∧(h(i)=j)

σ(j) · wi.

Define E1 to be the event that for all i, j ∈ H , we have h(i) 6= h(j). The rest of the proof conditions on E1.
The following lemma is implicit in [3]. See Section B.1 for a sketch of the proof.

Lemma 8 ([3]) 1. Assuming that E0 holds, E1 holds with probability at least 0.99.

2. For any ι > 0, for all j ∈ [m],

Pr[|zj(y)| ≥ ι ‖y‖p] ≤ exp

[
− ι2/2

n1−2/p/m+ ιdτ/3

]
= e−η.

3.2.1. NO OVERESTIMATION

By Lemma 8 we have that with probability (1−m · d · e−η) ≥ 0.99, maxj∈[m] zj(Ai) ≤ ι ‖Ai‖p = ι for all
i ∈ [d]. Let E2 denote this event, which we condition on. Note that Ai ∈ range(A) for all i ∈ [d]. Thus,

‖SDAx‖∞ ≤
∑

i∈[d] ‖SDAi‖∞ · |xi|
≤

∑
i∈[d]

(
‖DAi‖∞ + maxj∈[m] zj(Ai)

)
· |xi| (conditioned on E1)

≤
∑

i∈[d](‖DAi‖∞ · |xi|) + ι · ‖x‖1 , (conditioned on E2) (1)

Let vi = ‖DAi‖∞ and v = {v1, . . . , vd}. By Hölder’s inequality, we have∑
i∈[d](‖DAi‖∞ · |xi|) =

∑
i∈[d](vi · |xi|) ≤ ‖v‖p ‖x‖q .

We next bound ‖v‖p:

‖v‖pp =
∑

i∈[d] ‖DAi‖
p
∞ ∼

∑
i∈[d] ‖Ai‖

p
p /ui =

∑
i∈[d] 1/ui,

where each ui (i ∈ [d]) is an exponential. By Lemma 5 we know that with probability 0.99,
∑

i∈[d] 1/ui ≤
200/κ1 · d log d, thus ‖v‖p ≤ (200/κ1 · d log d)1/p. Denote this event by E3 which we condition on. Thus,

(1) ≤ ‖v‖p ‖x‖q + ι ‖x‖1
≤ (200/κ1 · d log d)1/p ‖x‖q + ιd1−1/q ‖x‖q (conditioned on E3)

≤ 2(200/κ1 · d log d)1/p ‖x‖q (ι < 1/d1/p)

≤ 2(200/κ1 · d log d)1/p · ‖Ax‖p . (A is (d1/p, 1, p)-well-conditioned) (2)

8

3.2.2. NO UNDERESTIMATION

In this section we lower bound ‖SDAx‖∞, or ‖SDy‖∞, for all y ∈ range(A). For a fixed y ∈ range(A),
by the triangle inequality

‖SDy‖∞ ≥ ‖Dy‖∞ −maxj∈[m] zj(y).

By Lemma 8 we have that with probability (1 − m · e−η), zj(y) ≤ ι ‖y‖p for all j ∈ [m]. We next
bound ‖Dy‖∞. By Property 1, it holds that ‖Dy‖∞ ∼ ‖y‖p /v1/p, where v is an exponential. Since
Pr[v ≥ ρ] ≤ e−ρ for an exponential v, with probability (1− e−ρ) we have

‖Dy‖∞ ≥ 1/ρ1/p · ‖y‖p , ∀y ∈ range(A). (3)

Therefore, with probability (1−m · e−η − e−ρ) ≥ (1− 2e−ρ),

‖SDy‖∞ ≥ ‖Dy‖∞ − ι ‖y‖p ≥ 1/(2ρ1/p) · ‖y‖p . (4)

Given the above “for each” result (for each y, the bound holds with probability 1 − 2e−ρ), we next use
a standard net-argument to show

‖SDy‖∞ ≥ Ω
(

1/ρ1/p · ‖y‖p
)
, ∀y ∈ range(A). (5)

Due to space constraints, we leave the arguments to Appendix B.2.
Finally, Theorem 6 follows from inequalities (2), (5), and our choice of ρ.

4. p-norm with 1 ≤ p ≤ 2

4.1. Algorithm

Our construction of the subspace embedding matrix Π is similar to that for p-norms with p > 2: We
again set Π = SD, where D is an n × n diagonal matrix with 1/u

1/p
1 , . . . , 1/u

1/p
n on the diagonal, where

ui (i = 1, . . . , n) are i.i.d. exponentials. The difference is that this time we choose S to be an (m, s)-OSE
with (m, s) =

(
O(d1+γ), O(1)

)
from [25] (γ is an arbitrary small constant). More precisely, we first pick

random hash functions h : [n] × [s] → [m/s], σ : [n] × [s] → {−1, 1}. For each (i, j) ∈ [n] × [s], we set
S(j−1)s+h(i,j),i = σ(i, j)/

√
s, where

√
s is just a normalization factor.

4.2. Analysis

In this section we prove the following theorem.

Theorem 9 LetA be an Auerbach basis of a d-dimensional subspace of (Rn, ‖·‖p). Given the above choices

of Π ∈ RO(d1+γ)×n. For any 1 ≤ p < 2 we have

Ω
(

max
{

1/(d log d log n)
1
p
− 1

2 , 1/(d log d)1/p
})
·‖Ax‖p ≤ ‖ΠAx‖2 ≤ O((d log d)1/p)·‖Ax‖p , ∀x ∈ Rd.

Again, since the inequality holds for all x ∈ Rd, the theorem holds if we replace the Auerbach basis A
by any matrix M whose column space is a d-dimensional subspace of (Rn, ‖·‖p).

Remark 10 Using the inter-norm inequality ‖ΠAx‖2 ≤ ‖ΠAx‖p ≤ d(1+γ)(1/p−1/2) ‖ΠAx‖2 , ∀p ∈
[1, 2), we can replace the 2-norm estimator by the p-norm estimator in Theorem 9 by introducing another
d(1+γ)(1/p−1/2) factor in the distortion. We will remove this extra factor for p = 1 below.

In the rest of the section we prove Theorem 9. Define E5 to be the event that ‖SDAx‖2 = (1 ±
1/2) ‖DAx‖2 which we condition on. Since S is an OSE, E5 holds with probability 0.99.

9

4.2.1. NO OVERESTIMATION

We can write S = 1√
s
(S1, . . . , Ss)

T , where each Si ∈ R(m/s)×n with one ±1 on each column. For any

x ∈ Rd, let y = Ax ∈ Rn. Let D′ ∈ Rn×n be a diagonal matrix with i.i.d. p-stable random variables on
the diagonal. Let E6 be the event that for all i ∈ [s], ‖SiD′y‖p ≤ c4(d log d)1/p · ‖y‖p for all y ∈ range(A),
where c4 is some constant. Since s = O(1) and S1, . . . , Ss are independent, we know by [22] (Sec. A.2 in
[22]) that E6 holds with probability 0.99. The rest of the proof conditions on E6. We have

‖SDy‖2 ≤ 3/2 · ‖Dy‖2 (conditioned on E5)

� 3/2 · κp
∥∥D′y∥∥

2
(Lemma 4)

≤ 3 · κp
∥∥SD′y∥∥

2
(conditioned on E5)

≤ 3 · κp
∥∥SD′y∥∥

p

≤ 3 · κp · 1√
s

∑
i∈[s] ‖SiD′y‖p (triangle inequality)

≤ 3 · κp · 1√
s
· s · c4(d log d)1/p · ‖y‖p (conditioned on E6)

≤ c5(d log d)1/p · ‖y‖p , (s = O(1), κp = O(1), c5 sufficiently large) (6)

4.2.2. NO UNDERESTIMATION

For any x ∈ Rd, let y = Ax ∈ Rn.

‖SDy‖2 ≥ 1/2 · ‖Dy‖2 (conditioned on E5)

≥ 1/2 · ‖Dy‖∞ ∼ 1/2 · ‖y‖p /u (u is exponential)

≥ 1/2 · 1/ρ1/p · ‖y‖p . (By (3), holds w.pr. (1− e−ρ)) (7)

Given this “for each” result, we again use a net-argument to show

‖SDy‖2 ≥ Ω
(

1/ρ1/p · ‖y‖p
)

= Ω
(

1/(d log d)1/p
)
· ‖y‖p , ∀y ∈ range(A). (8)

Due to space constraints, we leave it to Appendix C.1.
In the case when d ≥ log2/p−1 n, using a finer analysis we can show that

‖SDy‖2 ≥ Ω
(

1
/

(d log d log n)
1
p
− 1

2

)
· ‖y‖p , ∀y ∈ range(A).

Due to the space constraints, we leave the improved analysis to Section C.2.
Finally, Theorem 9 follows from (6), (8) and our choices of ρ.

4.3. Improved Analysis for `1 Subspace Embeddings

We can further improve the distortion for `1 using the 1-norm estimator in Remark 10. Let S′ ∈ RÕ(d)×O(d1+γ)

be an (Õ(d), logO(1) d)-OSE from [25]. We have∥∥S′SDAx∥∥
1
≤ logO(1)(d) · ‖SDAx‖1 ≤ logO(1)(d) ‖DAx‖1
� logO(1)(d) · ‖CAx‖1 (C ∈ Rn×n be a diagonal matrix with i.i.d. Cauchy)

≤ logO(1)(d) ·
∑

i∈[n] ‖CAei‖1 · ‖x‖∞
≤ d logO(1) d · ‖x‖∞ (Lemma 2.3 in [12])

≤ d logO(1) d · ‖Ax‖1 .

10

The first two inequalities follow from the fact that each column of S′ and S only have logO(1)(d) of ±1’s,
and therefore the mappings S and S′ contract `1-norms, up to a logO(1)(d) factor.

The lower bounds in Section 4.2.2 still holds since ‖S′SDAx‖1 ≥ ‖S′SDAx‖2 ≥ 1/2 · ‖SDAx‖2 .
We state the following theorem in terms of a general matrix whose column space is a d-dimensional

subspace of (Rn, ‖·‖1). In Section C.3 we show that our analysis is tight up to a polylog factor.

Theorem 11 Let M be a full-rank matrix in a d-dimensional subspace of (Rn, ‖·‖1). Given the above
choices of S, S′ and D, let Π = S′SD ∈ RÕ(d)×n. We have

Ω
(

max
{

1/(d log d), 1/
√
d log d log n

})
· ‖Mx‖1 ≤ ‖ΠMx‖1 ≤ O(d logO(1) d) · ‖Mx‖1 , ∀x ∈ Rd.

The embedding ΠM can be computed in time O(nnz(M) + d2+γ logO(1) d).

5. Regression

We need the following lemmas for `p regression.

Lemma 12 ([12]) Given a matrix M ∈ Rn×d with full column rank and p ∈ [1,∞), it takes at most
O(nd3 log n) time to find a matrix R ∈ Rd×d such that MR−1 is (α, β, p)-well-conditioned with αβ ≤
2d1+max{1/2,1/p}.

Lemma 13 ([12]) Given a matrix M ∈ Rn×d, p ∈ [1,∞), ε > 0, and a matrix R ∈ Rd×d such that MR−1

is (α, β, p)-well-conditioned, it takes O(nnz(M) · log n) time to compute a sampling matrix Π ∈ Rt×n
such that with probability 0.99, (1 − ε) ‖Mx‖p ≤ ‖ΠMx‖p ≤ (1 + ε) ‖Mx‖p , ∀x ∈ Rd. The value t is
O
(
(αβ)pd log(1/ε)/ε2

)
for 1 ≤ p < 2 and O

(
(αβ)pdp/2 log(1/ε)/ε2

)
for p > 2.

Lemma 14 ([12]) Given an `p-regression problem specified by M ∈ Rn×(d−1), b ∈ Rn, and p ∈ [1,∞), let
Π be a (1±ε)-distortion embedding matrix of the subspace spanned byM ’s columns and b from Lemma 13,
and let x̂ be an optimal solution to the sub-sampled problem minx∈Rd ‖ΠMx−Πb‖p. Then x̂ is a 1+ε

1−ε -
approximation solution to the original problem.

5.1. Regression for p-norm with p > 2

Lemma 15 Let Π ∈ Rm×n be a subspace embedding matrix of the d-dimensional normed space spanned
by the columns of matrix M ∈ Rn×d such that µ1 ‖Mx‖p ≤ ‖ΠMx‖∞ ≤ µ2 ‖Mx‖p for ∀x ∈ Rd. If
R is a matrix such that ΠMR−1 is (α, β,∞)-well-conditioned, then MR−1 is (βµ2, d

1/pα/µ1, p)-well-
conditioned for any p ∈ (2,∞).

Proof According to Definition 1, we only need to prove

‖x‖q ≤ ‖x‖1 ≤ β
∥∥ΠMR−1x

∥∥
∞ (ΠMR−1 is (α, β,∞)-well-conditioned)

≤ β · µ2

∥∥MR−1x
∥∥
p
. (property of Π)

And, ∥∥MR−1
∥∥p
p

=
∑
i∈[d]

∥∥MR−1ei
∥∥p
p

(ei is the standard basis in Rd)

≤ 1/µp1
∑
i∈[d]

∥∥ΠMR−1ei
∥∥p
∞ (property of Π)

≤ 1/µp1 · dα
p. (ΠMR−1 is (α, β,∞)-well-conditioned)

11

Theorem 16 There exists an algorithm that given an `p-regression problem specified byM ∈ Rn×(d−1), b ∈
Rn and p ∈ (2,∞), with constant probability computes a (1+ε)-approximation to an `p-regression problem

in time Õ
(

nnz(M̄) + n1−2/pd4+2/p + d8+4p + φ(Õ(d3+2p/ε2), d)
)

, where M̄ = [M,−b] and φ(t, d) is
the time to solve `p-regression problem on t vectors in d dimensions.

Proof Our algorithm is similar to those `p-regression algorithms described in [14, 12, 22]. For completeness
we sketch it here. Let Π be the subspace embedding matrix in Section 3 for p > 2. By Theorem 6, we have
(µ1, µ2) =

(
Ω(1/(d log d)1/p), O((d log d)1/p)

)
.

Algorithm: `p regression for p > 2

1. Compute ΠM̄ .

2. Use Lemma 12 to compute a matrixR ∈ Rd×d such that ΠM̄R−1 is (α, β,∞)-well-conditioned with
αβ ≤ 2d3/2. By Lemma 15, M̄R−1 is (βµ2, d

1/pα/µ1, p)-well-conditioned.

3. Given R, use Lemma 13 to find a sampling matrix Π1 such that
(1− ε) ·

∥∥M̄x
∥∥
p
≤
∥∥Π1M̄x

∥∥
p
≤ (1 + ε) ·

∥∥M̄x
∥∥
p
, ∀x ∈ Rd.

4. Compute x̂ which is the optimal solution to the sub-sampled problem minx∈Rd
∥∥Π1Mx−Π1b

∥∥
p
.

Analysis. The correctness of the algorithm is guaranteed by Lemma 14. Now we analyze the running time.
Step 1 costs time O(nnz(M̄)), by our choice of Π. Step 2 costs time O(md3 logm) by Lemma 12, where
m = O(n1−2/p log n(d log d)1+2/p + d5+4p). Step 3 costs time O(nnz(M̄) log n) by Lemma 13, giving
a sampling matrix Π1 ∈ Rt×n with t = O(d3+2p log2 d log(1/ε)/ε2). Step 4 costs time φ(t, d), which is
the time to solve `p-regression problem on t vectors in d dimensions. To sum up, the total running time is

O
(

nnz(M̄) log n+ n1−2/pd4+2/p log2 n log1+2/p d+ d8+4p log n+ φ(O(d3+2p log2 d log(1/ε)/ε2), d)
)
.

5.2. Regression for p-norm with 1 ≤ p < 2

Theorem 17 There exists an algorithm that given an `p regression problem specified byM ∈ Rn×(d−1), b ∈
Rn and p ∈ [1, 2), with constant probability computes a (1 + ε)-approximation to an `p-regression problem

in time Õ
(

nnz(M̄) + d7−p/2 + φ(Õ(d2+p/ε2), d)
)

, where M̄ = [M,−b] and φ(t, d) is the time to solve
`p-regression problem on t vectors in d dimensions.

Proof The regression algorithm for 1 ≤ p < 2 is similar but slightly more complicated than that for p > 2,
since we try to optimize the dependence on d in the running time. Due to space constraints, we leave this
proof to Appendix D.1.

Remark 18 In [22] an algorithm together with several variants for `1-regression are proposed, all with
running time of the form Õ

(
nnz(M̄) + poly(d) + φ(Õ(poly(d)/ε2), d)

)
. Among all these variants, the

power of d in poly(d) (ignoring log factors) in the second term is at least 7, and the power of d in poly(d)
in the third term is at least 3.5. In our algorithm both terms are improved.

12

Application to `1 Subspace Approximation. Given a matrix M ∈ Rn×d and a parameter k, the `1-
subspace approximation is to compute a matrix M̂ of rank k ∈ [d− 1] such that

∥∥∥M − M̂∥∥∥
1

is minimized.

When k = d− 1, M̂ is a hyperplane, and the problem is called `1 best hyperplane fitting. In [12] it is shown
that this problem is equivalent to solving the regression problem minW∈C ‖AW‖1, where the constraint
set is C = {W ∈ Rd×d : Wii = −1}. Therefore, our `1-regression result directly implies an improved
algorithm for `1 best hyperplane fitting. Formally, we have

Theorem 19 Given M ∈ Rn×d, there exists an algorithm that computes a (1 + ε)-approximation to the `1
best hyperplane fitting problem with probability 0.9, using time O

(
nnz(M) log n+ 1

ε2
poly(d, log d

ε)
)
.

The poly(d) factor in our algorithm is better than those by using the regression results in [11, 12, 22].

6. Regression in the Distributed Setting

Due to space constraints, we leave this section to Appendix E.

References

[1] Nir Ailon and Bernard Chazelle. The fast johnson–lindenstrauss transform and approximate nearest
neighbors. SIAM J. Comput., 39(1):302–322, 2009.

[2] Nir Ailon and Edo Liberty. Fast dimension reduction using rademacher series on dual bch codes. In
SODA, pages 1–9, 2008.

[3] Alexandr Andoni. High frequency moment via max stability. Available at
http://web.mit.edu/andoni/www/papers/fkStable.pdf, 2012.

[4] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms via precision
sampling. In FOCS, pages 363–372, 2011.

[5] H. Auerbach. On the area of convex curves with conjugate diameters. PhD thesis, PhD thesis, Univer-
sity of Lwów, 1930.

[6] Lakshminath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh, and Chandan Saha. Simpler algorithm
for estimating frequency moments of data streams. In SODA, pages 708–713, 2006.

[7] J. Bourgain, J. Lindenstrauss, and V. Milman. Approximation of zonoids by zonotopes. Acta mathe-
matica, 162(1):73–141, 1989.

[8] Vladimir Braverman and Rafail Ostrovsky. Recursive sketching for frequency moments. CoRR,
abs/1011.2571, 2010.

[9] Kenneth L. Clarkson. Subgradient and sampling algorithms for `1 regression. In In Proceedings of the
16th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 257–266, 2005.

[10] Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the streaming model. In
STOC, pages 205–214, 2009.

[11] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in input sparsity
time. CoRR, abs/1207.6365, 2012. To appear in STOC, 2013.

13

[12] Kenneth L. Clarkson, Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, Xiangrui Meng,
and David P. Woodruff. The fast cauchy transform: with applications to basis construction, regression,
and subspace approximation in l1. CoRR, abs/1207.4684, 2012. Also in SODA 2013.

[13] Laëtitia Comminges and Arnak S. Dalalyan. Tight conditions for consistent variable selection in high
dimensional nonparametric regression. Journal of Machine Learning Research - Proceedings Track
(COLT), 19:187–206, 2011.

[14] A. Dasgupta, P. Drineas, B. Harb, R. Kumar, and M.W. Mahoney. Sampling algorithms and coresets
for `p regression. SIAM Journal on Computing, 38(5):2060–2078, 2009.

[15] Sébastien Gerchinovitz. Sparsity regret bounds for individual sequences in online linear regression.
Journal of Machine Learning Research - Proceedings Track (COLT), 19:377–396, 2011.

[16] Daniel Hsu, Sham M. Kakade, and Tong Zhang. Random design analysis of ridge regression. Journal
of Machine Learning Research - Proceedings Track (COLT), 23:9.1–9.24, 2012.

[17] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream computation.
J. ACM, 53(3):307–323, May 2006.

[18] Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency moments of data streams.
In STOC, pages 202–208, 2005.

[19] Daniel M. Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. In SODA, pages 1195–
1206, 2012.

[20] Daniel Kifer, Adam D. Smith, and Abhradeep Thakurta. Private convex optimization for empirical
risk minimization with applications to high-dimensional regression. Journal of Machine Learning
Research - Proceedings Track (COLT), 23:25.1–25.40, 2012.

[21] Michael W. Mahoney. Randomized algorithms for matrices and data. CoRR, abs/1104.5557, 2011.

[22] Xiangrui Meng and Michael W. Mahoney. Low-distortion subspace embeddings in input-sparsity time
and applications to robust linear regression. CoRR, abs/1210.3135, 2012. To appear in STOC, 2013.

[23] Xiangrui Meng, Michael A. Saunders, and Michael W. Mahoney. Lsrn: A parallel iterative solver for
strongly over- or under-determined systems. CoRR, abs/1109.5981, 2011.

[24] Gary Miller and Richard Peng. An iterative approach to row sampling. Unpublished manuscript,
October 2012.

[25] Jelani Nelson and Huy L. Nguyen. Osnap: Faster numerical linear algebra algorithms via sparser
subspace embeddings. CoRR, abs/1211.1002, 2012.

[26] J. P. Nolan. Stable Distributions - Models for Heavy Tailed Data. Birkhauser, Boston, 2013. In
progress, Chapter 1 online at academic2.american.edu/∼jpnolan.

[27] Eric Price and David P. Woodruff. Applications of the shannon-hartley theorem to data streams and
sparse recovery. In ISIT, pages 2446–2450, 2012.

[28] Tamás Sarlós. Improved approximation algorithms for large matrices via random projections. In
FOCS, pages 143–152, 2006.

14

[29] Christian Sohler and David P. Woodruff. Subspace embeddings for the l1-norm with applications. In
Proceedings of the 43rd annual ACM symposium on Theory of computing, STOC ’11, pages 755–764,
2011.

[30] Jiyan Yang, Xiangrui Meng, and Michael Mahoney. Quantile regression for large-scale applications.
CoRR, abs/1305.0087, 2013.

Appendix A. Missing Proofs in Section 2

A.1. Proof for Lemma 4

Proof By Nolan ([26], Theorem 1.12), if Xp is p-stable with p ∈ [1, 2), then

Pr[X > x] ∼ cpx−p,

for some constant cp when x→∞. By Property 1 we know that if U is exponential, then

Pr[1/U1/p > x] = Pr[U < 1/xp] ≤ cex−p,

for some constant ce. Therefore there exists a constant κp such that |Xp| � κp · 1/U1/p.

A.2. Proof for Lemma 5

Proof By Lemma 4 we know |C| � κ1 · 1/ui for a 1-stable (i.e., Cauchy) C and an exponential ui. Given
d Cauchy random variables C1, . . . , Cd, let Y =

∑
i∈[d] |Ci|. By Lemma 2.3 in [12] we have for any t > 1,

Pr[Y > td] ≤ (1 + o(1)) log(td)/t.

The lemma follows from the fact that Y � κ1X .

Appendix B. Missing Proofs in Section 3

B.1. Proof for Lemma 8

Proof (sketch, and we refer readers to [3] for the full proof). The first item simply follows from the birthday
paradox; note that by our choice of m we have

√
m = ω(d/τp). For the second item, we use Bernstein’s

inequality to show that for each j ∈ [m], zj(y) is tightly concentrated around its mean, which is 0.

B.2. The Net-argument

Let the ball B = {y ∈ Rn | y = Ax, ‖x‖1 = 1}. By Property 2 we have ‖y‖p ≤ 1 for all y ∈ B. Call
Bε ⊆ B an ε-net ofB if for any y ∈ B, we can find a y′ ∈ Bε such that ‖y − y′‖p ≤ ε. It is well-known that
B has an ε-net of size at most (3/ε)d [7]. We choose ε = 1/(8(200/κ1 · ρd2 log d)1/p, then with probability

1− 2e−ρ · (3/ε)d = 1− 2e−c1d log d ·
(

24(200/κ1 · c1d log d · d2 log d)1/p
)d

≥ 0.99, (c1 sufficiently large)

15

‖SDy′‖∞ ≥ 1/(2ρ1/p) · ‖y′‖p holds for all y′ ∈ Bε. Let E4 denote this event which we condition on.
Now we consider {y | y ∈ B\Bε}. Given any y ∈ B\Bε, let y′ ∈ Bε such that ‖y − y′‖p ≤ ε. By the

triangle inequality we have

‖SDy‖∞ ≥
∥∥SDy′∥∥∞ − ∥∥SD(y − y′)

∥∥
∞ . (9)

Let x′ be such that Ax′ = y′. Let x̃ = x− x′. Let ỹ = Ax̃ = y − y′. Thus ‖ỹ‖p = ‖Ax̃‖p ≤ ε.∥∥SD(y − y′)
∥∥
∞ = ‖SDAx̃‖∞
≤ 2(200/κ1 · d log d)1/p · ‖Ax̃‖p (by (2))

≤ 2(200/κ1 · d log d)1/p · ε.
≤ 2(200/κ1 · d log d)1/p · ε · d1/p · ‖y‖p (by Property 2)

= 1/(4ρ1/p) · ‖y‖p (ε = 1/(8(200/κ1 · ρd2 log d)1/p) (10)

By (4), (9) , (10), conditioned on E4, we have for all y ∈ range(A), it holds that

‖SDy‖∞ ≥ 1/(2ρ1/p) · ‖y‖p − 1/(4ρ1/p) · ‖y‖p ≥ 1/(4ρ1/p) · ‖y‖p .

Appendix C. Missing Proofs in Section 4

C.1. The Net-argument

Let the ball B = {y ∈ Rn | y = Ax, ‖y‖p ≤ 1}. Let Bε ⊆ B be an ε-net of B with size at most
(3/ε)d. We choose ε = 1/(4c5(ρd2 log d)1/p). Then with probability 1− e−ρ · (3/ε)d ≥ 0.99, ‖SDy′‖2 ≥
1/(2ρ1/p) · ‖y′‖p holds for all y′ ∈ Bε. Let E7 denote this event which we condition on. For y ∈ B\Bε, let
y′ ∈ Bε such that ‖y − y′‖p ≤ ε. By the triangle inequality,

‖SDy‖2 ≥
∥∥SDy′∥∥

2
−
∥∥SD(y − y′)

∥∥
2
. (11)

By (6) we have ∥∥SD(y − y′)
∥∥

2
≤ c5(d log d)1/p ·

∥∥y − y′∥∥
p

≤ c5(d log d)1/p · ε
≤ c5(d log d)1/p · ε · d1/p ‖y‖p
= 1/(4ρ1/p) · ‖y‖p . (12)

By (7) (11) and (12), conditioned on E7, we have for all y ∈ range(A), it holds that

‖SDy‖2 ≥ 1/(2ρ1/p) · ‖y‖p − 1/(4ρ1/p) · ‖y‖p ≥ 1/(4ρ1/p) · ‖y‖p .

C.2. An Improved Analysis for `p (p ∈ [1, 2)) Subspace Embeddings with d ≥ log2/p−1 n

The analysis for the upper bound is the same as that in Section 4.2.2. Now we give an improved analysis for
the lower bound assuming that d ≥ log2/p−1 n.

Given a y, let yX (X ⊆ [n]) be a vector such that (yX)i = yi if i ∈ X and 0 if i ∈ [n]\X . For
convenience, we assume that the coordinates of y are sorted, that is, y1 ≥ y2 ≥ . . . ≥ yn. Of course this
order is unknown and not used by our algorithms.

16

We partition the n coordinates of y intoL = log n+2 groupsW1, . . . ,WL such thatW` = {i | ‖y‖p /2` <
yi ≤ ‖y‖p /2`−1}. Let w` = |W`| (` ∈ [L]) and let W =

⋃
`∈[L]W`. Thus

‖yW ‖pp ≥ ‖y‖
p
p − n · ‖y‖

p
p /(2

L−1)p ≥ ‖y‖pp /2.

LetK = cKd log d for a sufficiently large constant cK . Define T = {1, . . . ,K} andB = W\T . Obviously,
W1 ∪ . . . ∪WlogK−1 ⊆ T . Let λ = 1/(10dpK) be a threshold parameter.

As before (Section 4.2.2), we have ‖SDy‖2 ≥ 1/2 · ‖Dy‖2. Now we analyze ‖Dy‖2 by two cases.

Case 1: ‖yT ‖pp ≥ ‖y‖
p
p /4. Let H = {i | (i ∈ [n]) ∧ (`pi ≥ λ)}, where `pi is the i-th leverage score of A.

Since
∑

i∈[n] `
p
i = d, it holds that |H| ≤ d/λ.

We next claim that ‖yT∩H‖pp ≥ ‖y‖
p
p /8. To see this, recall that for each yi (i ∈ [n]) we have |ypi | ≤

dp−1`pi (Property 2). Suppose that ‖yT∩H‖pp ≤ ‖y‖
p
p /8, let yimax be the coordinate in yT\H with maximum

absolute value, then ∣∣ypimax

∣∣ ≥ ‖y‖pp /(8K)

≥ (1/d)/(8K) (by Property 2)

> dp−1λ

> dp−1`pimax
. (imax 6∈ H)

This is a contradiction.
Now we consider {ui | i ∈ H}. Since the CDF of an exponential u is (1 − e−x), we have with

probability (1 − d−10) that 1/u ≥ 1/(10 log d). By a union bound, with probability (1 − d−10 |H|) ≥
(1 − d−10 · 10dp+1K) ≥ 0.99, it holds that 1/ui ≥ 1/(10 log d) for all i ∈ H . Let E7 be this event which
we condition on. Then for any y such that ‖yT ‖pp ≥ ‖y‖

p
p /4, we have

∑
i∈T∩H |y

p
i | /ui ≥ ‖y‖

p
p /(80 log d),

and consequently,

‖Dy‖2 ≥
‖Dy‖p
K1/p−1/2

≥
‖y‖p

(80 log d)1/p ·K1/p−1/2
.

Case 2: ‖yB‖pp ≥ ‖y‖
p
p /4. Let W ′` = B ∩W` (` ∈ [L]) and w′` = |W ′`|. Let F = {` | w′` ≥ K/32} and

let W ′ =
⋃
`∈F W`. We have

‖yW ′‖pp ≥ ‖y‖pp /4−
L∑

`=logK

(
K/32 · (‖y‖p /2

`−1)p
)

≥ ‖y‖pp /4− ‖y‖
p
p ·K/32 ·

L∑
`=logK

(
1/2`−1

)
≥ ‖y‖pp /8.

For each ` ∈ F , let α` = w′`/(2
`)p. We have

‖y‖pp /8 ≤ ‖yW ′‖
p
p =

∑
`∈F

(
w′` ·

(
‖y‖p/2

`−1
)p)
≤
∑
`∈F

(
α` · 4 ‖y‖pp

)
.

Thus
∑

`∈F α` ≥ 1/32.

17

Now for each ` ∈ F , we consider
∑

i∈W`

(
yi/u

1/p
i

)2
. By Property 1, for an exponential u we have

Pr[1/u ≥ w′`/K] ≥ c′e ·K/w′` (c′e = Θ(1)). By a Chernoff bound, with probability (1 − e−Ω(K)), there
are at least Ω(K) of i ∈W` such that 1/ui ≥ w′`/K. Thus with probability at least (1− e−Ω(K)), we have

∑
i∈W`

(
yi/u

1/p
i

)2
≥ Ω(K) ·

(
‖y‖p
2`
·
w′`

1/p

K1/p

)2

≥ Ω

(
α

2/p
` ‖y‖2p
K2/p−1

)
.

Therefore with probability (1− L · e−Ω(K)) ≥ (1− e−Ω(d log d)), we have

‖Dy‖22 ≥
∑
`∈F

∑
i∈W`

(
yi/u

1/p
i

)2

≥ Ω

(
‖y‖2p
K2/p−1

·
∑
`∈F

α
2/p
`

)

≥ Ω

(
‖y‖2p

(K log n)2/p−1

)
(
∑

`∈F α` ≥ 1/32 and |F | ≤ log n) (13)

Since the success probability is as high as (1− e−Ω(d log d)), we can further show that (13) holds for all
y ∈ range(A) using a net-argument as in previous sections.

To sum up the two cases, we have that for ∀y ∈ range(A) and p ∈ [1, 2), ‖Dy‖2 ≥ Ω

(
‖y‖p

(d log d logn)
1
p−

1
2

)
.

C.3. A Tight Example

We have the following example showing that given our embedding matrix S′SD, the distortion we get for
p = 1 is tight up to a polylog factor. The worst case M is the same as the “bad” example given in [22],
that is, M = (Id,0)T where Id is the d× d identity matrix. Suppose that the top d rows of M get perfectly

hashed by S′ and S, then ‖S′SDMx‖2 =
(∑

i∈[d](xi/ui)
2
)1/2

, where ui are i.i.d. exponentials. Let
i∗ = arg maxi∈[d] 1/ui. We know from Property 1 that with constant probability, 1/ui∗ = Ω(d). Now if we
choose x such that xi∗ = 1 and xi = 0 for all i 6= i∗, then ‖S′SDMx‖2 = d. On the other hand, we know
that with constant probability, for Ω(d) of i ∈ [d] we have 1/ui = Θ(1). Let K (|K| = Ω(d)) denote this
set of indices. Now if we choose x such that xi = 1/ |K| for all i ∈ K and xi = 0 for all i ∈ [d]\ |K|, then
‖S′SDMx‖2 = 1/

√
|K| = O(1/

√
d). Therefore the distortion is at least Ω(d3/2).

Appendix D. Missing Proofs in Section 5

Lemma 20 ([29, 22]) Given M ∈ Rn×d with full column rank, p ∈ [1, 2), and Π ∈ Rm×n whose entries
are i.i.d. p-stables, if m = cd log d for a sufficiently large constant c, then with probability 0.99, we have

Ω(1) · ‖Mx‖p ≤ ‖ΠMx‖p ≤ O((d log d)1/p) · ‖Mx‖p , ∀x ∈ Rd.

In addition, ΠM can be computed in time O(ndω−1) where ω is the exponent of matrix multiplication.

18

Lemma 21 Let Π ∈ Rm×n be a subspace embedding matrix of the d-dimensional normed space spanned
by the columns of matrix M ∈ Rn×d such that

µ1 · ‖Mx‖p ≤ ‖ΠMx‖2 ≤ µ2 · ‖Mx‖p , ∀x ∈ Rd. (14)

If R is the “R” matrix in the QR-decomposition of ΠM , then MR−1 is (α, β, p)-well-conditioned with
αβ ≤ d1/pµ2/µ1 for any p ∈ [1, 2).

Proof We first analyze ∆p(MR−1) = µ2/µ1 (Definition 2).∥∥MR−1x
∥∥
p
≤ 1/µ1 ·

∥∥ΠMR−1x
∥∥

2
(by (14))

= 1/µ1 · ‖Qx‖2 (ΠMR−1 = QRR−1 = Q)

= 1/µ1 · ‖x‖2 (Q has orthonormal columns)

And ∥∥MR−1x
∥∥
p
≥ 1/µ2 ·

∥∥ΠMR−1x
∥∥

2
(by (14))

= 1/µ2 · ‖Qx‖2
= 1/µ2 · ‖x‖2

Then by Lemma 3 it holds that

αβ = ∆′p(MR−1) ≤ dmax{1/2,1/p}∆p(MR−1) = d1/pµ2/µ1.

D.1. Proof for Theorem 17

Proof The regression algorithm for 1 ≤ p < 2 is similar but slightly more complicated than that for p > 2,
since we are trying to optimize the dependence on d in the running time. Let Π be the subspace embedding
matrix in Section 4 for 1 ≤ p < 2. By theorem 9, we have (µ1, µ2) = (Ω(1/(d log d)1/p), O((d log d)1/p))

(we can also use (Ω(1/(d log d log n)
1
p
− 1

2), O((d log d)1/p)) which will give the same result).

Algorithm: `p-Regression for 1 ≤ p < 2

1. Compute ΠM̄ .

2. Compute the QR-decomposition of ΠM̄ . Let R ∈ Rd×d be the “R” in the QR-decomposition.

3. Given R, use Lemma 13 to find a sampling matrix Π1 ∈ Rt1×n such that

(1− 1/2) ·
∥∥M̄x

∥∥
p
≤
∥∥Π1M̄x

∥∥
p
≤ (1 + 1/2) ·

∥∥M̄x
∥∥
p
, ∀x ∈ Rd. (15)

4. Use Lemma 20 to compute a matrix Π2 ∈ Rt2×t1 for Π1M̄ such that

Ω(1) ·
∥∥Π1M̄x

∥∥
p
≤
∥∥Π2Π1M̄x

∥∥
p
≤ O((d log d)1/p) ·

∥∥Π1M̄x
∥∥
p
, ∀x ∈ Rd.

Let Π3 = Π2Π1 ∈ Rt2×n. By (15) and ‖z‖2 ≤ ‖z‖p ≤ m1/p−1/2 ‖z‖2 for any z ∈ Rm, we have

Ω(1/t2
1/p−1/2) ·

∥∥M̄x
∥∥
p
≤
∥∥Π3M̄x

∥∥
2
≤ O((d log d)1/p) ·

∥∥M̄x
∥∥
p
, ∀x ∈ Rd.

19

5. Compute the QR-decomposition of Π3M̄ . Let R1 ∈ Rd×d be the “R” in the QR-decomposition.

6. Given R1, use Lemma 13 again to find a sampling matrix Π4 ∈ Rt3×n such that Π4 is a (1 ± 1/2)-
distortion embedding matrix of the subspace spanned by M̄ .

7. Use Lemma 12 to compute a matrix R2 ∈ Rd×d such that Π4M̄R2
−1 is (α, β, p)-well-conditioned

with αβ ≤ 2d1+1/p.

8. Given R2, use Lemma 13 again to find a sampling matrix Π5 ∈ Rt4×n such that Π5 is a (1 ± ε)-
distortion embedding matrix of the subspace spanned by M̄ .

9. Compute x̂ which is the optimal solution to the sub-sampled problem minx∈Rd
∥∥Π5Mx−Π5b

∥∥
p
.

Analysis. The correctness of the algorithm is guaranteed by Lemma 14. Now we analyze the running
time. Step 1 costs time O(nnz(M̄)), by our choice of Π. Step 2 costs time O(md2) = O(d3+γ) using
standardQR-decomposition, where γ is an arbitrarily small constant. Step 3 costs timeO(nnz(M̄) log n) by
Lemma 13, giving a sampling matrix Π1 ∈ Rt1×n with t1 = O(d4 log2 d). Step 4 costs time O(t1d

ω−1) =
O(d3+ω log2 d) where ω is the exponent of matrix multiplication, giving a matrix Π3 ∈ Rt2×n with t2 =
O(d log d). Step 5 costs time O(t2d

2) = O(d3 log d). Step 6 costs time O(nnz(M̄) log n) by Lemma 13,
giving a sampling matrix Π4 ∈ Rt3×n with t3 = O(d4−p/2 log2−p/2 d). Step 7 costs time O(t3d

3 log t3) =
O(d7−p/2 log3−p/2 d). Step 8 costs time O(nnz(M̄) log n) by Lemma 13, giving a sampling matrix Π5 ∈
Rt4×n with t4 = O(d2+p log(1/ε)/ε2). Step 9 costs time φ(t4, d), which is the time to solve `p-regression
problem on t4 vectors in d dimensions. To sum up, the total running time is

O
(

nnz(M̄) log n+ d7−p/2 log3−p/2 d+ φ(O(d2+p log(1/ε)/ε2), d)
)
.

Appendix E. Regression in the Distributed Setting

In this section we consider the `p-regression problem in the distributed setting, where we have k machines
P1, . . . , Pk and one central server. Each machine has a disjoint subset of the rows of M ∈ Rn×(d−1)

and b ∈ Rd. The server has a 2-way communication channel with each machine, and the server wants to
communicate with the k machines to solve the `p-regression problem specified by M, b and p. Our goal is
to minimize the overall communication of the system, as well as the total running time.

Let M̄ = [M,−b]. Let I1, . . . , Ik be the sets of rows that P1, . . . , Pk have, respectively. Let M̄i (i ∈ [k])
be the matrix by setting all rows j ∈ [n]\Ii in M̄ to 0. We use Π to denote the subspace embedding matrix
proposed in Section 3 for p > 2 and Section 4 for 1 ≤ p < 2, respectively. We assume that both the server
and the k machines agree on such a Π at the beginning of the distributed algorithms using, for example,
shared randomness.

E.1. Distributed `p-regression for p > 2

The distributed algorithm for `p regression with p > 2 is just a distributed implementation of Algorithm 5.1.

20

Algorithm: Distributed `p-regression for p > 2

1. Each machine computes and sends
∥∥M̄i

∥∥
p

to the server. And then the server computes
∥∥M̄∥∥

p
=(∑

i∈[k]

∥∥M̄i

∥∥p
p

)1/p
and sends to each site.

∥∥M̄∥∥
p

is needed for Lemma 13 which we will use later.

2. Each machine Pi computes and sends ΠM̄i to the server.

3. The server computes ΠM̄ by summing up ΠM̄i (i = 1, . . . , k). Next, the server uses Lemma 12 to
compute a matrix R ∈ Rd×d such that ΠM̄R−1 is (α, β,∞)-well-conditioned with αβ ≤ 2d3/2, and
sends R to each of the k machines.

4. Given R and
∥∥M̄∥∥

p
, each machine uses Lemma 13 to compute a sampling matrix Π1

i such that Π1
i is

a (1 ± ε)-distortion embedding matrix of the subspace spanned by M̄i, and then sends the sampled
rows of Π1

i M̄i that are in Ii to the server.

5. The server constructs a global matrix Π1M̄ such that the j-th row of Π1M̄ is just the j-th row of
Π1
i M̄i if (j ∈ Ii) ∧ (j get sampled), and 0 otherwise. Next, the server computes x̂ which is the

optimal solution to the sub-sampled problem minx∈Rd
∥∥Π1Mx−Π1b

∥∥
p
.

Analysis. Step 1 costs communication O(k). Step 2 costs communication O(kmd) where
m = O(n1−2/p log n(d log d)1+2/p + d5+4p). Step 3 costs communication O(kd2). Step 4 costs communi-
cation O(td + k) where t = O(d3+2p log2 d log(1/ε)/ε2), that is, the total number of rows get sampled in
rows I1 ∪ I2 ∪ · · · ∪ Ik. Therefore the total communication cost is

O
(
kn1−2/pd2+2/p log n log1+2/p d+ kd6+4p + d4+2p log2 d log(1/ε)/ε2

)
.

The total running time of the system, which is essentially the running time of the centralized algorithm
(Theorem 16) plus the communication cost, is

O
(

nnz(M̄) log n+ (k + d2 log n)(n1−2/pd2+2/p log n log1+2/p d+ d6+4p) + φ(O(d3+2p log2 d log(1/ε)/ε2), d)
)
.

E.2. Distributed `p-regression for 1 ≤ p < 2

The distributed algorithm for `p-regression with 1 ≤ p < 2 is a distributed implementation of Algo-
rithm D.1.

Algorithm: Distributed `p-regression for 1 ≤ p < 2

1. Each machine computes and sends
∥∥M̄i

∥∥
p

to the server. And then the server computes
∥∥M̄∥∥

p
=(∑

i∈[k]

∥∥M̄i

∥∥p
p

)1/p
and sends to each site.

2. Each machine Pi computes and sends ΠM̄i to the server.

3. The server computes ΠM̄ by summing up ΠM̄i (i = 1, . . . , k). Next, the server computes a QR-
decomposition of ΠM̄ , and sends R (the “R” in QR-decomposition) to each of the k machines.

4. Given R and
∥∥M̄∥∥

p
, each machine Pi uses Lemma 13 to compute a sampling matrix Π1

i ∈ Rt1×n

such that Π1
i is a (1 ± 1/2)-distortion embedding matrix of the subspace spanned by M̄i, and then

sends the sampled rows of Π1
i M̄i that are in Ii to the server.

21

5. The server constructs a global matrix Π1M̄ such that the j-th row of Π1M̄ is just the j-th row of Π1
i M̄i

if (j ∈ Ii) ∧ (j get sampled), and 0 otherwise. After that, the server uses Lemma 20 to compute a
matrix Π2 ∈ Rt2×t1 for Π1M̄ . Next, the server computes aQR-decomposition of Π2Π1M̄ , and sends
R1 (the “R” in QR-decomposition) to each of the k machines.

6. Given R1 and
∥∥M̄∥∥

p
, each machine Pi uses Lemma 13 again to compute a sampling matrix Π4

i ∈
Rt3×n such that Π4

i is a (1 ± 1/2)-distortion embedding matrix of the subspace spanned by M̄i, and
then sends the sampled rows of Π4

i M̄i that are in Ii to the server.

7. The server constructs a global matrix Π4M̄ such that the j-th row of Π4M̄ is just the j-th row of
Π4
i M̄i if (j ∈ Ii) ∧ (j get sampled), and 0 otherwise. Next, the server uses Lemma 12 to compute a

matrix R2 ∈ Rd×d such that ΠM̄R2
−1 is (α, β, p)-well-conditioned with αβ ≤ 2d1+1/p, and sends

R2 to each of the k machines.

8. Given R2 and
∥∥M̄∥∥

p
, each machine Pi uses Lemma 13 again to compute a sampling matrix Π5

i ∈
Rt4×n such that Π5

i is a (1± ε)-distortion embedding matrix of the subspace spanned by M̄i, and then
sends the sampled rows of Π5

i M̄i that are in Ii to the server.

9. The server constructs a global matrix Π5M̄ such that the j-th row of Π5M̄ is just the j-th row of
Π5
i M̄i if (j ∈ Ii) ∧ (j get sampled), and 0 otherwise. Next, the server computes x̂ which is the

optimal solution to the sub-sampled problem minx∈Rd
∥∥Π5Mx−Π5b

∥∥
p
.

Communication and running time. Step 1 costs communication O(k). Step 2 costs communication
O(kmd) where m = O(d1+γ) for some arbitrarily small γ. Step 3 costs communication O(kd2). Step 4
costs communication O(t1d + k) where t1 = O(d4 log2 d). Step 5 costs communication O(kd2). Step 6
costs communication O(t3d+ k) where t3 = O(d log d). Step 7 costs communication O(kd2). Step 8 costs
communication O(t4d+ k) where t4 = O(d2+p log(1/ε)/ε2). Therefore the total communication cost is

O
(
kd2+γ + d5 log2 d+ d3+p log(1/ε)/ε2

)
.

The total running time of the system, which is essentially the running time of the centralized algorithm
(Theorem 17) plus the communication cost, is

O
(

nnz(M̄) log n+ kd2+γ + d7−p/2 log3−p/2 d+ φ(O(d2+p log(1/ε)/ε2), d)
)
.

Remark 22 It is interesting to note that the work done by the server C is just poly(d), while the majority
of the work at Step 2, 4, 6, 8, which costs O(nnz(M̄) · log n) time, is done by the k machines. This feature
makes the algorithm fully scalable.

22

	Introduction
	Our Results
	Our Techniques

	Preliminaries
	Well-Conditioning of A Matrix
	Oblivious Subspace Embeddings
	Distributions

	p-norm with p > 2
	Algorithm
	Analysis
	No Overestimation
	No Underestimation

	p-norm with 1 p 2
	Algorithm
	Analysis
	No Overestimation
	No Underestimation

	Improved Analysis for 1 Subspace Embeddings

	Regression
	Regression for p-norm with p > 2
	Regression for p-norm with 1 p < 2

	Regression in the Distributed Setting
	Missing Proofs in Section ??
	Proof for Lemma ??
	Proof for Lemma ??

	Missing Proofs in Section ??
	Proof for Lemma ??
	The Net-argument

	Missing Proofs in Section ??
	The Net-argument
	An Improved Analysis for p (p [1,2)) Subspace Embeddings with d log2/p-1 n
	A Tight Example

	Missing Proofs in Section ??
	Proof for Theorem ??

	Regression in the Distributed Setting
	Distributed p-regression for p > 2
	Distributed p-regression for 1 p < 2

