
Why Steiner-tree type algorithms work for community detection

A Definitions of models and
algorithms we used

A.1 Steiner tree problem

Definition A.1 (Steiner tree). Let G = {V,E} be an
edge-weighted graph. Let W be a subset of nodes in V .
The Steiner tree problem is to find a tree that spans all
the nodes in W and its edge weight sum is minimized.

A.2 Small world

We now review Kleinberg’s small world model (Klein-
berg, 2000). We remark that Kleinberg’s model al-
lows the network to be directed. Here, we shall use a
straightforward way to convert a directed graph into
an undirected one: there is an undirected edge between
u and v if and only if (u, v) or (v, u) is in the directed
grpah. Thus, Kleinberg’s small world model can be
described as follows.

The set of nodes reside in a two-dimensional lat-
tice points {(i, j) : i, j ∈ {1, ...,

√
n}}. The lattice dis-

tance is defined as d((i, j), (k, `)) = |k − i| + |` − j|.
Let r = 2 and q = Θ(log n) be a normalization term.
There are two types of edges in the small world graph:

• local edges: if d(u, v) ≤ 1, then there is an edge
between d(u, v).
• long range edges: if d(u, v) > 1, then with prob-

ability q−1 · d−r(u, v) there is an edge between
u and v, which is independent to the rest of the
edges.

We shall define d , maxv E[degree(v)]. Since q =
Θ(log n), d is also a constant.

A.3 Chung and Lu’s random graph

Next, we describe Chung and Lu’s random graph
model (Chung and Lu, 2002). In this model, we are
given an expected degree sequence w = (w1, ..., wn),
in which wi represents the expected degree for vi. The
probability that there is an edge between vi and vj is
wiwjρ for ρ = 1∑

i wi
, which is independent to other

edges. Furthermore, we shall assume the distribution
of {w1, ..., wn} follows a power law distribution with
exponent parameter between 2 and 3.

B Proof of Theorem 3.1

We shall partition the support of the signals into three
regions: the high interval H = [1, 2 − γ], the median
interval M = (1 − γ, 1), and the low interval L =
[0, 1 − γ]. When a node’s signal is in H, the node is
in S; when a node’s signal is in L, the node is not in
S. Thus, a detector’s only goal is to identify the nodes

from S among those nodes with their signals in M .

On the other hand, observe that conditioned on
a node’s signal is in M , the distribution of the signal
is uniform in (1 − γ, 1). This always holds regardless
whether the node is in S or not. Therefore, no algo-
rithm can do better than random guess in the region
M . It remains to analyze the performance of an algo-
rithm that only makes random guesses. One can see
that with high probability: 1. the number of signals in
M is Θ(γn). 2. the number of nodes in S with signals
in M is Θ(γk). Thus, on average, a node in S will be

picked up with probability Θ
(
γk
γn

)
= Θ(k/n). Since

we can select up to O((α − 1)k) nodes in the interval
M (with high probability), the total number of nodes
from S that will finally be in Ŝ is O(k2/n). Thus,

E [|S − S′|] = (1− o(1))γk −O
(
k2

n

)
= (1− o(1))γk

for sufficiently large n and k.

C Warmup: the algorithm for a line
case.

We now give a solution for the case where the network
forms a line, i.e., E = {{vi, vi+1} : i < n}. While a line
graph is not a realistic model for social or biological
networks, analyzing this simple example helps us to
understand how we may improve the performance of a
detector algorithm by utilizing the information of the
network structure.

Lemma C.1. Let γ be an arbitrary constant. Con-
sider the community detection problem, in which the
underlying graph is a line and k = o(n) is polynomial
in n. There exists an efficient algorithm that returns
a set Ŝ of size k and |S − Ŝ| = o(k) whp. In other
words, for any γ, there exists a (1, γ)-detector.

Proof. Observe that the subgraph induced by S has to
be connected. Hence, there exists a j such that S =
{vj , vj+1, ..., vj+k−1}. Our algorithm works as follows:
enumerate through all possible connected subgraphs of
size k. Output an arbitrary one such that it contains at
least (1−γ)k−(log n)

√
k signals in the high interval H.

Also in what follows, we say a connected subgraph of
size k passes the threshold test if and only if it contains
at least (1−γ)k−(log n)

√
k signals in the high interval.

We need to show the following two events hold
with high probability

• Event 1: The subgraph induced by S passes the
threshold test.

• Event 2: There exists no connected subgraph S′

such that |S′| = k, |S−S′| = Ω(k), and S′ passes
the threshold tests.

Mung Chiang, Henry Lam, Zhenming Liu, Vincent Poor

Event 1 implies that with high probability our algo-
rithm will return at least one subgraph. Event 2 im-
plies that with high probability the node set returned
by our algorithm will be almost the same as S.

We may apply a standard Chernoff bound to
prove that event 1 happens with high probability.
Specifically,

Pr[S fails the threshold test] ≤ exp

(
− log2 n

3

)
≤ 1

n2

(4)
for sufficiently large n.

We next move to analyze the second event. Let ε
be an arbitrarily small constant. We shall first show
the probability that there exists a specific connected
subset S′ such that |S − S′| ≥ εk is small. Then we
shall use a union bound to argue whp no bad S′ will
pass the threshold test.

Let S′ be an arbitrary connected subset of size k
such that |S−S′| ≥ εk. In expectation, the total num-
ber of nodes in S that have signals in H is (1− ε)(1−
γ)k. By using a Chernoff bound again, the probabil-
ity that S′ will have more than (1 − γ)k − (log n)

√
k

nodes in H is ≤ 1
n3 (no effort was made to optimize

this bound). Finally, since there are at most (n−k+1)
connected subgraphs of size k, we may apply a union
bound and get that the probability event 2 happens is
≤ n−k+1

n3 ≤ 1/n2.

To sum up, with probability 1 − 2
n2 , we will find

a set Ŝ of size k such that |S − Ŝ| = o(k).

D Proof of Lemma 4.4

We need to prove two directions: 1. a MinConnect
problem can be reduced to a Steiner tree problem
with uniform edge weights. 2. a Steiner tree prob-
lem with uniform edge weights can be reduced to a
MinConnect problem.

We use the following observation for the analysis
for both directions: in an arbitrary graph with uni-
form edge weights, the cost of any spanning tree for a
connected subset of size k is k − 1. This observation
is true because of the simple fact that a tree of size `
contains `− 1 edges for arbitrary `.

Now both directions are straightforward. Let W
be the set of nodes that need to be included in the
MinConnect problem. To reduce the MinConnect
problem to a Steiner tree problem, we require the
Steiner tree to cover all the nodes in W in the same
graph. Because of the above observation, a Steiner
tree that covers W with minimum number of edges is
also a minimum connected subgraph that covers W .

We can prove the other direction in a similar fash-
ion.

E Proof of Proposition 4.6

We shall show that with probability
(
τ`
n

)`−1
a random

subset R of size ` is connected, where τ is a suitable
constant (the probability is over both the generative
model and the choice of the random subset). Then
we can show that the expected number of subgraphs

of size ` is
(
n
`

) (
τ`
n

)`−1
= nτ `0 for another constant τ0.

We may next apply a Markov inequality to get the
Proposition.

First, we shall imagine the set R is sampled in
a sequential manner, i.e., the first node v1 from R
is sampled uniformly from V . Then the second node
v2 is sampled uniformly from V/{v1}. And in gen-
eral the i-th node vi in R is sampled uniformly from
V/{v1, ..., vi−1}. After ` samplings, we would get a set
R of size ` that is sampled uniformly among all the
nodes. The reason we introduce this scheme is to cou-
ple the sampling of R with the generative model itself,
by using the principle of deferred decision over long
range edges: the existence of a long range edge is not
revealed until we need it to make conclusions on con-
nectivity. In other words, we want to test the connec-
tivity of R sequentially when each member node of R
and its neighbors are revealed to us step-by-step. The
bottom line is that we need not know all the member
nodes of R to conclude on connectivity.

To carry out our scheme, we introduce a coupled
branching process that is represented by a stochastic
tree {T (t)}t≥1. This tree traces the current revealed
nodes in V (R). It is rooted at v1 and grows over time
according to the following procedure. First, let us in-
troduce a labeling notion to help define our growing
process: at each time t, we call any node in V dead if
its long-range neighbors are revealed to us, and active
otherwise. The notion of dead and active can apply to
any nodes in V .

We start from a uniformly sampled node v1 in
V , decide v1 ∈ R, and reveal all its long-range neigh-
bors (in addition to the four local neighbors) via the
generative model. Then T (1) contains only v1 and v1

is labelled dead. To grow from T (t) to T (t + 1), we
implement the following steps:

• Step 1. Pick an arbitrary active node v in V (T (t))
and reveal all its neighbors. The active node is
then labeled as dead.
• Step 2. Decide the set of nodes from R/V (T (t))

that are adjacent to v by using this observa-
tion: the distribution of R/(V (T (t))) is uniform
over V/ (V (T (t)) ∪Dead(t)), where Dead(t) is the

Why Steiner-tree type algorithms work for community detection

union of all neighbors of all the dead nodes at time
t.

• Step 3. Expand T (t) to T (t+ 1) by adding all the
new neighbors of v that are in R.

Note that V (T (t)) ∈ R by construction. More-
over, whenever the tree T (t) stops growing before
|T (t)| reaches `, we conclude that the current sample
of R is not connected.

We next show by induction over ` that Pr[|T (t)| =
k] ≤

(
τ`
n

)`−1
. One potential obstacle in our analysis is

that in the second step of the above procedure, the set
Dead(t)∪V (T (t)) evolves in a complex manner, and it
is not straightforward to find the neighbors of v that
are in R over time. On the other hand, it is not difficult

to show that Pr[|Dead(t)| ≥ n2/3

2] ≤ 2−
n2/3

2 at any mo-
ment (by using a Chernoff bound). In the rest of our

analysis, we shall silently assume that Dead(t) ≥ n2/3

2
does not happen. This assumption will result in an

additive error of order 2−
n2/3

2 for the probability quan-
tities we are interested in, which is an asymptotically
small term. Since our goal is to give an upper bound
on the probability that |T (t)| eventually reaches `,
we can imagine the branching process works as fol-
lows: there is an (imaginary) adversary that decides
how T (t) grows and tries to maximize the probability
that |T (t)| eventually reaches `. The adversary basi-
cally has to follow the above three-step procedure to
grow T (t), but in the second step the adversary needs
to decide which set of nodes that is not allowed to
choose (instead of using Dead(t)∪ V (T (t))) as long as

|Dead(t)| is sufficiently small, i.e., |Dead(t)| ≤ n2/3

2 .
When the adversary maximizes the probability that
|T (t)| eventually reaches `, such quantity is also an
upper bound on the same probability for the original
process.

Thus, our goal is to understand the probability
that |T (t)| hits ` under the adversarial setting. Specif-
ically, we want to prove the following statement.

Let ` ≤ n1/3 and let G be a small world graph of size
n. Let F be an arbitrary set of size n

2 −
`
2 · n

2/3. We
shall refer F as the forbidden set. Let R be a random
subgraph from V/F of size `. Let P (`, n) be the prob-
ability that the coupled branching process T (t) reaches
` nodes eventually. Then

P (`, n) ≤
(
τ`

n

)`−1

. (5)

Roughly speaking, the forbidden set F allows the
adversary to choose the set Dead(t) ∪ V (T (t)) over
time. Also, notice that the set F has to shrink as
` grows. Imposing such a technical assumption will

makes the recursive analysis easier at the cost of weak-
ening bound on k. Also, we shall refer to the branching
process in which the adversary controls the set F as
T ′(t).

The base case where ` = 1, 2 is straightforward.
Let us now move to the induction step for computing
P (` + 1, n) when P (1, n), ..., P (`, n) satisfy (5). Let
v1 be the first node in R. Let us define the random
variables X and Y as follows: X is the total number
of neighbors of v1 and Y is the total number of nodes
from R that are adjacent to v1. Notice that E[X1] ≤
4 + d (4 is the number of direct neighbors and d is
the maximum expected number of long range edges
among all the nodes). By using a Chernoff bound, we
also have Pr[X1 ≥ g] ≤ 2−g, when g is a sufficiently
large constant (Chernoff bound is applicable because
the number of long range edges can be expressed as
the sum of independent variables).

Furthermore, we may also compute Pr[Y = j]
asymptotically. Specifically, we have the following
lemma.

Lemma E.1. Let Y be the variable defined above. For
any i ≤ `, there exists a constant c2 such that

Pr[Y = i] ≤
(
c2`

n

)i
. (6)

Proof of Lemma E.1. Recall that we let X be the
number of nodes that are adjacent to v1. Also, re-
call that Pr[X > g] < 2−g, when g is a sufficiently
large constant. We can also write Pr[X > g] ≤ c4 ·2−g
for a sufficiently large c4.

We have

Pr[Y = i] =
∑

1≤j≤n Pr[Y = i|X = j] Pr[X = j]

≤ c4
∑
i≤j≤n

(ji)(
n0−j
`−i)

(n0
`)

· 2−j ,
(7)

where n0 is n−|F ∪{v1}| is the total number of nodes
that R may choose from. Notice that n0 = Θ(n) .

Let us focus on the terms
(ji)(

n0−j
`−i)

(n0
`)

· 2−j . One

can see that when j ≥ 3i, the terms
(ji)(

n0−j
`−i)

(n0
`)

· 2−j

decrease more sharply than a geometric progression
with ratio 3/4. Thus, the sum of the first 3i terms is
the dominating term. We now give an upper bound on
(ji)(

n0−j
`−i)

(n0
`)

· 2−j for the case j ≤ 3i. Let j = αi, where

Mung Chiang, Henry Lam, Zhenming Liu, Vincent Poor

α ≤ 3, we have(
αi
i

)(
n0−αi
`−i

)(
n0

`

)
≤ c5√

`

αi (n0−αi)n0−αi

(`−i)`−i(n0−`−(α−1)i)n0−`−(α−1)i

n
n0
0

``(n0−`)n0−`)

(c5 is a sufficiently large constant.)

≤ c5 · αi
{(n0 − αi)(n0 − `)}n0−`−(1−α)i

{(n0 − `− (α− 1)i)n0}n0−`−(α−1)i

· {`(n0 − αi)}`−i

{(`− i)n0}`−i
· (n0 − `)(α−1)i

n
(α−1)i
0

`i

ni0
.

We can see that (n0−αi)(n0− `) ≤ (n0− `− (α−
1)i)n, `(n0 − αi) ≤ (`− i)n0, and n0 − ` ≤ n0. Thus,(

αi
i

)(
n0−αi
`−i

)(
n0

`

) ≤
(
c6`

n

)2

.

Together with (7), we finish the proof of Lemma E.1

Next, by the law of total probability, we also have
Pr[|T ′(t)| = ` + 1] equals to

∑
1≤i≤n Pr[|T ′(t)| = ` +

1|Y = i] Pr[Y = i]. We first walk through the analysis
for Pr[|T ′(t)| = `+1|Y=1] and Pr[|T ′(t)| = `+1|Y = 2].
Then we give an asymptotic bound on Pr[|T ′(t)| =
`+ 1|Y = i] for general i.

Let us start with the case Y = 1. Let v2 be the
node in S that is connected with v1. Here, Pr[|T ′(t)| =
`+ 1 | Y = 1] reduces to a case that is covered by the
induction hypothesis, i.e., the tree T ′(t) contains `+1
nodes if and only if the subtree rooted at v2 contains
` nodes. This v2-rooted subtree is another branching
process coupled with ` nodes, which are uniformly cho-
sen from V/({v1} ∪ Γ(v1) ∪ F), where Γ(v1) is the set
of v1’s neigbhors. Thus, by induction hyptothesis, we

have Pr[|T ′(t)| = `+ 1 | Y = 1] ≤ P (`, n) ≤
(
τ`
n

)`−1
.

Next, let us move to the case for Y = 2. Let v2

and v3 be the nodes in S that are connected with v1.
We may first grow the tree T ′(t) from v2, then grow
the tree from v3. At the end, let i be the number of
children of v2 (and v2 itself). The number of children
of v3 (and v3 itself) is thus `− i. One may check that
both subprocesses can be understood by using induc-
tion hypothesis (we also need to check that the size of
the forbidden set does not violate the requirements in
the induction hypothesis; but this is straightforward
because we assumed that the total number of neigh-
bors of R is less than n2/3/2).

Thus, we have

Pr[|T (t)| = `+ 1|Y = 2]

=
∑̀
i=1−1

(
Pr[v2-rooted tree connected,

v3-rooted tree connected | L = i, Y = 2]

Pr[L = i | Y = 2]
)

≤
`−1∑
i=1

P (i, n)P (`− i, n)

(
`− 2

i− 1

)

≤
`−1∑
i=1

(
τi

n

)i−1(
τ(`− i)

n

)`−i−1(
`− 2

i− 1

)
(Induction)

=
τ `−2

n`−2

`−1∑
i=1

ii−1(`− i)`−i−1

(
`− 2

i− 1

)

Let us define aj = jj−1(` − j)`−j−1. Notice that
aj = a`−j . So we have∑

1≤j≤`

aj ≤ 2
∑

1≤j≤`/2

aj .

We may continue to compute the sum of aj ’s:∑
1≤j≤`/2

aj

=
∑

1≤j≤`/2

jj−1(`− j)`−j−1

(
`− 2

j − 1

)

≤
∑

1≤j≤`/2

jj−1``−j−1

(
`− j − 1

`

)`−j−1(
`− 2

j − 1

)

≤ e
∑

1≤j≤`/2

`j−1``−j−1

(
`− j − 1

`

)`−j−1

≤ c3`
`−2

for some constant c3. The second inequality uses the
fact that

jj−1

(
`− 2

j − 1

)
≤ jj−1

(
`− 2

j − 1

)j−1

= jj−1

(
`− 2

j

)j−1(
j

j − 1

)j
≤ e`j−1

Thus, we have

Pr[|T (t)| = `+ 1 | Y = 2] = c3

(
τ`

n

)`−2

. (8)

In general, we may define the `-hitting probability
Pj(`, n) for a “branching forest” that grows from j

Why Steiner-tree type algorithms work for community detection

different roots. When j = 1, it corresponds with the
case for Y = 1, i.e., P1(`, n) = P (`, n). When j = 2,

(8) gives us P2(`, n) ≤ c3
(
τ`
n

)`−2
.

We now compute the general form of Pj(`, n).
Specifically, we shall show by induction that

Pj(`, n) ≤ cj−1
3

(
τ`

n

)`−j
. (9)

The base cases for j = 1, 2 are already analyzed above.
We now move to the induction case. We have the
following recursive relation:

Pj(`, n) ≤
∑

1≤i≤`−j+1

P1(i, n)Pj−1(`− i, n)

(
`− j
i− 1

)
.

Thus, we have

Pj(`, n)

≤
∑

1≤i≤`−j+1

(
τi
n

)i−1 (`−i
n

)`−i−j+1
cj−2
3 τ `−i−j+1

·
(
`−j
i−1

)
=

(
τ
n

)`−j
cj−2
3

(∑
1≤i≤`−j+1 i

i−1(`− i)`−i−j+1
(
`−j
i−1

))
(10)

It remains to analyze the term∑
1≤i≤`−j+1 i

i−1(` − i)`−i−j+1
(
`−j
i−1

)
. Via some

straightforward manipulation, we have∑
1≤i≤`−j+1

ii−1(`− i)`−i−j+1

(
`− j
i− 1

)
≤ c3``−j (11)

for some sufficiently large c3. (11) and (10) together
give us (9). Now we are ready to compute P (`+ 1, n)
(and thus Pr[|T ′(t)| = `+ 1])):

P (`+ 1, n) =
∑

1≤j≤n

P (`+ 1, n | Y = j) Pr[Y = j]

≤
∑

1≤j≤n

(
τ`

n

)`−j
cj−1
3

(
c2`

n

)j
When τ ≥ 4c2c3, we have

∑
1≤j≤n

(
τ`

n

)`−j
cj−1
3

(
c2`

n

)j

≤
∑

1≤j≤n

(
τ`

n

)`
2−i ≤

(
τ`

n

)`
.

This completes the proof of Proposition 4.6.

F Proof of Proposition 4.8

We shall first describe a way to construct S. Then we
will argue that γ portion of the nodes in S is statis-
tically indistinguishable with a large number of nodes
from V/S.

Recall that wi is the average degree for the node
vi. Wlog, we shall let w1 ≤ w2 ≤ ... ≤ wn, where wn =
c0
√
n for some constant c0. Since the degree distribu-

tion is a power law distribution, there exists a constant
c1 such that for all i ≤ c1n, wi = Θ(1). Let us ran-
domly partition the set of nodes {v1, v2, ..., vc1n} into
two subsets of equal size, namely S1 = {vi1 ,, vic1n/2}
and S2 = {vi′1 ,, vi′c1n/2}. Notice that for any vi ∈
S1 ∪ S2, we have Pr[{vi, vn} ∈ E] = wiwnρ ≥ c2√

n
for

some constant c2.

Next, let us construct the set S: we shall first let
vn ∈ S and the rest of the nodes in S will be picked up
from S1. Since with probability at least c2√

n
there is an

edge between a node in S1 and vn, in expectation the
number of nodes that are connected with vn is Ω(

√
n).

Thus, with high probability we are able to find a subset
of size k − 1 that are all connected to vn.

Now we analyze an arbitrary algorithm’s perfor-
mance. By using a Chernoff bound, we can see that
with high probability in S there are (1 − γ ± o(1))k
nodes that have signals in H and (γ±o(1)) nodes that
have signals in M . Let us refer to the subset of nodes
in S whose signals are in M as SM . Recall that when
the algorithm does not know the network structure, it
will not be able to discover most of the nodes in SM .
Here, we shall show that the algorithm will behave in a
similar way even that it knows the network structure.

Let us focus on the nodes in S2. It is strightfor-
ward to see that with high probability the number of
nodes in S2 that are both connected with vn and asso-
ciated with signals in M is at lesat (1− ε)γ

√
n for an

arbitrary constant ε. Let us call the set of these nodes
S′2. The nodes in S′2 are statistically indistinguishable
from the nodes in SM . Furthermore, the connectiv-
ity constraint is met for nodes in both sets. Thus, no
algorithm can do better than randomly guessing. In
other words, if an algorithm outputs a set of size O(k),
then the number of nodes in SM that will be included
is o(γk). This completes the proof of Proposition 4.8.

G Proof of Proposition 5.1

Let ` = |Sopt| be the size of the output. Wlog, we
shall focus on the case ` ≥ (1 + ε)k. The case for
` ≤ (1 + ε)k can be analyzed in a similar manner.
Recall that Φ(x) is the cdf for the Gaussian variable
N(0, 1). Let ν0 = E[− log(1 − Φ(X))], where X ∼
N(0, 1), i.e., the expected score of a node from V/S.
Similarly, let ν1 = E[− log(1 − Φ(X))], where X ∼
N(µ, 1). Furthermore, let η , ν1/ν0. Since µ is a
constant, we have ν0, ν1, and ν1−ν0 are all constants.
Also, η is a function that grows with µ. Our way
of setting the function c(·) is straightforward: we set
c(e) = ω , ν1−ν0

2 for all e.

Mung Chiang, Henry Lam, Zhenming Liu, Vincent Poor

We first show that when S is substituted into (3),
the objective value is at least (1− ε

10)kν1. This can be
seen by using a Chernoff type bound for the indepen-
dent variables − log(1−Φ(X)) with X ∼ N(µ, 0) (See
Theorem I.1 in Appendix I for the statements and the
proofs):

Pr

[∑
v∈S

b(vi) ≤ (1− ε

10
)kν1

]
≤ exp(−Θ(ε2ν1k)).

(12)
Thus, the objective value is at least Es , (1− ε

10)kν1−
ω ·(k−1) with high probability. We next show that for
any specific S′ of size ` such that |S′−S|+|S−S′| ≥ εk,
we have

Pr

[∑
vi∈S′

b(vi)− ω(|S′| − 1) ≥ Es

]
≤ exp(−g(µ)ε2`),

(13)
where g(µ) is a monotonic function in µ. Then, using
the fact that with probability ≥ 1 − ε the number of
connected subgraphs of size ` is ≤ n

ε (τ0)` for some
constant τ0, we can conclude that whp any S′ of size `
such that |S′−S|+ |S−S′| ≥ εk cannot be an optimal
solution.

We now move to prove (13). Our goal thus is to
give a bound on the event

∑
vi∈S′ b(vi)−ω(|S′|−1) ≥

Es. The probability is maximized when S ⊂ S′. Let
us write S′2 = S′ − S. Thus, we shall find a bound for
Pr[
∑
vi∈S b(vi) +

∑
vi∈S′2

b(vi)− ω(`− 1) ≥ Es].

When
∑
vi∈S b(vi)+

∑
vi∈S′2

b(vi) ≥ Es+ω(`−1),

there exists a ∆ ∈ {−n, ..., n} such that∑
vi∈S

b(vi) ≥ kν1 + ∆

and ∑
vi∈S′2

b(vi) ≥ −
εν1k

10
−∆ + (`− k)ω − 1.

Let us write ∆ = δkν1 and ` = hk. When ∆ ≥ 0, we
have

Pr

[∑
vi∈S

b(vi) = kτ1 + ∆

]
≤ exp(−cδ2ηkν0)

and when ∆ ≤ ∆m , η−1
2 (`− k)ν0:

Pr

 ∑
vi∈S′2

b(vi) ≥
−εν1k

10
−∆ + (`− k)ω − 1


≤ exp

(
−
c
(
η−1

2 (`− k)ν0 − ε
10ν1k −∆

)2
`τ0

)

≤ exp

(
−ckν0

h

(
η − 1

2
(h− 1)− εη

10
− δη

)2
)
.

Therefore,

Pr[
∑
vi∈S

b(vi) +
∑
vi∈S′2

b(vi)− ω(`− 1) ≥ Es]

≤
∑
∆≤0

exp

(
−ckν0

h

(
η − 1

2
(h− 1)− εη

10
− δη

)2
)

+
∑

1≤∆≤∆m

exp(−cδ2ηkν0)

· exp

(
−ckν0

h

(
η − 1

2
(h− 1)− εη

10
− δη

)2
)

+
∑

∆>∆m

exp(−cδ2ηkν0).

It is not difficult to see that both the first and third
summations ≤ exp(−Θ(ε2(η − 1)2ν0`/η)). Therefore,
it remains to analyze the second summation in the
above inequality. Specifically, we want to understand
when

exp

(
−cδ2ηkν0 −

ckν0

h

(
η − 1

2
(h− 1)− εη

10
− δη

)2
)

(14)
is maximized. One can see that the exponent is a
quadratic function in δ, which is maximized when

δ =
2(h− 1)(2η

5 −
1
2)

η
h + 1

.

When we plug in the optimal value of δ to (14), we
have

exp
(
−cδ2ηkν0 − ckν0

h

(
η−1

2 (h− 1)− εη
10 − δη

)2)
≤ exp(−Θ(ε2(η − 1)2ν0`/η)).

Thus, (13) indeed holds.

H Proof of Theorem 5.3

Proof. Let φ(x) be the pdf of N(0, 1). First, observe
that for any non-negative functions f and g such that
φ = f + g, we may interpret a sample from N(0, 1) as
a sample from the mixture of two distributions from f
and g by using the following procedure:

• First let F =
∫∞
−∞ f(x)dx and G =

∫∞
−∞ g(x)dx.

• Then with probability F
F+G , we draw a sample

from the ditribution with pdf f(x)
F and with prob-

ability G
F+G we draw a sample from the distribu-

tion with pdf g(x)
G .

Let φµ(x) be the pdf for N(µ, 0) and let τ = φ(µ)
φµ(µ) .

We shall decompose φ(x) into a mixture of τ · φµ(x)

and R(x) , φ(x)−τ ·φµ(x). We consider the following
strictly simpler problem and give a lower bound on α

Why Steiner-tree type algorithms work for community detection

for this problem: we still have the same setting that
nodes from V/S and from S receive samples from dif-
ferent distributions and we are asked to find S. The
only difference here is that when vi ∈ V/S receives a
sample from N(0, 1), we assume the sample is gener-
ated from the mixture of τ · φµ(x) and R(x). Further-
more, when vi is sampled from R(x), we also explicitly
label vi as from R(x). In other words, the algorithm
knows the set of nodes that are sampled from R(x).
Notice that the new problem gives a strict superset of
information and thus is information theoretically eas-
ier than the original problem.

Next, let us move to find a lower bound on α
for the new problem. When a node is labeled as from
R(x), it is clear that the node should not be part of the
output. It remains for us to find S from the rest of the
non-labeled node. But notice that all the rest of the
signals are sampled from N(µ, 0). Thus, we cannot
do better than randomly guessing. Since µ = Θ(1),
we have τ = Θ(1). Thus, the size of the remaining
unlabeled nodes is still Θ(n) (with high probability).
One can see that in order to cover ρ portion of nodes
from S, the size of the final output has to be Θ(ρn).

I Concentration bounds

In this section, we prove the following large deviations
bound.

Theorem I.1. Let Yi ∼ N(0, 1) and Xi ∼ N(µ, 1).
Let Φ(·) be the cdf for N(0, 1). Let µx = E[− log(1 −
Φ(Xi))] and µy = E[− log(1− Φ(Yi))]. We have

Pr
[∣∣∣∑1≤i≤n− log(1− Φ(Xi))− nµx

∣∣∣ ≥ εnµx]
≤ exp(−cε2nµx)

(15)
and

Pr
[∣∣∣∑1≤i≤n− log(1− Φ(Yi))− nµy

∣∣∣ ≥ εnµy]
≤ exp(−cε2nµy)

(16)
for a suitable constant c > 0.

Proof. We shall prove the lower tail of (17), i.e.,

Pr
[∑

1≤i≤n− log(1− Φ(Xi)) ≤ (1− ε)nµx
]

≤ exp(−cε2nµx)
(17)

for some constant c > 0. The other cases can be
analyzed in a similar manner. Consider the moment
generating function (mgf) of − log(1 − Φ(Xi)), where
Xi ∼ N(µ, 1) and Φ(·) is the cdf of N(0, 1). For con-
venience, we also denote Φ̄(·) = 1 − Φ(·) as the tail

distribution of N(0, 1). We use the bound (Williams,
1991)

Φ̄(x) =

∫ ∞
x

1√
2π
e−y

2/2dy ≥ 1√
2π(x+ 1/x)

e−x
2/2

(18)
for x > 0. We shall prove that the mgf of − log(1 −
Φ(Xi)) exists and is finite in a neighborhood of zero.
Namely, consider

φ(θ) := E[e−θ log Φ̄(Xi)]

= E
[

1
(Φ̄(Xi))θ

]
=

∫∞
−∞

1
(Φ̄(x))θ

1√
2π
e−(x−µ)2/2dx

(19)

Using (18), and by considering the region {x ≤ η} and
{x > η} for some η > 0, the quantity (19) is bounded
from above by

max{Φ̄(η)−θ, 1}
∫ η

−∞
e−(x−µ)2/2dx

+

∫ ∞
η

(√
2π

(
x+

1

x

)
ex

2/2

)θ
1√
2π
e−(x−µ)2/2dx

= max{Φ̄(η)−θ, 1}
∫ η

−∞
e−(x−µ)2/2dx+ (2π)(θ−1)/2

∫ ∞
η

(
x+

1

x

)θ
eθx

2/2−(x−µ)2/2dx (20)

Consider the second term in (20). For 0 < θ < 1, it is
bounded by

(2π)(θ−1)/2

∫
x>η

C1x
θeθx

2/2−(x−µ)2/2dx <∞ (21)

for some C1 > 0, and for −1 < θ < 0, it is bounded by

(2π)(θ−1)/2

∫
x>η

C2x
−θeθx

2/2−(x−µ)2/2dx <∞ (22)

for some C2 > 0. Therefore (−1, 1) is contained in the
domain of convergence of φ(θ). This implies that φ(θ)
is infinitely differentiable in (−1, 1). Define ψ(θ) =
log φ(θ) as the logarithmic mgf of − log(1 − Φ(Xi)).
The same convergence and differentiability behavior
then holds for ψ(·) in the same region (−1, 1).

To proceed, we use the Chernoff inequality

Pr

 ∑
1≤i≤n

− log Φ̄(Xi) ≤ (1− ε)nµx

 ≤ eθ(1−ε)nµx+nψ(−θ)

(23)
for 0 ≤ θ < 1. Using the Taylor expansion ψ(−θ) =
−ψ′(0)θ2 + ψ′′(ζ)θ2/2 for some ζ ∈ (−θ, 0), and the
fact that ψ′(0) = µx, (23) becomes

exp
{
θ(1− ε)nµx − nψ′(0)θ2 + nψ′′(ζ) θ

2

2

}
= exp

{
−εθnµx + nψ′′(ζ) θ

2

2

}
≤ exp

{
−εθnµx + n supu∈[−θ,0] ψ

′′(u) θ
2

2

}

Mung Chiang, Henry Lam, Zhenming Liu, Vincent Poor

For ε < N1, we choose θ = c1ε, and the value of 0 <
c1 < N2 will be chosen small enough to get our result.
Note that for ε < N1 and c1 < N2, any choice of
θ = c1ε implies that supu∈[−c1ε,0] ψ

′′(u) ≤M for some
constant M > 0. Hence (24) becomes

exp

{
−c1ε2n

(
µx − sup

u∈[−cε,0]

ψ′′(u)
c1
2

)}
≤ exp

{
−c1ε2n

(
µx −M

c1
2

)}
Choosing c1 small enough will then give µx−M c1

2 > 0,
which concludes the theorem.

J Missing calculations

J.1 Proof of Equation 2

γk0+∆k 1.55k(τ0)`

pε

=
1.55k

pε
γk0+∆kτk+∆k

0

=
1.55k

pε
γk0+∆k(τ0)k+∆k

=
1.55k

pε
(τ0)kγk0(γτ0)∆k

≤ 1.55k

pε
(τ0)k(γλγ)k(γτ0)∆k (Using k0 ≥ λγk)

≤ (2τ0γ
λγ)k(γτ0)∆k

(using 1.55k
pε ≤ 2k for sufficiently large k.)

≤ c−k0

The last inequality holds when γλγ ≤ 1
2c0τ0

for any
constant c0.

