
 108

 109

Distributed and Adaptive Darting Monte Carlo through Regenerations

suitable for distributed simulation.

Regeneration is an alternative idea to parallelize MCMC

simulation, with the additional bonus of being able to adapt

all aspects of the Markov chain after each regeneration

event. Enriching DMC with regenerations will allow the

method to jump between regions, adapt the regions on the

fly and simulate in parallel. Regeneration breaks a Markov

chain into independent segments, or tours. At regenera-

tion times one is allowed to adapt the details of the Markov

chain (i.e. its transition kernel) based on available samples

obtained so far (Gilks et al., 1998). We were inspired by

ideas in Mykland et al. (1995) and Brockwell and Kadane

(2005) to identify regeneration times. Regeneration has re-

mained an elegant but somewhat impractical procedure that

has not attracted a lot of attention (certainly not in the ML

literature). Like DMC (or most mode jumping methods for

that matter), it’s main limitation is the curse of dimension-

ality. However, we argue that that regeneration combined

with DMC is able to fine-tune its jump regions and ame-

liorate this problem to some degree, improving both DMC

and regeneration MCMC.

2 Regeneration

Regeneration is an elegant method to break a Markov chain

into smaller independent segments. (Gilks et al., 1998;

Mykland et al., 1995; Brockwell and Kadane, 2005) The

key idea is to split the kernel (i.e. proposal plus ac-

cept/reject step) into a mixture of two kernels as follows:

T (y|x) =S(x)Q(y) + (1− S(x))R(y|x) (1)

R(y|x) =







T (y|x)− S(x)Q(y)

(1− S(x))
IF S(x) ∈ [0, 1)

1 IF S(x) = 1
(2)

Here, S(x) acts as a state dependent mixture coefficient

between an independence kernel Q(y) and the residual

kernel R(y|x). As long as we can find a factorization

S(x)Q(y) ≤ T (y|x), ∀x, y then this construction is pos-

sible. If at any point we can interpret the sample as being

generated by Q then this new sample is independent of the

past and the chain has regenerated.

So far the construction is not practical because it is hard

to sample from R. However, there is an elegant trick to de-

cide on regeneration retrospectively which avoids sampling

from R altogether. Introduce an auxiliary variable zt that

will decide which of the two kernels, Q or R, we choose.

Thus, zt follows a Bernoulli distribution with probability

of success S(xt−1). We now sample (zt, xt)|xt−1 jointly.

We may first integrate out zt to sample xt|xt−1 and then

retrospectively sample zt|(xt, xt−1). Marginalizing out zt
will give us back the full mixture given by Eqn.1, i.e. we

can simply propose a move according to T . Writing out the

joint for (xt, zt, xt−1) and conditioning on (xt, xt−1) one

can show that,

zt|(xt, xt−1) ∼ B

(

z;
S(xt−1)Q(xt)

T (xt|xt−1)

)

(3)

Remarkably, the procedure therefore simply uses the kernel

T but decides whether a sample was a regeneration retro-

spectively by sampling from 3 and checking if zt = 1. The

tour that started at the previous regeneration and ends at

xt−1 is independent of all other tours.

Detecting regenerations is very useful for a number of rea-

sons. Firstly, the tours can be generated independently on

different machines and combined later, facilitating paral-

lel simulation (Brockwell and Kadane, 2005). But perhaps

more importantly, all details of the entire procedure, includ-

ing the local kernel (e.g. Hamiltonian Monte Carlo (HMC))

as well as the kernels T and Q can be adapted based on

all the previous samples after a regeneration has occurred

(Gilks et al., 1998).

The difficult part of designing a regenerative MCMC

procedure is to find a valid factorization S(x)Q(y) ≤
T (y|x), ∀x, y. However, this is possible when T (y|x) =
f(y)α(x, y) with α the MH accept/reject step and f(y) an

independence sampler. Two methods were proposed for

this in Mykland et al. (1995), which we describe in ap-

pendix A.

3 Darting Monte Carlo with Truncated

DPMMs

To obtain high regeneration rate, it is of the utmost impor-

tance that the proposal distribution, f , (which we use as

our independence sampler – see previous section) is a very

tight fit to the target distribution π whenever we propose

from the independence sampler. The strategy will be to

tighten this fit at the regeneration times. In particular, we

will fit a Dirichlet Process Mixture Model (DPMM) to the

samples (or a suitable subset of the samples) that have been

drawn so far. In particular, we used the “Accelerated Vari-

ational DPMM” algorithm of Kurihara et al. (2006) with a

maximum number of clusters1, K.

While we expect the DPMM to be a close fit in the high

probability regions, the error may become much worse

away from these regions (i.e. in the tails). Indeed, when the

size of data set, N , is large (and under certain conditions),

we may expect a mode to look normal only close to the lo-

cal maximum. We therefore truncate (and re-normalize)

the normal distributions obtained from the DPMM at α
standard deviations from the mean and call these regions,

R = ∪iRi, “jump regions”. Because this “mixture of trun-

cated normals” has zero probability outside R we do not

1Code available at http://sites.google.com/

site/kenichikurihara/academic-software/

variational-dirichlet-process-gaussian-

mixture-model.

 110

Sungjin Ahn, Yutian Chen, Max Welling

have to attempt sampling from f when the Markov chain is

located outside of R (because the backward move has zero

probability).

In order to encourage a high regeneration rate, we re-

place the mixture transition kernel in Sminchisescu and

M.Welling (2007) by a cycle kernel, that is, at every iter-

ation we first draw an intermediate sample, θ̃, from a local

sampler and then run a step of independence sampling only

if θ̃ is in R. As shown in Mykland et al. (1995), the ret-

rospective regeneration probability is not dependent on the

local sampler but only on θ̃.

Detailed balance and ergodicity can easily be proved. First,

the proposed method uses a cycle kernel consisting of 2

kernels: the local HMC sampler and the truncated DPMM

independence sampler (TDPMM), each of which is de-

signed to satisfy detailed balance using a MH accept/reject

step. Also, it is easy to see that this kernel is ergodic, since

the first kernel (HMC) is ergodic and the second kernel

(TDPMM) can move the chain to any location inside the

jump regions.

The resulting “Regeneration Darting Monte Carlo”

(RDMC) algorithm, which uses “method 1” in Appendix

A is described in Algorithm 1.

Algorithm 1 Algorithm 1: Regeneration Darting Monte

Carlo (RDMC)

Initialize θ1
for t = 1 : T do

Sample θ̃ according to local sampler (e.g. HMC).

if θ̃ ∈ ∪iRi then

Sample from TDPMM:

1. Sample θ∗ from: f(θ∗) ∝
∑K

i=1 ρi Ni(θ|µi,Σi) I[θ ∈ Ri]
2. Accept with probability α =

min

[

1,
π(θ∗)

∑
i:θ̃∈Ri

ρiNi(θ̃|µi,Σi)

π(θ̃)
∑

j:θ∗∈Rj
ρjNj(θ∗|µj ,Σj)

]

.

If accepted, use Eqn. 6 with x = θ̃, y = θ∗ to

determine if the sample was a regeneration.

if Regeneration has occurred then

Adapt the MCMC kernel and discard θ∗.

Apply rejection sampling using f(·) and Eqn. 7

to accept/reject in order to obtain θt+1.

else

Set θt+1 = θ∗.

end if

end if

If θ̃ 6∈ ∪iRi or θ∗ is rejected, set θt+1 = θ̃.

end for

(We note that
∑K

i=1 ρi Ni(θ|µi,Σi) I[θ ∈ Ri] ∝
∑K

i=1 ζi TN i(θ|µi,Σi) with ζi = ρi
∫

θ∈Ri
Ni(θ)dθ so

that jump proposals are indeed generated from a mixture

of truncated Gaussians.) RDMC can indeed be interpreted

as an improved “Darting Monte Carlo” (DMC) algorithm.

Darting Monte Carlo was developed as an effective way

for MCMC algorithms to jump between modes of a distri-

bution. The initial paper (Andricioaiei et al., 2001) defined

isotropic and uniform regions located close to the modes of

the distribution. A local sampler, say HMC, is interrupted

at regular intervals to check if the current location is inside

one of the jump regions. If so, the DMC would proceed

to propose a new value uniformly at random from within

these regions followed by a standard Metropolis-Hastings

(MH) accept/reject step. The procedure was generalized

in Sminchisescu and M.Welling (2007) to handle overlap-

ping regions of general shape. The independence sampler

proposed in this paper (without regenerations and adapta-

tion) improves on Sminchisescu and M.Welling (2007) by

using truncated normal distributions inside the jump re-

gions {Ri} instead of uniform probabilities, which pro-

vide a much better fit to the target distribution and is

therefore expected to boost the acceptance rate. One can

obtain the procedure from Sminchisescu and M.Welling

(2007) by setting ρi = 1, Ni = const., ∀i in which case
∑

i:θ∈Ri
1 = n(θ), the number of regions which include θ.

As another special case one might consider no truncation,

which would set ζi = ρi.

We have experimented with an improvement to the ba-

sic form of RDMC. We exploits the property that any as-

pect of the MCMC procedure based on any information

available at that time can be updated after a regeneration

has occurred. This implies that in parallel to the Markov

chains we can also run a number of mode searching opti-

mization procedures, and incorporate newly found modes

when updating the TDPMM. This flexibility to utilize dif-

ferent kinds of information in such a flexible manner seems

unique to the regeneration procedure.

4 Experiments

In the following experiments, we study how the adapta-

tion and parallelization in the proposed algorithm affect the

convergence rate of the Markov chain. In particular, we

provide experiment results on two models, Gaussian Mix-

ture Model (GMM) and a localization problem of a Wire-

less Sensor Network (WSN). The convergence is diagnosed

in two metrics: the multivariate potential scale reduction

factor (MPSRF or R statistic) (Brooks and Gelman, 1998)

and the relative error of the estimated mean (REM) of all

dimensions. The R statistic is used to measure the conver-

gence of multiple chains and its value approaches 1 when

all chains converge to the stationary distribution. REM is a

summary of the errors in approximating the expectation of

variables across all dimensions computed as:

REMt =

∑d
i=1 |θ

t
i − θ∗i |

∑

i |θ
∗
i |

(4)

 111

Distributed and Adaptive Darting Monte Carlo through Regenerations

✲�✁ ✲✂ ✁ ✂ �✁ �✂

✲�✁

✲✂

✁

✂

�✁

Figure 2: 2-D marginal of 15-component GMM

where θti is the sampling average of i’th variable at time t,
and θ∗i is the mean w.r.t. the true distribution. For WSN

where we cannot compute the true mean analytically, we

simulate a long Markov chain using RDMC that covers all

modes to provide a desirable precision.

We compare the following algorithms: 1) RDMC-PC(p)

is our algorithm running p parallel chains and using com-

bined tours when updating the DPMM. As a special case,

RDMC-PC(1) runs a single chain on a single processor.

To see the effect of combining tours among chains, we

also consider 2) RDMC-P which is the same as RDMC-

PC except that no communication is made between chains

and thus DPMM is updated based on individual chains.

3) DMC-P(p) and 4) HMC-P(p) are respectively the origi-

nal Darting algorithm (Sminchisescu and M.Welling, 2007)

and Hamiltonian Monte Carlo running p chains in paral-

lel. We also studied a population-based MCMC algorithm:

5) differential evolution MCMC (DEMC) (Braak, 2006),

which allows distant mode jumps. DEMC(n) runs a popu-

lation of size n on a single processor.

We briefly describe how the differential evolution MCMC

works. Given a population of n samples, {θi}
n
i=1, the pro-

posed move for sample i is obtained by

θ∗i = θi + γ(θj − θk) + ε (5)

where θj and θk (where, i 6= j 6= k) are chosen randomly

from the population and the noise ε is subject to a Gaussian

distribution N (0, b). Notice that θj − θk determines the di-

rection for θi to move and thus if θi and θk are in the same

mode while θj in another, it will propose a jump for θi to a

place near the mode of θj . When γ = 0, DEMC is equiv-

alent to the random walk Metropolis sampler. Usually, b is

set to a small number and γ = 1. Also notice that because

of the high dependency among all samples, DEMC has to

be executed sequentially on a single processor.

4.1 Gaussian Mixture Model

We first study how the algorithm is affected by varying the

number of modes K and the dimension D. K = [2, 5, 10]

✺ ✶✄ ✶✺ ✷✄

✶

✶☎✺

✷

✷☎✺

✸

✸☎✺

❉✆✝✞✟✠✆✡✟

❘

☛
☞
☞✌
✍
✎
✏
✑
✒
✒
✓
✎
✔

✕❉✖✗✘✙✗

✕❉✖✗✘✙

❉✚✖✗

❉✖✗✘✙

(a) R for increasing dimensions

✛ ✜✢ ✜✛ ✣✢
✢

✜

✣

✤

✹

✛

✥✦✧★✩✪✦✫✩

✬
✭
✮

✯
✰
✰✱
✳
✴
✵
✻
✼
✼
✽
✴
✾ ✿✥❀❁❂❃❁

✿✥❀❁❂❃

✥❄❀❁

✥❀❁❂❃

(b) REM for increasing dimensions

Figure 3: R and REM of GMM for increasing dimension.

and D = [5, 10, 15, 20] are considered for the comparison.

When varying K or D, we fixed the other variable, D = 10
or K = 5, respectively. We randomly generate the Gaus-

sian mixture models in such a way that the mean of each

component is uniformly sampled from the d-dimension

space while keeping the average distance among the com-

ponents nearly constant for different K. Figure 2 shows a

2-d marginal distribution of a 15-component GMM.

We simulate 10 parallel chains, each on one processor, for

every algorithm. The population size of DEMC, n, in-

creases with K as n = 20 + 10K. For the HMC local

kernel, we used 10 leapfrog steps and choose the stepsize

to achieve an about 70% acceptance rate. For DMC and

RDMC in order to rule out the possibility that the error

is induced by sampling from different subset of modes,

we perform a preliminary mode search until it finds all

modes. For DMC, we first run gradient ascend algorithm

with restart to find local modes, prune duplicate one, and

then fit the jump regions, each centered at a mode with

shape estimated by the Laplace method, as suggested in

Sminchisescu and M.Welling (2007). For RDMC, we run

a brief burn-in procedure, where we randomly initialize the

samplers repeatedly, and run HMC to collect a few samples

at every restart. The total set of samples are then used to

 112

Sungjin Ahn, Yutian Chen, Max Welling

✷ ✹ ✻ ✽ ✶�

✶

✶✁✂

✷

◆✄☎✆✝✞ ✟✠ ✡✟☎☛✟☞✝☞✌✍

❘

✎
✏
✏✑
✒
✓
✔
✕
✖
✖
✗
✓
✘

✙✚✛✡✜✢✡

✙✚✛✡✜✢

✚❉✛✡

✚✛✡✜✢

(a) R for increasing number of components

✣ ✤ ✥ ✦ ✧★
★

✧

✣

✸

✩✪✫✬✭✮ ✯✰ ✱✯✫✲✯✳✭✳✴✵

✺
✼
✾

✿
❀
❀❁
❂
❃
❄
❅
❆
❆
❇
❃
❈ ❊❋●✱❍■✱

❊❋●✱❍■

❋❏●✱

❋●✱❍■

(b) REM for increasing number of components

Figure 4: R and REM of GMM for increasing number of com-
ponents

train an initial DPMM model. The time spent in this burn-

in period is included in all time-related comparisons. We

initialize the DMC and RDMC samples to be overdispersed

so that it is possible to visit all the modes of the Gaussian

mixture model.

Figure 3 and Figure 4 show the results after running the

algorithm for 800 seconds. We can see that both of the

RDMCs converge faster than DMC and DEMC in both R

and REM. We updated the DPMM when a regeneration

have occurred and the number of samples collected after

the last adaptation is more than 2000. Although the effect

of combining tours is reduced by the initial DPMM cover-

ing all the modes, by comparing RDMC-PC to RDMC-P

we actually see that combining the tours improves the val-

ues slightly. Also, RDMC mitigates the curse of dimen-

sionality problem that DMC is suffering from.

We also tested how the mode search on the fly (explained

in the end of the Section 3) affects the convergence of the

Markov chain. For this we tested RDMC-PC(1), RDMC-

PC(2), RDMC-PC(4), and DEMC(n=100) on 8-component

GMM. In this experiment, only one initial mode search is

performed so that the maximum number of modes covered

by the initial DPMM is equal to the number of parallel

❑ ▲❑❑ ▼❑❑ ❖❑❑ P❑❑ ◗❑❑❑
❑

◗

▲

❙

▼

❚

❖

❯❱❲❳❨❩❬

❭
❪
❫

❴❵❛❜❝❞❜❡▼❢

❴❵❛❜❝❞❜❡▲❢

❴❵❛❜❝❞❜❡◗❢

❵❣❛❜

Figure 5: REM with mode search on the fly

Figure 6: A network of 11 sensors with 3 known locations (red
square) and 8 unknown (black circles). Point clouds show the
marginal distribution of each sensor’s location. The joint distribu-
tion is multi-modal and highly skewed.

chains. For example, RDMC-PC(1) started with DPMM

covering only one mode among eight modes. As shown in

Fig.5, it however discovered all modes as the iteration goes

on. Then, we increased the number of parallel chains up to

4 and the error decreased faster with this. This is because

with the increasing number of parallel chains we can not

only start with a DPMM with more modes, but also new

modes can be discovered faster with multiple mode search.

4.2 Sensor Network Localization

In this section we illustrate the advantage of our adaptive

algorithm in a simulated problem of sensor network lo-

calization. Following the experiment setting in Ihler et al.

(2005), assume N sensors are scattered in a planar region

with two-dimensional locations denoted by {xt}
N
t=1. The

distance between a pair of sensors (xt,xu) is observed

with a probability Po(xt,xu) = exp(−.5‖xt−xu‖
2/R2),

and the observed distance is corrupted by Gaussian noise:

 113

Distributed and Adaptive Darting Monte Carlo through Regenerations

(a)

(b)

Figure 7: Relative error of the estimated posterior mean of sensor
locations. The mean and standard deviation are computed from 10

Markov chains. The bottom figure is a zoom-in view of the top
figure. The first point on each figure indicates the time for the
burn-in period.

dtu = ‖xt − xu‖ + νtu, νtu ∼ N (0, σ2
ν). Given a set of

observations {dtu} and a prior distribution for xt, a uni-

form distribution in this paper, a typical task is to infer the

posterior joint distribution of all the sensor locations. We

choose N = 8, R/L = .3, σν/L = .02 and add three

additional sensors with known locations to avoid the ambi-

guities of translation, rotation, and negation (mirror sym-

metry). The locations of the 8 sensors form a multi-modal

distribution of 16 dimensions, with their marginal distribu-

tion displayed in Figure 6.

We use the same criterion as in the previous section to op-

timize the HMC local sampler and do the mode search for

DMC and RDMC. For the population MCMC algorithm,

DEMC, the population size is selected as 100 to balance

the efficiency and jumping acceptance rate. We set the stan-

dard deviation of the Gaussian noise as 5×10−5 to achieve

an acceptance rate of about 40% for the random walk pro-

posal. 10 Markov chains are simulated for every algorithm.

We compare the errors of estimating the posterior mean of

the sensor locations as a function of time in Figure 7 and

also show the corresponding R statistic in Figure 8.

As there are separated local modes in the posterior distri-

! "!! #!! $!! %!!

&!
!

&!
&

'()*+,-.

/
+0
12
1(
-
1(
3
-

+

+

/456�7

456

4856

956

Figure 8: R statistic of 10 Markov chains as a function of time.

bution (e.g. the two red clusters in Figure 6) pure local

samplers such as HMC cannot visit all modes, resulting in

a large bias. Consistently the R statistic stays at a large

value indicating that multiple HMC chains do not mix.

For the population MCMC method, DEMC, we use 100
particles for each chain to encourage mode jumping, which

in return slows down the algorithm considerably. In order

to make sure the samplers could still move locally when

the jump proposal is rejected, we improve the algorithm by

decomposing the transition kernel of DEMC into two con-

secutive steps, local random walk and jump proposal, each

followed by a Metropolis-Hastings step. However, even

though we do observe the samplers jump from one mode

to another occasionally, the acceptance rate is still very low

(∼ 10−3). The slow convergence leads to large variance in

the estimated mean and a slow decay of the R value.

In contrast with the two methods above, all the darting

based algorithms show fast convergence in both the esti-

mated error and the R statistic. Moreover, the regeneration

algorithm converges faster than the original darting Monte

Carlo algorithm. As the proposal distribution in RDMC

is adapted with more samples, the difference of these two

curves become more significant.

We study the proposal distributions qualitatively in Figure

9. This figure shows a 2-D projection of the jumping re-

gions at the 2 dimensions corresponding to the 5th sen-

sor. Apparently, the mixture of Gaussian model trained by

DPMM is a tighter fit to the underlying distribution. More-

over, DPMM keeps adapted and improved as more sam-

ples are collected. A tighter proposal distribution provides

both higher jumping acceptance rate and higher regenera-

tion rate, which eventually leads to an improved conver-

gence rate of the Markov chain.

The same conclusion can be made by looking at the regen-

eration rate in Figure 10. The regeneration rate measures

 114

Sungjin Ahn, Yutian Chen, Max Welling

Sample

MoG using Laplace

(a) Mixture of Gaussian fitted by Laplace after burn-in

Sample

Initial DPMM

Adapted DPMM

(b) Mixture of Gaussian fitted by DPMM after burn-in (red) and
after 1000 seconds (blue).

Figure 9: Marginal distribution of the 5th sensor (green points)
and the 2-D projection of the one standard deviation ellipses of
the mixture of Gaussian model on the sensor’s location.

the frequency of an independent sample generated from the

Markov chain. A higher rate indicates a faster convergence

rate. We find that the regeneration rate of RDMC increases

as the mixture model keeps adapted to the true distribution.

In practical problems with multiple modes, we are not able

to find all the modes in a burn-in period. Figure 11 shows

the case when we cannot find all the modes. Each chain

runs a single mode search, and none of them could find all

the mode. By communicating and exchanging information

among chains, RDMC-PC is able to find more modes and

thereby reduce the estimation error.

Figure 10: The average and standard deviation of the regenera-
tion rate for DMC and RDMC.

Figure 11: Relative error of the estimated posterior mean of sen-
sor locations. Each chain runs one mode search.

5 Conclusion

In the machine learning community, regeneration has not

made its appearance so far to the best of our knowledge2

Yet, regenerations provide a elegant method to parallelize

and adapt MCMC procedures. We found that it was par-

ticularly powerful in combination with DMC because the

jump regions can now be adapted to the shape of the distri-

bution, causing both more jumps and more regenerations.

A challenge for both DMC and RDMC is the curse of di-

mensionality. Due to the fact that RDMC was able to pro-

vide tighter fits to the shape of the mode this problem was

slightly ameliorated relative to DMC. We find in extended

2One paper is similar in spirit to our procedure, called ”Vari-
ational MCMC” (de Freitas et al., 2001) where a variational ap-
proximation acts as the proposal for an independence sampler.
Regenerations are mentioned as a possible way to adapt and im-
prove this proposal.

 115

Distributed and Adaptive Darting Monte Carlo through Regenerations

experiments that RDMC can run effectively up to 50 di-

mensions, which is an order of magnitude more than the

empirical findings of Gilks et al. (1998); Mykland et al.

(1995); Brockwell and Kadane (2005). Future research will

be directed towards further improving this issue.

A Regenerations from an Independence

Sampler

Below we provide details of two regeneration methods

based on the independence sampler (Mykland et al., 1995).

Define w(·) = π(·)/f(·), where π is the target distribution.

Method 1: When y ∼ f is accepted according to α, the

probability of a regeneration is given by,

Preg =























1 IF w(x) ≥ c, w(y) ≤ c

OR w(x) ≤ c, w(y) ≥ c
1
c
max [w(x), w(y)] IF w(x) < c,w(y) < c

cmax
[

1
w(x) ,

1
w(y)

]

IFw(x) > c,w(y) > c

(6)

where c is an arbitrary constant which should set to maxi-

mize the probability of regeneration. A reasonable choice

is c = Eπ[w] which can be approximated from samples and

adapted after each regeneration.

If we adapt the transition kernel after a regeneration has oc-

curred, then the last sample y obtained from the old kernel

should be discarded, and a new sample from the indepen-

dence sampler Q(y) should be drawn. We can obtain y
by rejection sampling where we repeatedly propose y from

f(y) until it is accepted with probability (Gilks et al., 1998)

Pnew = min

[

1,
w(y)

c

]

(7)

Method 2: Define an “envelope function” g from the pro-

posal f as follows: g(y) = mf(y), with m > 1 a constant

such that close to the modes we have g(y) > π(y). We call

C the set where g(y) ≥ π(y). Since f is a proper density

and g is just equal to f up to a multiplicative constant m,

samples are repeatedly proposed from f until one sample

gets accepted according to,

Paccept = min

[

1,
w(y)

m

]

(8)

This proposal thus samples from a distribution proportional

to q(y) ∝ min[π(y), g(y)] because if g(y) ≥ π(y) then

it samples correctly from π using standard rejection sam-

pling, but if g(y) < π(y) it incorrectly accepts the sample

drawn from g. Next, we need to accept or reject this pro-

posed sample using a standard MH step (Tierney, 1994),

Paccept =















1 IF x ∈ C
m

w(x) IF x /∈ C, y ∈ C

min
[

1, w(y)
w(x)

]

IF x /∈ C, y /∈ C

(9)

If accepted, we then determine if we have regenerated (us-

ing q instead of f in method 1, Eqn. 6 and setting c = 1),

leading to

Preg =

{

1 IF x ∈ C OR y ∈ C

mmax[1
w(x) ,

1
w(y)] otherwise3

(10)

Note that all accepted samples that fall in the region C are

regenerations.

Similar to method 1, after adaptation we should draw a

new sample of y from Q(y). This implies sampling from

q(y) = min [π(y), g(y)] (using the rejection sampling pro-

cedure described above) and then simply accepting that

sample (because Pnew = min
[

π(y)
min[π(y),g(y)] , 1

]

= 1 in this

case)

References

N. Metropolis and S. Ulam. The monte carlo method. Jour-

nal of the American Statistical Association, 44(247):

335–341, 1949.

A.E. Gelfand and A.F.M. Smith. Sampling-based ap-

proaches to calculating marginal densities. J. American

Statistical Association, 85:398–409, 1990.

C. Andrieu, N. de Freitas, A. Doucet, and M.I. Jordan. An

introduction to mcmc for machine learning. Machine

Learning, 50:5–43, 2003.

I. Andricioaiei, J. Straub, and A. Voter. Smart darting mon-

tecarlo. 114(16), 2001.

C. Sminchisescu and M.Welling. Generalized darting

monte carlo. In Eleventh International Conference

on Artificial Intelligence and Statistics (AISTATS2007),

2007. online proceedings.

P. Mykland, L. Tierney, and B. Yu. Regeneration in markov

chain samplers. Journal of the American Statistical As-

sociation, 90(429):233–241, 1995.

W.R. Gilks, G.O. Roberts, and S.K. Sahu. Adaptive markov

chain monte carlo through regeneration. J. Amer. Statist.

Assoc., 93:1045–1054, 1998.

G.R. Warnes. The normal kernel coupler: An adaptive

markov chain monte carlo method for efficiently sam-

pling from multi-modal distributions. Technical re-

port, University of Washington Department of Statistics,

2001. Technical Report no. 395.

3There is a typo in computing rA in Mykland et al. (1995):
“min” should be replaced by “max”.

 116

Sungjin Ahn, Yutian Chen, Max Welling

K. B. Laskey and J. W. Myers. Population markov chain

monte carlo. Machine Learning, 50:175–196, 2003.

Cajo J. F. Ter Braak. A markov chain monte carlo ver-

sion of the genetic algorithm differential evolution: easy

bayesian computing for real parameter spaces. Statisti-

cal Computing, 2006.

A.E. Brockwell and J.B. Kadane. Identification of regen-

eration times in mcmc simulation, with application to

adaptive schemes. Journal of Computational and Graph-

ical Statistics, 14(2):436–458, 2005.

K. Kurihara, M. Welling, and N. Vlassis. Accelerated vari-

ational Dirichlet process mixtures. In Advances of Neu-

ral Information Processing Systems – NIPS, volume 19,

2006.

S.P. Brooks and A. Gelman. General methods for monitor-

ing convergence of iterative simulations. Journal of com-

putational and graphical statistics, 7(4):434–455, 1998.

A.T. Ihler, J.W. Fisher III, R.L. Moses, and A.S. Willsky.

Nonparametric belief propagation for self-localization of

sensor networks. Selected Areas in Communications,

IEEE Journal on, 23(4):809–819, 2005.

Nando de Freitas, Pedro A. d. F. R. Hojen-Sorensen, and

Stuart J. Russell. Variational mcmc. In UAI ’01: Pro-

ceedings of the 17th Conference in Uncertainty in Artifi-

cial Intelligence, pages 120–127, 2001.

L. Tierney. Markov chains for exploring posterior distribu-

tions. Annals of Statistics, 22(4):1701–1728, 1994.

