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Abstract

In this paper we introduce deep Gaussian process
(GP) models. Deep GPs are a deep belief net-
work based on Gaussian process mappings. The
data is modeled as the output of a multivariate
GP. The inputs to that Gaussian process are then
governed by another GP. A single layer model is
equivalent to a standard GP or the GP latent vari-
able model (GP-LVM). We perform inference in
the model by approximate variational marginal-
ization. This results in a strict lower bound on the
marginal likelihood of the model which we use
for model selection (number of layers and nodes
per layer). Deep belief networks are typically ap-
plied to relatively large data sets using stochas-
tic gradient descent for optimization. Our fully
Bayesian treatment allows for the application of
deep models even when data is scarce. Model se-
lection by our variational bound shows that a five
layer hierarchy is justified even when modelling
a digit data set containing only 150 examples.

1 Introduction

Probabilistic modelling with neural network architectures
constitute a well studied area of machine learning. The re-
cent advances in the domain of deep learning [Hinton and
Osindero, 2006, Bengio et al., 2012] have brought this kind
of models again in popularity. Empirically, deep models
seem to have structural advantages that can improve the
quality of learning in complicated data sets associated with
abstract information [Bengio, 2009]. Most deep algorithms
require a large amount of data to perform learning, how-
ever, we know that humans are able to perform inductive
reasoning (equivalent to concept generalization) with only
a few examples [Tenenbaum et al., 2006]. This provokes
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the question as to whether deep structures and the learning
of abstract structure can be undertaken in smaller data sets.
For smaller data sets, questions of generalization arise: to
demonstrate such structures are justified it is useful to have
an objective measure of the model’s applicability.

The traditional approach to deep learning is based around
binary latent variables and the restricted Boltzmann ma-
chine (RBM) [Hinton, 2010]. Deep hierarchies are con-
structed by stacking these models and various approxi-
mate inference techniques (such as contrastive divergence)
are used for estimating model parameters. A significant
amount of work has then to be done with annealed impor-
tance sampling if even the likelihood1 of a data set under
the RBM model is to be estimated [Salakhutdinov and Mur-
ray, 2008]. When deeper hierarchies are considered, the es-
timate is only of a lower bound on the data likelihood. Fit-
ting such models to smaller data sets and using Bayesian
approaches to deal with the complexity seems completely
futile when faced with these intractabilities.

The emergence of the Boltzmann machine (BM) at the core
of one of the most interesting approaches to modern ma-
chine learning is very much a case of a the field going back
to the future: BMs rose to prominence in the early 1980s,
but the practical implications associated with their train-
ing led to their neglect until families of algorithms were
developed for the RBM model with its reintroduction as a
product of experts in the late nineties [Hinton, 1999].

The computational intractabilities of Boltzmann machines
led to other families of methods, in particular kernel meth-
ods such as the support vector machine (SVM), to be con-
sidered for the domain of data classification. Almost con-
temporaneously to the SVM, Gaussian process (GP) mod-
els [Rasmussen and Williams, 2006] were introduced as a
fully probabilistic substitute for the multilayer perceptron
(MLP), inspired by the observation [Neal, 1996] that, un-
der certain conditions, a GP is an MLP with infinite units in
the hidden layer. MLPs also relate to deep learning models:
deep learning algorithms have been used to pretrain autoen-
coders for dimensionality reduction [Hinton and Salakhut-

1We use emphasis to clarify we are referring to the model like-
lihood, not the marginal likelihood required in Bayesian model
selection.
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dinov, 2006]. Traditional GP models have been extended
to more expressive variants, for example by considering
sophisticated covariance functions [Durrande et al., 2011,
Gönen and Alpaydin, 2011] or by embedding GPs in more
complex probabilistic structures [Snelson et al., 2004, Wil-
son et al., 2012] able to learn more powerful representa-
tions of the data. However, all GP-based approaches con-
sidered so far do not lead to a principled way of obtaining
truly deep architectures and, to date, the field of deep learn-
ing remains mainly associated with RBM-based models.

The conditional probability of a single hidden unit in an
RBM model, given its parents, is written as

p(y|x) = σ(w>x)y(1− σ(w>x))(1−y),

where here y is the output variable of the RBM, x is
the set of inputs being conditioned on and σ(z) = (1 +
exp(−z))−1. The conditional density of the output de-
pends only on a linear weighted sum of the inputs. The
representational power of a Gaussian process in the same
role is significantly greater than that of an RBM. For the
GP the corresponding likelihood is over a continuous vari-
able, but it is a nonlinear function of the inputs,

p(y|x) = N
(
y|f(x), σ2

)
,

where N
(
·|µ, σ2

)
is a Gaussian density with mean µ and

variance σ2. In this case the likelihood is dependent on a
mapping function, f(·), rather than a set of intermediate
parameters, w. The approach in Gaussian process mod-
elling is to place a prior directly over the classes of func-
tions (which often specifies smooth, stationary nonlinear
functions) and integrate them out. This can be done an-
alytically. In the RBM the model likelihood is estimated
and maximized with respect to the parameters, w. For the
RBM marginalizing w is not analytically tractable. We
note in passing that the two approaches can be mixed if
p(y|x) = σ(f(x))y(1 − σ(f(x))(1−y), which recovers a
GP classification model. Analytic integration is no longer
possible though, and a common approach to approximate
inference is the expectation propagation algorithm [see e.g.
Rasmussen and Williams, 2006]. However, we don’t con-
sider this idea further in this paper.

Inference in deep models requires marginalization of x as
they are typically treated as latent variables2, which in the
case of the RBM are binary variables. The number of the
terms in the sum scales exponentially with the input dimen-
sion rendering it intractable for anything but the smallest
models. In practice, sampling and, in particular, the con-
trastive divergence algorithm, are used for training. Simi-
larly, marginalizing x in the GP is analytically intractable,
even for simple prior densities like the Gaussian. In the
GP-LVM [Lawrence, 2005] this problem is solved through

2They can also be treated as observed, e.g. in the upper most
layer of the hierarchy where we might include the data label.

maximizing with respect to the variables (instead of the pa-
rameters, which are marginalized) and these models have
been combined in stacks to form the hierarchical GP-LVM
[Lawrence and Moore, 2007] which is a maximum a pos-
teriori (MAP) approach for learning deep GP models. For
this MAP approach to work, however, a strong prior is re-
quired on the top level of the hierarchy to ensure the algo-
rithm works and MAP learning prohibits model selection
because no estimate of the marginal likelihood is available.

There are two main contributions in this paper. Firstly, we
exploit recent advances in variational inference [Titsias and
Lawrence, 2010] to marginalize the latent variables in the
hierarchy variationally. Damianou et al. [2011] has already
shown how using these approaches two Gaussian process
models can be stacked. This paper goes further to show
that through variational approximations any number of GP
models can be stacked to give truly deep hierarchies. The
variational approach gives us a rigorous lower bound on the
marginal likelihood of the model, allowing it to be used
for model selection. Our second contribution is to use this
lower bound to demonstrate the applicability of deep mod-
els even when data is scarce. The variational lower bound
gives us an objective measure from which we can select dif-
ferent structures for our deep hierarchy (number of layers,
number of nodes per layer). In a simple digits example we
find that the best lower bound is given by the model with
the deepest hierarchy we applied (5 layers).

The deep GP consists of a cascade of hidden layers of la-
tent variables where each node acts as output for the layer
above and as input for the layer below—with the observed
outputs being placed in the leaves of the hierarchy. Gaus-
sian processes govern the mappings between the layers.

A single layer of the deep GP is effectively a Gaussian
process latent variable model (GP-LVM), just as a single
layer of a regular deep model is typically an RBM. [Tit-
sias and Lawrence, 2010] have shown that latent variables
can be approximately marginalized in the GP-LVM allow-
ing a variational lower bound on the likelihood to be com-
puted. The appropriate size of the latent space can be com-
puted using automatic relevance determination (ARD) pri-
ors [Neal, 1996]. Damianou et al. [2011] extended this
approach by placing a GP prior over the latent space, re-
sulting in a Bayesian dynamical GP-LVM. Here we extend
that approach to allow us to approximately marginalize any
number of hidden layers. We demonstrate how a deep hier-
archy of Gaussian processes can be obtained by marginal-
ising out the latent variables in the structure, obtaining an
approximation to the fully Bayesian training procedure and
a variational approximation to the true posterior of the la-
tent variables given the outputs. The resulting model is very
flexible and should open up a range of applications for deep
structures 3.

3A preliminary version of this paper has been presented in
[Damianou and Lawrence, 2012].
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2 The Model

We first consider standard approaches to modeling with
GPs. We then extend these ideas to deep GPs by consid-
ering Gaussian process priors over the inputs to the GP
model. We can apply this idea recursively to obtain a deep
GP model.

2.1 Standard GP Modelling

In the traditional probabilistic inference framework, we are
given a set of training input-output pairs, stored in matri-
ces X ∈ RN×Q and Y ∈ RN×D respectively, and seek
to estimate the unobserved, latent function f = f(x), re-
sponsible for generating Y given X. In this setting, Gaus-
sian processes (GPs) [Rasmussen and Williams, 2006] can
be employed as nonparametric prior distributions over the
latent function f . More formally, we assume that each dat-
apoint yn is generated from the corresponding f(xn) by
adding independent Gaussian noise, i.e.

yn = f(xn) + εn, ε ∼ N (0, σ2
ε I), (1)

and f is drawn from a Gaussian process, i.e. f(x) ∼
GP (0, k(x, x′)). This (zero-mean) Gaussian process prior
only depends on the covariance function k operating on
the inputs X. As we wish to obtain a flexible model, we
only make very general assumptions about the form of the
generative mapping f and this is reflected in the choice
of the covariance function which defines the properties of
this mapping. For example, an exponentiated quadratic co-
variance function, k (xi,xj) = (σse)

2 exp
(
− (xi−xj)

2

2l2

)
,

forces the latent functions to be infinitely smooth. We
denote any covariance function hyperparameters (such as
(σse, l) of the aforementioned covariance function) by θ.
The collection of latent function instantiations, denoted by
F = {fn}Nn , is normally distributed, allowing us to com-
pute analytically the marginal likelihood 4

p(Y|X) =

∫ N∏
n=1

p(yn|fn)p(fn|xn)dF

= N (Y|0,KNN + σ2
ε I),KNN = k(X,X). (2)

Gaussian processes have also been used with success in un-
supervised learning scenarios, where the input data X are
not directly observed. The Gaussian process latent vari-
able model (GP-LVM) [Lawrence, 2005, 2004] provides
an elegant solution to this problem by treating the unob-
served inputs X as latent variables, while employing a
product of D independent GPs as prior for the latent map-
ping. The assumed generative procedure takes the form:
ynd = fd(xn) + εnd, where ε is again Gaussian with vari-
ance σ2

ε and F = {fd}Dd=1 with fnd = fd(xn). Given a

4All probabilities involving f should also have θ in the con-
ditioning set, but here we omit it for clarity.

finite data set, the Gaussian process priors take the form

p(F|X) =

D∏
d=1

N (fd|0,KNN ) (3)

which is a Gaussian and, thus, allows for general non-linear
mappings to be marginalised out analytically to obtain the
likelihood p(Y|X) =

∏D
d=1N (yd|0,KNN + σ2

ε I), anal-
ogously to equation (2).

2.2 Deep Gaussian Processes

Our deep Gaussian process architecture corresponds to a
graphical model with three kinds of nodes, illustrated in
figure 1(a): the leaf nodes Y ∈ RN×D which are ob-
served, the intermediate latent spaces Xh ∈ RN×Qh , h =
1, ...,H − 1, where H is the number of hidden layers, and
the parent latent node Z = XH ∈ RN×QZ . The parent
node can be unobserved and potentially constrained with a
prior of our choice (e.g. a dynamical prior), or could con-
stitute the given inputs for a supervised learning task. For
simplicity, here we focus on the unsupervised learning sce-
nario. In this deep architecture, all intermediate nodes Xh

act as inputs for the layer below (including the leaves) and
as outputs for the layer above. For simplicity, consider a
structure with only two hidden units, as the one depicted in
figure 1(b). The generative process takes the form:

ynd =f
Y
d (xn) + εYnd, d = 1, ..., D, xn ∈ RQ

xnq =f
X
q (zn) + εXnq, q = 1, ..., Q, zn ∈ RQZ (4)

and the intermediate node is involved in two Gaussian pro-
cesses, fY and fX , playing the role of an input and an out-
put respectively: fY ∼ GP(0, kY (X,X)) and fX ∼
GP(0, kX(Z,Z)). This structure can be naturally extended
vertically (i.e. deeper hierarchies) or horizontally (i.e. seg-
mentation of each layer into different partitions of the out-
put space), as we will see later in the paper. However, it is
already obvious how each layer adds a significant number
of model parameters (Xh) as well as a regularization chal-
lenge, since the size of each latent layer is crucial but has
to be a priori defined. For this reason, unlike Lawrence and
Moore [2007], we seek to variationally marginalise out the
whole latent space. Not only this will allow us to obtain
an automatic Occam’s razor due to the Bayesian training,
but also we will end up with a significantly lower number
of model parameters, since the variational procedure only
adds variational parameters. The first step to this approach
is to define automatic relevance determination (ARD) co-
variance functions for the GPs:

k (xi,xj) = σ2
arde

− 1
2

∑Q
q=1 wq(xi,q−xj ,q)2 . (5)

This covariance function assumes a different weight wq
for each latent dimension and this can be exploited in a
Bayesian training framework in order to “switch off” irrel-
evant dimensions by driving their corresponding weight to



Deep Gaussian Processes

zero, thus helping towards automatically finding the struc-
ture of complex models. However, the nonlinearities intro-
duced by this covariance function make the Bayesian treat-
ment of this model challenging. Nevertheless, following
recent non-standard variational inference methods we can
define analytically an approximate Bayesian training pro-
cedure, as will be explained in the next section.

2.3 Bayesian Training

A Bayesian training procedure requires optimisation of the
model evidence:

log p(Y) = log

∫
X,Z

p(Y|X)p(X|Z)p(Z). (6)

When prior information is available regarding the observed
data (e.g. their dynamical nature is known a priori), the
prior distribution on the parent latent node can be selected
so as to constrain the whole latent space through propaga-
tion of the prior density through the cascade. Here we take
the general case where p(Z) = N (Z|0, I). However, the
integral of equation (6) is intractable due to the nonlinear
way in which X and Z are treated through the GP priors
fY and fX . As a first step, we apply Jensen’s inequality to
find a variational lower bound Fv ≤ log p(Y), with

Fv =
∫
X,Z,FY ,FX

Q log
p(Y,FY ,FX ,X,Z)

Q
, (7)

where we introduced a variational distribution Q, the form
of which will be defined later on. By noticing that the joint
distribution appearing above can be expanded in the form

p(Y,FY ,FX ,X,Z) =

p(Y|FY )p(FY |X)p(X|FX)p(FX |Z)p(Z), (8)

we see that the integral of equation (7) is still intractable be-
cause X and Z still appear nonlinearly in the p(FY |X) and
p(FX |Z) terms respectively. A key result of [Titsias and
Lawrence, 2010] is that expanding the probability space of
the GP prior p(F|X) with extra variables allows for priors
on the latent space to be propagated through the nonlinear
mapping f . More precisely, we augment the probability
space of equation (3) with K auxiliary pseudo-inputs X̃ ∈
RK×Q and Z̃ ∈ RK×QZ that correspond to a collection of
function values UY ∈ RK×D and UX ∈ RK×Q respec-
tively 5. Following this approach, we obtain the augmented
probability space: p(Y,FY ,FX ,X,Z,UY ,UX , X̃, Z̃) =

p(Y|FY )p(FY |UY ,X)p(UY |X̃)

·p(X|FX)p(FX |UX ,Z)p(UX |X̃)p(Z) (9)

The pseudo-inputs X̃ and Z̃ are known as inducing points,
and will be dropped from our expressions from now on, for

5The number of inducing points, K, does not need to be the
same for every GP of the overall deep structure.

clarity. Note that FY and UY are draws from the same
GP so that p(UY ) and p(FY |UY ,X) are also Gaussian
distributions (and similarly for p(UX), p(FX |UX ,Z)).

We are now able to define a variational distribution Q
which, when combined with the new expressions for the
augmented GP priors, results in a tractable variational
bound. Specifically, we have:

Q =p(FY |UY ,X)q(UY )q(X)

·p(FX |UX ,Z)q(UX)q(Z). (10)

We select q(UY ) and q(UX) to be free-form variational
distributions, while q(X) and q(Z) are chosen to be Gaus-
sian, factorised with respect to dimensions:

q(X) =

Q∏
q=1

N (µXq ,S
X
q ), q(Z) =

QZ∏
q=1

N (µZq ,S
Z
q ). (11)

By substituting equation (10) back to (7) while also re-
placing the original joint distribution with its augmented
version in equation (9), we see that the “difficult” terms
p(FY |UY ,X) and p(FX |UX ,Z) cancel out in the frac-
tion, leaving a quantity that can be computed analytically:

Fv =
∫
Q log

p(Y|FY )p(UY )p(X|FX)p(UX)p(Z)

Q′
,

(12)
where Q′ = q(UY )q(X)q(UX)q(Z) and the above inte-
gration is with respect to {X,Z,FY ,FX ,UY ,UX}. More
specifically, we can break the logarithm in equation (12) by
grouping the variables of the fraction in such a way that the
bound can be written as:

Fv = gY + rX +Hq(X) − KL (q(Z) ‖ p(Z)) (13)

where H represents the entropy with respect to a distribu-
tion, KL denotes the Kullback – Leibler divergence and,
using 〈·〉 to denote expectations,

gY = g(Y,FY ,UY ,X)

=
〈
log p(Y|FY ) + log p(UY )

q(UY )

〉
p(FY |UY ,X)q(UY )q(X)

rX = r(X,FX ,UX ,Z)

=
〈
log p(X|FX) + log p(UX)

q(UX)

〉
p(FX |UX ,Z)q(UX)q(X)q(Z)

(14)

Both terms gY and rX involve known Gaussian densities
and are, thus, tractable. The gY term is only associated
with the leaves and, thus, is the same as the bound found
for the Bayesian GP-LVM [Titsias and Lawrence, 2010].
Since it only involves expectations with respect to Gaussian
distributions, the GP output variables are only involved in
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a quantity of the form YYT. Further, as can be seen from
the above equations, the function r(·) is similar to g(·) but
it requires expectations with respect to densities of all of the
variables involved (i.e. with respect to all function inputs).
Therefore, rX will involve X (the outputs of the top layer)
in a term

〈
XXT

〉
q(X)

=
∑Q
q=1

[
µXq

(
µXq
)T

+ SXq

]
.

3 Extending the hierarchy

Although the main calculations were demonstrated in a
simple hierarchy, it is easy to extend the model ver-
tically, i.e. by adding more hidden layers, or horizon-
tally, i.e. by considering conditional independencies of
the latent variables belonging to the same layer. The
first case only requires adding more rX functions to the
variational bound, i.e. instead of a single rX term we
will now have the sum:

∑H−1
h=1 rXh

, where rXh
=

r(Xh,F
Xh ,UXh ,Xh+1), XH = Z .

Now consider the horizontal expansion scenario and as-
sume that we wish to break the single latent space Xh,
of layer h, to Mh conditionally independent subsets. As
long as the variational distribution q(Xh) of equation (11)
is chosen to be factorised in a consistent way, this is fea-
sible by just breaking the original rXh

term of equation
(14) into the sum

∑Mh

m=1 r
(m)
Xh

. This follows just from
the fact that, due to the independence assumption, it holds
that log p(Xh|Xh+1) =

∑Mh

m=1 log p(X
(m)
h |Xh+1). No-

tice that the same principle can also be applied to the leaves
by breaking the gY term of the bound. This scenario arises
when, for example we are presented with multiple different
output spaces which, however, we believe they have some
commonality. For example, when the observed data are
coming from a video and an audio recording of the same
event. Given the above, the variational bound for the most
general version of the model takes the form:

Fv =
MY∑
m=1

g
(m)
Y +

H−1∑
h=1

Mh∑
m=1

r
(m)
Xh

+

H−1∑
h=1

Hq(Xh)

− KL (q(Z) ‖ p(Z)) . (15)

Figure 1(c) shows the association of this objective func-
tion’s terms with each layer of the hierarchy. Recall that
each r

(m)
Xh

and g
(m)
Y term is associated with a different GP

and, thus, is coming with its own set of automatic relevance
determination (ARD) weights (described in equation (5)).

3.1 Deep multiple-output Gaussian processes

The particular way of extending the hierarchies horizon-
tally, as presented above, can be seen as a means of per-
forming unsupervised multiple-output GP learning. This
only requires assigning a different gY term (and, thus, as-
sociated ARD weights) to each vector yd, where d indexes
the output dimensions. After training our model, we hope

that the columns of Y that encode similar information will
be assigned relevance weight vectors that are also similar.
This idea can be extended to all levels of the hierarchy, thus
obtaining a fully factorised deep GP model.

This special case of our model makes the connection be-
tween our model’s structure and neural network architec-
tures more obvious: the ARD parameters play a role similar
to the weights of neural networks, while the latent variables
play the role of neurons which learn hierarchies of features.

...

(a)

(b)

(c)

Figure 1: Different representations of the Deep GP model:
(a) shows the general architecture with a cascade of H hid-
den layers, (b) depicts a simplification of a two hidden layer
hierarchy also demonstrating the corresponding GP map-
pings and (c) illustrates the most general case where the
leaves and all intermediate nodes are allowed to form con-
ditionally independent groups. The terms of the objective
(15) corresponding to each layer are included on the left.

3.2 Parameters and complexity

In all graphical variants shown in figure 1, every arrow rep-
resents a generative procedure with a GP prior, correspond-
ing to a set of parameters {X̃,θ, σε}. Each layer of la-
tent variables corresponds to a variational distribution q(X)
which is associated with a set of variational means and
covariances, as shown in equation (11). The parent node
can have the same form as equation (11) or can be con-
strained with a more informative prior which would couple
the points of q(Z). For example, a dynamical prior would
introduce Q × N2 parameters which can, nevertheless,
be reparametrized using less variables [Damianou et al.,
2011]. However, as is evident from equations (10) and
(12), the inducing points and the parameters of q(X) and
q(Z) are variational rather than model parameters, some-
thing which significantly helps in regularizing the problem.
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Therefore, adding more layers to the hierarchy does not
introduce many more model parameters. Moreover, as in
common sparse methods for Gaussian processes [Titsias,
2009], the complexity of each generative GP mapping is
reduced from the typical O(N3) to O(NM2).

4 Demonstration

In this section we demonstrate the deep GP model in toy
and real-world data sets. For all experiments, the model
is initialised by performing dimensionality reduction in the
observations to obtain the first hidden layer and then re-
peating this process greedily for the next layers. To obtain
the stacked initial spaces we experimented with PCA and
the Bayesian GP-LVM, but the end result did not vary sig-
nificantly. Note that the usual process in deep learning is
to seek a dimensional expansion, particularly in the lower
layers. In deep GP models, such an expansion does occur
between the latent layers because there is an infinite basis
layer associated with the GP between each latent layer.

4.1 Toy Data

We first test our model on toy data, created by sampling
from a three-level stack of GPs. Figure 2 (a) depicts the true
hierarchy: from the top latent layer two intermediate latent
signals are generated. These, in turn, together generate 10-
dimensional observations (not depicted) through sampling
of another GP. These observations are then used to train
the following models: a deep GP, a simple stacked Isomap
[Tenenbaum et al., 2000] and a stacked PCA method, the
results of which are shown in figures 2 (b, c, d) respec-
tively. From these models, only the deep GP marginalises
the latent spaces and, in contrast to the other two, it is not
given any information about the dimensionality of each true
signal in the hierarchy; instead, this is learnt automatically
through ARD. As can be seen in figure 2, the deep GP finds
the correct dimensionality for each hidden layer, but it also
discovers latent signals which are closer to the real ones.
This result is encouraging, as it indicates that the model can
recover the ground truth when samples from it are taken,
and gives confidence in the variational learning procedure.

(a) (b) (c) (d)

Figure 2: Attempts to reconstruct the real data (fig. (a))
with our model (b), stacked Isomap (c) and stacked PCA
(d). Our model can also find the correct dimensionalities
automatically.

We next tested our model on a toy regression problem.
A deep regression problem is similar to the unsupervised

learning problem we have described, but in the uppermost
layer we make observations of some set of inputs. For this
simple example we created a toy data set by stacking two
Gaussian processes as follows: the first Gaussian process
employed a covariance function which was the sum of a
linear and an quadratic exponential kernel and received as
input an equally spaced vector of 120 points. We generated
1-dimensional samples from the first GP and used them as
input for the second GP, which employed a quadratic expo-
nential kernel. Finally, we generated 10-dimensional sam-
ples with the second GP, thus overall simulating a warped
process. The final data set was created by simply ignor-
ing the intermediate layer (the samples from the first GP)
and presenting to the tested methods only the continuous
equally spaced input given to the first GP and the output of
the second GP. To make the data set more challenging, we
randomly selected only 25 datapoints for the training set
and left the rest for the test set.

Figure 3 nicely illustrates the effects of sampling through
two GP models, nonstationarity and long range correlations
across the input space become prevalent. A data set of this
form would be challenging for traditional approaches be-
cause of these long range correlations. Another way of
thinking of data like this is as a nonlinear warping of the
input space to the GP. Because this type of deep GP only
contains one hidden layer, it is identical to the model de-
veloped by [Damianou et al., 2011] (where the input given
at the top layer of their model was a time vector, but their
code is trivially generalized). The additional contribution
in this paper will be to provide a more complex deep hier-
archy, but still learn the underlying representation correctly.
To this end we applied a standard GP (1 layer less than the
actual process that generated the data) and a deep GP with
two hidden layers (1 layer more than the actual generating
process). We repeated our experiment 10 times, each time
obtaining different samples from the simulated warped pro-
cess and different random training splits. Our results show
that the deep GP predicted better the unseen data, as can
be seen in figure 3(b). The results, therefore, suggest that
our deep model can at the same time be flexible enough to
model difficult data as well as robust, when modelling data
that is less complex than that representable by the hierar-
chy. We assign these characteristics to the Bayesian learn-
ing approach that deals with capacity control automatically.

4.2 Modeling human motion

For our first demonstration on real data we recreate a mo-
tion capture data experiment from Lawrence and Moore
[2007]. They used data from the CMU MOCAP database
representing two subjects walking towards each other and
performing a ‘high-five’. The data contains 78 frames of
motion and each character has 62 dimensions, leading to
124 dimensions in total (i.e. more dimensions than data).
To account for the correlated motions of the subjects we
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Figure 3: (a) shows the toy data created for the regression
experiment. The top plot shows the (hidden) warping func-
tion and bottom plot shows the final (observed) output. (b)
shows the results obtained over each experiment repetition.

applied our method with a two-level hierarchy where the
two observation sets were taken to be conditionally inde-
pendent given their parent latent layer. In the layer closest
to the data we associated each GP-LVM with a different set
of ARD parameters, allowing the layer above to be used
in different ways for each character. In this approach we
are inspired by the shared GP-LVM structure of Damianou
et al. [2012] which is designed to model loosely correlated
data sets within the same model. The end result was that
we obtained three optimised sets of ARD parameters: one
for each modality of the bottom layer (fig. 4(b)), and one
for the top node (fig. 4(c)). Our model discovered a com-
mon subspace in the intermediate layer, since for dimen-
sions 2 and 6 both ARD sets have a non-zero value. This
is expected, as the two subjects perform very similar mo-
tions with opposite directions. The ARD weights are also
a means of automatically selecting the dimensionality of
each layer and subspace. This kind of modelling is impos-
sible for a MAP method like [Lawrence and Moore, 2007]
which requires the exact latent structure to be given a priori.
The full latent space learned by the aforementioned MAP
method is plotted in figure 5 (d,e,f), where fig. (d) corre-
sponds to the top latent space and each of the other two
encodes information for each of the two interacting sub-
jects. Our method is not constrained to two dimensional
spaces, so for comparison we plot two-dimensional projec-
tions of the dominant dimensions of each subspace in figure
5 (a,b,c). The similarity of the latent spaces is obvious. In
contrast to Lawrence and Moore [2007], we did not have to
constrain the latent space with dynamics in order to obtain
results of good quality.

Further, we can sample from these spaces to see what kind
of information they encode. Indeed, we observed that the
top layer generates outputs which correspond to different
variations of the whole sequence, while when sampling
from the first layer we obtain outputs which only differ in
a small subset of the output dimensions, e.g. those corre-

sponding to the subject’s hand.

(a) (b) (c)

Figure 4: Figure (a) shows the deep GP model employed.
Figure (b) shows the ARD weights for fY1 (blue/wider
bins) and fY2 (red/thinner bins) and figure (c) those for fX .

(a) (b) (c) (d) (e) (f)

Figure 5: Left (a,b,c): projections of the latent spaces dis-
covered by our model, Right (d,e,f): the full latent space
learned for the model of Lawrence and Moore [2007].

4.3 Deep learning of digit images

Our final experiment demonstrates the ability of our model
to learn latent features of increasing abstraction and we
demonstrate the usefulness of an analytic bound on the
model evidence as a means of evaluating the quality of the
model fit for different choices of the overall depth of the
hierarchy. Many deep learning approaches are applied to
large digit data sets such as MNIST. Our specific intention
is to explore the utility of deep hierarchies when the digit
data set is small. We subsampled a data set consisting of
50 examples for each of the digits {0, 1, 6} taken from the
USPS handwritten digit database. Each digit is represented
as an image in 16× 16 pixels. We experimented with deep
GP models of depth ranging from 1 (equivalent to Bayesian
GP-LVM) to 5 hidden layers and evaluated each model
by measuring the nearest neighbour error in the latent fea-
tures discovered in each hierarchy. We found that the lower
bound on the model evidence increased with the number of
layers as did the quality of the model in terms of nearest
neighbour errors 6. Indeed, the single-layer model made 5
mistakes even though it automatically decided to use 10 la-
tent dimensions and the quality of the trained models was
increasing with the number of hidden layers. Finally, only
one point had a nearest neighbour of a different class in the
4−dimensional top level’s feature space of a model with
depth 5. A 2D projection of this space is plotted in fig.7.
The ARD weights for this model are depicted in fig. 6.

6As parameters increase linearly in the deep GP with latent
units, we also considered the Bayesian Information Criterion, but
we found that it had no effect on the ranking of model quality.
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Our final goal is to demonstrate that, as we rise in the hier-
archy, features of increasing abstraction are accounted for.
To this end, we generated outputs by sampling from each
hidden layer. The samples are shown in figure 8. There,
it can be seen that the lower levels encode local features
whereas the higher ones encode more abstract information.

1 2 3 4 5 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

layer 1

...1 2 3 4 5 6 7 8 9 10 11 12

layer 2

...

1 2 3 4 5 6 7 8 9 10

layer 3

...1 2 3 4 5 6 7 8

layer 4

...

layer 5

...

Figure 6: The ARD weights of a deep GP with 5 hidden
layers as learned for the digits experiment.

Figure 7: The nearest neighbour class separation test on a
deep GP model with depth 5.

5 Discussion and future work

We have introduced a framework for efficient Bayesian
training of hierarchical Gaussian process mappings. Our
approach approximately marginalises out the latent space,
thus allowing for automatic structure discovery in the hi-
erarchy. The method was able to successfully learn a hi-
erarchy of features which describe natural human motion
and the pixels of handwritten digits. Our variational lower
bound selected a deep hierarchical representation for hand-
written digits even though the data in our experiment was
relatively scarce (150 data points). We gave persuasive ev-
idence that deep GP models are powerful enough to en-
code abstract information even for smaller data sets. Fur-
ther exploration could include testing the model on other
inference tasks, such as class conditional density estima-
tion to further validate the ideas. Our method can also be
used to improve existing deep algorithms, something which

Figure 8: The first two rows (top-down) show outputs ob-
tained when sampling from layers 1 and 2 respectively and
encode very local features, e.g. explaining if a “0” has a
closed circle or how big the circle of a “6” is. We found
many more local features when we sampled from different
dimensions. Conversely, when we sampled from the two
dominant dimensions of the parent node (two rows in the
bottom) we got much more varying outputs, i.e. the higher
levels indeed encode much more abstract information.

we plan to further investigate by incorporating ideas from
past approaches. Indeed, previous efforts to combine GPs
with deep structures were successful at unsupervised pre-
training [Erhan et al., 2010] or guiding [Snoek et al., 2012]
of traditional deep models.

Although the experiments presented here considered only
up to 5 layers in the hierarchy, the methodology is directly
applicable to deeper architectures, with which we intend to
experiment in the future. The marginalisation of the latent
space allows for such an expansion with simultaneous reg-
ularisation. The variational lower bound allows us to make
a principled choice between models trained using different
initializations and with different numbers of layers.

The deep hierarchy we have proposed can also be used with
inputs governing the top layer of the hierarchy, leading to
a powerful model for regression based on Gaussian pro-
cesses, but which is not itself a Gaussian process. In the
future, we wish to test this model for applications in multi-
task learning (where intermediate layers could learn repre-
sentations shared across the tasks) and in modelling nonsta-
tionary data or data involving jumps. These are both areas
where a single layer GP struggles.

A remaining challenge is to extend our methodologies to
very large data sets. A very promising approach would be
to apply stochastic variational inference [Hoffman et al.,
2012]. In a recent workshop publication Hensman and
Lawrence [2012] have shown that the standard variational
GP and Bayesian GP-LVM can be made to fit within this
formalism. The next step for deep GPs will be to incorpo-
rate these large scale variational learning algorithms.
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