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Abstract

Probabilistic modeling of temporal phenom-
ena is of central importance in a variety
of fields ranging from neuroscience to
economics to speech recognition. While
the task has received extensive attention in
recent decades, learning temporal models
for multivariate real-valued data that is
non-Gaussian is still a formidable challenge.
Recently, the power of copulas, a framework
for representing complex multi-modal
and heavy-tailed distributions, was fused
with the formalism of Bayesian networks
to allow for flexible modeling of high-
dimensional distributions. In this work
we introduce Dynamic Copula Bayesian
Networks (DCBNs), a generalization aimed
at capturing the distribution of rich temporal
sequences. We apply our model to three
markedly different real-life domains and
demonstrate substantial quantitative and
qualitative advantages.

1 Introduction

Probabilistic modeling of temporal phenomena is of
great interest in diverse fields ranging from computa-
tional biology to economics to speech recognition. A
central challenge in such modeling is the daunting di-
mension of the data. For example, even a simple EEG
signal may include many thousands of time points.
The sequential nature of such phenomena, however,
often allows us to make realistic simplifying assump-
tions. First, a periodic behavior is often observed.
Second, reasonable Markovian assumptions allow us
to construct models over entire sequences via local
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building blocks that are limited to a finite horizon.
Using these assumptions, general purpose tools such as
Markov chains, Hidden Markov models, and Kalman
filters are widely used with great success in a profusion
of temporal applications.

Dynamic Bayesian networks (DBNs) [Dean and
Kanazawa, 1989] are a temporal extension of the
widely used framework of Bayesian networks [Pearl,
1988]. Like all probabilistic graphical models, DBNs
rely on local building blocks that capture the close
range behavior of random variables (both within
each time “slice” and across time). Importantly, the
framework generalizes many of the commonly used
temporal constructs. Yet, despite wide empirical
success, DBNs are susceptible to critical limitations.
Most notably, while DBNs are in principle applicable
to real-valued domains, practical considerations when
tackling such scenarios almost always force us to
use simple parametric building blocks. In fact, the
overwhelming majority of continuous DBNs rely on a
simple Gaussian representation.

Obviously, the Gaussian assumption, while math-
ematically convenient, is often unrealistic. Neural
activity levels, for example, are characterized by noisy
and lengthy “rest” periods and rare extreme events
(spikes), resulting in a heavy-tailed distribution;
Financial daily changes measurements are often
characterized by normally distributed stable periods
intermingled with economic upheavals whose erratic
behavior is far from Gaussian; Sensor measurements
of human activity (e.g. walking, running) often has a
highly peaked behavior due the nature of the activity
performed and/or our physical limitations. Our goal
is to model such complex non-Gaussian phenomena.

To cope with continuous non-Gaussian challenges in
a non-temporal context, Elidan [2010] recently pro-
posed the Copula BN model (CBN) that fuses the
frameworks of the statistical copula and BNs. Briefly,
copulas allows us to model complex real-valued dis-
tributions by separating the choice of the (possibly
nonparametric) univariate marginals and the depen-
dence function that “couples” them into a coherent
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joint distribution. Using the language of probabilistic
graphical models, the CBN model extends the idea
to high-dimension and in practice leads to substantial
quantitative and qualitative gains (see [Elidan, 2010]
for more details).

In this work we extend CBNs to work in the temporal
domain in the same way that DBNs extend non-
temporal BNs, and formulate the Dynamic Copula
Bayesian Network (DCBN) model. Although the
extension is straightforward theoretically, its practical
merits are substantial. In particular, with little
computational effort, the model allows us to capture
complex multivariate temporal phenomena whose
behavior is quite far from that of a multivariate
Gaussian distribution.

We apply our model to the three markedly different
temporal settings discussed above: neural activity lev-
els, EMG physical action measurements, and financial
daily return data. We demonstrate a significant quan-
titative advantage in all cases in terms of the quality of
the multivariate density learned, relative to temporal
and non-temporal Gaussian baselines. In the action
dataset, where a discriminative task may also be of in-
terest, we also show a marked improvement in terms of
predictive ability. Finally, for the neural activity data,
we also provide a qualitative evaluation that enhances
the ability of our model to faithfully capture real-life
complex phenomena.

The rest of the paper is organized as follows: follow-
ing a description of the necessary background mate-
rial in Section 2, in Section 3 we describe the DCBN
temporal model and briefly explain how the model is
automatically learned from data. We demonstrate the
practical merit of the model in Section 4, and end with
concluding remarks in Section 5.

2 Background

In this section we briefly review the framework of cop-
ulas and the recently introduced Copula BN model
[Elidan, 2010]. Let X = {X1, . . . , XN} be a finite set
of scalar real-valued random variables and let FX (x) ≡
P (X1 ≤ x1, . . . , Xn ≤ xN ) be a (cumulative) distribu-
tion over X , with lower case letters denoting assign-
ment to variables. For compactness, we use Fi(xi) ≡
FXi

(xi) = P (Xi ≤ xi, XX/Xi
= ∞), and for density

functions we similarly use fi(xi) ≡ fXi(xi). When
there is no ambiguity we sometimes abuse notation
and use F (xi) ≡ FXi

(xi), and similarly for densities
and for sets of variables.

2.1 Copulas

A copula function [Sklar, 1959] links marginal distri-
butions to form a multivariate one. Formally,

Definition 2.1 Let U1, . . . , UN be real random vari-
ables marginally uniformly distributed on [0, 1]. A cop-
ula function C : [0, 1]N → [0, 1] is a joint distribution

Cθ(u1, . . . , uN ) = P (U1 ≤ u1, . . . , UN ≤ uN ),

where θ are the parameters of the copula function.

Sklar’s seminal theorem states that any joint distribu-
tion FX (x) can be represented as a copula function C
of its univariate marginals

FX (x) = C(F1(x1), . . . , FN (xN )).

When the univariate marginals are continuous, C is
uniquely defined. The constructive converse, which
is of central interest from a modeling perspective, is
also true: any copula function taking any marginal
distributions {Fi(xi)} as its arguments, defines a valid
joint distribution with marginals {Fi(xi)}. Thus, cop-
ulas are “distribution generating” functions that allow
us to separate the choice of the univariate marginals
and that of the dependence structure, encoded in the
copula function C. Importantly, this flexibility often
results in a construction that is beneficial in practice.

Assuming C has Nth order partial derivatives (true
almost everywhere when continuous), the joint den-
sity can be derived from the copula function using the
derivative chain rule

f(x) =
∂NC(F1(x1), . . . , FN (xN ))

∂F1(x1) . . . ∂FN (xN )

∏
i

fi(xi)

≡ cθ(F1(x1), . . . , FN (xN ))
∏
i

fi(xi), (1)

where c(·) is called the copula density.

Example 2.1: The Gaussian copula is undoubtedly
the most commonly used copula family with applica-
tions ranging from mainstream financial risk assess-
ment to climatology applications. Its distribution is
defined as

CΣ({Ui}) = ΦΣ

(
Φ−1(U1), . . . ,Φ−1(UN )

)
, (2)

where Σ is a correlation matrix, Φ is the standard
normal distribution, and ΦΣ is a zero mean normal
distribution with correlation matrix Σ.

Figure 1 exemplifies the flexibility that comes with this
seemingly limited elliptical copula family. Shown are
samples from this copula using two different marginals.
As can be seen, a variety of markedly different and
multi-modal distributions can be constructed. Gener-
ally, and without any added computational difficulty,
we can mix and match any marginals with any copula
function to form a valid joint distribution.
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Figure 1: Samples from the
bivariate Gaussian copula with
correlation θ = 0.25. (left)
with unit variance Gaussian
marginals; (right) with a mix-
ture of Gaussian and Gamma
marginals.

Normal marginals Gaussian Mix and Gamma marginals

2.2 Bayesian networks and Copula Bayesian
Networks

Let G be a directed acyclic graph (DAG) whose
nodes correspond to the set of random variables
X = {X1, . . . , XN}, and let Pai = {Pai1, . . . ,Paiki}
be the parents of Xi in G. A Bayesian network (BN)
[Pearl, 1988] is used to represent a joint density
over X using a qualitative graph structure and
quantitative parameters that define local conditional
densities. The graph G encodes the independence
statements I(G) = {(Xi ⊥ NonDesci | Pai)}, where ⊥
denotes the independence relationship, and NonDesci
are nodes that are not descendants of Xi in G. It
is easy to show that if I(G) hold, then the joint
density decomposes into a product of local conditional
densities fX (x) =

∏
i fi(Xi | Pai). Conversely, any

such product of local conditional densities defines a
valid joint density where I(G) hold.

We now describe the recently introduced CBN model
that fuses the BN and copula formalisms:

Definition 2.2: A Copula Bayesian Network (CBN)
is a triplet C = (G,ΘC ,Θf ) that defines fX (x). G
encodes the independencies (Xi ⊥ NonDesci | Pai),
assumed to hold in fX (x). ΘC is a set of local cop-
ula functions Ci(F (xi), F(pai1), . . . , F(paiki)) that are
associated with the nodes of G that have at least one
parent. In addition, Θf is the set of parameters repre-
senting the marginal densities fi(xi) (and distributions
Fi(xi)). The joint density fX (x) is defined as

fX (x) =

N∏
i=1

Rci
(
F (xi), F(pai1), . . . , F(paiki)

)
fi(xi),

where, if Xi has at least one parent in the graph G,
the term Rci

(
F (xi), F(pai1), . . . , F(paiki)

)
is defined

as

Rci(·) ≡
ci(F (xi), F(pai1), . . . , F(paiki))

∂KCi(1,F(pai1),...,F(paiki
))

∂F (pai1)...∂F (paiki
)

.

When Xi has no parents in G, Rci (·) ≡ 1.

The term Rci
(
F (xi), F(pai1), . . . , F(paiki)

)
fi(xi) is

always a valid conditional density, namely f(xi | pai),
and can be easily computed. In particular, when the
copula density c(·) has an explicit form, so does Rci (·)
since it involves derivatives of a lesser order.

Elidan [2010] showed that a CBN defines a valid joint
density so that, like other graphical models, a CBN
takes advantage of the independence assumptions to
represent fX (x) compactly. Differently, as in copu-
las, when the graph is tree structured, the univariate
marginals of a CBN are exactly fi(xi). For more gen-
eral structures, the marginals can be skewed, though
only slightly so in practice. Empirically, CBNs offers
significant advantages in terms of generalization ability
(see Elidan [2010] for more details).

3 Dynamic Copula Bayesian Network

A dynamic Bayesian network (DBN) [Dean and
Kanazawa, 1989] is a powerful probabilistic model
that generalizes BNs, allowing us to represent and
reason about the dynamics of complex structured
distributions. Briefly, using a standard temporal
Markovian assumption, a joint distribution is defined
via a template Bayesian network that encodes the
structured probability of variables X t at time t given
other variables at time t, as well as those of the
preceding time point t − 1. Like standard BNs, the
representation is quite general in that it relies on a
black-box representation of each variable given its
parents in the model. See Figure 2 for an illustration.

However, when the domain is real-valued, computa-
tional considerations make the use of complex local
representation infeasible. As noted, the overwhelm-
ing majority of continuous dynamic Bayesian networks
rely on the linear Gaussian parameterization. Our
goal is to overcome this limitation by building on the
power of copulas. To do so, we generalize the recently
introduced CBN model that fuses the copula and BN
formalisms, in the same way that DBNs generalize BNs
to capture temporal dynamics.
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3.1 The DCBN Model

Let X be a set of template random variables and let
X (0:T ) = [X (0), X(1) . . . ,X (T )] be a replication of this
set for the different times 0, . . . , T . Like a DBN, a
DCBN is used to represent a joint distribution over
X (0:T ). Differently than a DBN, the representation
relies on a copula-based building block. Formally,

Definition 3.1 A Dynamic Copula Bayesian Net-
work (DCBN) is a 5-tuple DC = (G0,ΘC0 ,G→,ΘC→ ,Θf ):

• G0 is a DAG that encodes independencies over
X (0) (as described in Section 2.2)

• ΘC0
are local copula densities ci(F (xi), {F (paik})

defined over the random variables Xi ∈ X (0) and
their parents in G0.

• G→ is a DAG defined over a two-replication set of
random variables X ′ and X ′′. G→ is constrained
so that no (backward) edges from variables in X ′′
to variables in X ′ are allowed.

• ΘC→ are a set of local copula densities defined
over variables Xi ∈ X ′′ only and their parents in
G→, which may be in X ′′ as well as in X ′.

• Θf are the parameters describing the univariate
marginal distributions (and densities) of all the
template random variables X .

Given a temporal sequence x(0:T ), the joint density of
the entire temporal sequence is then defined as

fX (0:T )(x(0:T )) = fX (0)(x(0))

T−1∏
t=0

fX (t:t+1)(x(t+1)|x(t)),

where the initial density is defined as:

fX (0)(x(0)) ≡
∏
i∈X

R(0)
ci (F (xi), {F (Pai

G0)})fi(xi),

and the copula ratio R
(0)
ci is as defined in Section 2.2

with the parameters θC0
and the assignment x(0). The

transition density is defined as

fX (t:t+1)(x(t+1)|x(t)) ≡∏
i∈X Rci(F (x

(t)
i ), {F (Pai

G→)})fi(x(t)
i ),

where Rci is defined as above but with the parameteri-
zation defined by θC→ that is not dependent on t.

Thus, the DCBN model generalizes the CBN model to
the temporal domain in that it allows us to separate
the choice of the univariate marginals and that of the
dependency structure:

(a) Representation of G0 (b) Representation of G→

Figure 2: An illustration of a dynamic structured
probabilistic graphical model (DBN or DCBN)

Lemma 3.1 : Let X be a set of real-valued random
variables. Given any positive univariate marginal den-
sities θf , and any set of local copula functions θC0

and
θC→ , the DCBN model defined above represents a valid
joint density over X (0:T ).

The proof is similar to the proof of Elidan [2010] for
the CBN model. The modeling flexibility that the con-
struction offers allows us to learn powerful structured
temporal models. In particular, as we demonstrate
in Section 4, the explicit control over the univariate
marginals that the framework offers leads to quantita-
tive and qualitative advantages.

3.2 Learning the Copula Parameters

As is standard for probabilistic graphical models, the
decomposable form of the joint density defined by the
DCBN model facilitates relatively efficient structure
learning and estimation using standard machinery.

Given a complete training data set D of M sequences
of length Tm each, the log-likelihood of the DCBN
model DC can be written as

`(D : DC) =

M∑
m=1

log
(
fX (0:Tm)

m
(x(0:Tm)[m])

)
(3)

where x(0:Tm)[m] is used to denote the assignments
to the variables in the mth sequence. As in the case
of DBNs, Eq. (3) can (after some rearrangement of
terms), be written as a decomposable sum of the fam-
ilies (variables and their parents) in G0 and G→.

The only complication, from an estimation perspec-
tive, is that univariate marginals {Fi(xi)} are shared
across all terms, hindering our ability to perform de-
composable estimation. To overcome this difficulty, we
adopt the common solution in the copula community
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Figure 3: The (typical) cumulative distribution of one
of the EMG sensor measurements. The solid red lines
shows the best Gaussian fit.

(with appealing theoretical and practical properties)
of estimating the marginals first [Joe and Xu, 1996].
Given the marginals, the parameters of each local cop-
ula can be estimated independently of the others, using
a closed form where possible (e.g., for the Gaussian
copula) or, for example, a conjugate gradient proce-
dure. In both cases, estimation is carried out by con-
catenating statistics across all time slices. See Koller
and Friedman [2009] for details on how this is carried
out in the context of standard DBNs.

3.3 Structure Learning

Very briefly, to learn the structure of both G0 and
G→, we use a standard greedy search that applies local
structure modifications (e.g., add/delete/reverse edge)
based on a model selection score. In this work we use
the Bayesian Information Criterion (BIC) of Schwarz
[1978] that, like other scores, balances the likelihood
and the complexity of the model:

score(G : D) = `(D : θ̂,G)− 0.5 log(K)|ΘG |, (4)

where θ̂ are the maximum-likelihood parameters, K is
the number of samples and |ΘG | is the number of free
parameters associated with the graph structure G.

When learning a DCBN (and similarly for a standard
DBNs), the decomposition of the likelihood allows us
to use the BIC score to learn G0 and G→ separately.
When learning G0, K is the number of sequences , and
when learning G→, K is the overall number of tran-
sitions in all sequences. To cope with local maxima
during the search we also use a TABU list and random
restarts [Glover and Laguna, 1993]. See Koller and
Friedman [2009] for details on this standard learning
procedure for temporal models.

3.4 Univariate Marginal Estimation

The central strength of the copula-based representa-
tion is that it allows us to separate the choice of the
univariate marginal distribution and that of the depen-
dency copula functions. Thus, we can use nonparamet-
ric marginal estimation which, in the univariate case, is
typically extremely accurate and robust. Perhaps the
most common choice is to use kernel density estimation
with a Gaussian kernel (see, for example, [Bowman
and Azzalini, 1997]).

Unfortunately, in some cases the Gaussian kernel may
not be sufficiently powerful. For example, the distri-
bution of the EMG activity measurements in EMG
dataset that we use in our experimental evaluation
is quite heavy-tailed as can be seen in Figure 3. A
standard Gaussian (solid red line) is clearly a bad fit
for such a distribution. Obviously, nonparametric ker-
nel estimation with a Gaussian kernel is significantly
more accurate than a naive Gaussian fit. However, it
is still exponentially concentrated around the training
data and, as confirmed in preliminary experiments, has
poor generalization performance.

Instead, since in choosing the marginal distribution we
are not constrained in any way, we use a simpler his-
togram representation that is robust to outliers. Con-
cretely, let {xi}n1 be a given set of training samples
of the random variable Xi and use L = min{xi} and
R = max{xi} to denote the minimum and maximum
values, respectively. We partition the interval [L,R]
into K equal bins of width w = R−L

K . To account for
outliers in the test data, we add a bin at [L−w,L] and
one at [R,R+w], and assign a single pseudo sample to
each. Using Nj to denote the number of samples that
falls in the interval that corresponds to the jth bin,
the density in that interval is then set to (Nj)/(n+2),
and zero elsewhere.

4 Experimental Evaluation

In this section we demonstrate the merit of the DCBN
model for capturing real-valued temporal phenomena
in three markedly different real-life scenarios.

In principle, we can use any family of local copulas in
the model and even mix different copula families with-
out significant computational difficulty. However, for
simplicity, and to emphasize the generic power of the
DCBN model, in all the experiments below we instan-
tiate the model with the simple and commonly used
Gaussian copula defined in Eq. (2). To model the uni-
variate marginal distribution of each variable, we use
the nonparametric histogram described in Section 3.4,
using 50 bins. We compare our DCBN model to two
baselines: a temporal model where a full multivariate
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Gaussian is used to model the conditional probability
of all neurons at time t, given all neurons at time
t − ∆ (tMVG); A standard dynamic Bayesian net-
work (DBN) with a linear Gaussian representation,
so that each variable is modeled as a normal distribu-
tion centered around a linear combination of its par-
ents with a variable dependent variance Xi|XPari ∼
N(β0 + βXPari , σi). The structure of both the DBN
model and our DCBN model was learned using the
same greedy structure search procedure guided by the
Bayesian Information Criterion [Schwarz, 1978] score,
as described in Section 3.3.

We consider the following datasets:

• Neural. Calcium concentration (a proxy for neu-
ral activity) of neurons of a mice auditory cor-
tex loaded with calcium fluoresces indicator. The
dataset includes measurements of 5-17 neurons
in 13 recording sessions each with 24,00-57,000
time points. In each experiment, we corrected a
DC drift in the signal by subtracting from each
sequence a linear term. Specifically, for a sequence
s(t) : t ∈ {1 . . . T}, denote by ŝ the least square
linear approximation of s. The output of our pre-
processing is simply sout(t) = s(t)− ŝ(t). Finally,
due to the density of the signal, modeling neural
activity at time t given time t − 1 is a trivial
problem. Thus, for all models during both train
and test time, we use models where X(t) is con-
ditioned on X(t − ∆). We use ∆ = 1

2 seconds
which is sensible biologically (results were similar
for other values, see supplementary results).

• EMG. The EMG physical action dataset from
the UCI repository. This data consists of EMG
recordings of four subjects while performing ten
normal and ten aggressive activities. An EMG
apparatus with skin-surface electrodes placed on
the subjects’ limbs was used to record ∼ 10, 000
measurements in eight locations. Since different
recordings can be of completely different scales
(e.g., of different subjects), the measurements of
each variable in each recording was centered and
its variance was normalized to 1.

• DOW. Daily changes of the stocks comprising
the Dow Jones 30 index. The data includes 1508
daily adjusted changes aver a period of five years
(2001-2005). To avoid arbitrary imputation, two
stocks not included as part of the index in all of
these days were excluded (KFT,TRV).

For all datasets, when splitting the data into train and
test instances, we maintain temporal coherence: For
the Neural and DOW datasets, the entire sequence of
measurements was split into five consecutive segments

of equal length. In each fold, one segment is held out
for testing while the others are used for training. In the
EMG domain, the natural division is by the subject
carrying out the activity so that in each experiment
we train on the activity of three subjects and test on
that of the fourth held-out subject.

4.1 Quantitative Likelihood Evaluation

We start with a quantitative evaluation of the dif-
ferent models on all three datasets in terms of log-
probability (log-loss) per instance performance on held
out test data. Figure 4 (left) show the performance
of the models on the DOW dataset as a function of
the maximal number of parents allowed for each vari-
able during structure search. As a further point of
reference, we also shows the performance of a non-
temporal multivariate Gaussian model (MVG). The
benefit from temporal modeling, and the consistent
advantage of our copula-based DCBN model over the
DBN model across the entire range is evident. Note
that an advantage of 3 bits, for example, translate into
each test instance being 23 = 8 times more likely, so
that the advantages shown are substantial.

The superiority our DCBN over the tMVG model is
particularly striking when we consider the complexities
of the two models. For N stocks, the tMVG model

requires 2N(2N−1)
2 + 2N parameters. In contrast, the

DCBN model requires at most 2 × N × (K + 1) pa-
rameters, where K is the maximal number of parents
allowed. Interestingly, our DCBN model is superior
to tMVG even when K = 0, and the advantage grows
substantially as more parents are allowed. While this
may sound surprising at first, the explanation is quite
simple. Intuitively, the nonparametric marginals pro-
vide an extremely accurate estimate of the univariate
distribution thus boosting the ability of the model to
capture the overall joint distribution. At the same
time, the parameters of the univariate marginals do
not take place in the joint learning process. This is
particularly appealing since learning can be carried out
both efficiently and robustly.

Figure 4 (left) is typical and is qualitatively similar for
all 13 experiments of the Neural dataset and 18/20
of the EMG dataset experiments (see supplementary
material). To get a broad view of the performance
for these datasets across experiments, Figure 4 (center
and right) compare the performance of our DCBN
model to that of a standard DBN across all experi-
ments and all model complexities (number of maximal
parents allows). To put all experiments on approxi-
mately the same scale, the units of both axes are in
bits/instance improvement over the independence (no
parent) Gaussian model. Impressively, in the over-



     253

Elad Eban, Gideon Rothschild, Adi Mizrahi Israel Nelken, Gal Elidan

0 1 2 3 4 5 6
−50

−48

−46

−44

−42

−40
lo

g
−

lo
s
s
 /
 i
n
s
ta

n
c
e

max mumber of parents

 

 DCBN

tMVG

DBN

MVG

0 2.5 5 7.5 10
0

2.5

5

7.5

10

DBN log−loss / instance gain

D
C

B
N

 l
o
g
−

lo
s
s
 /
 i
n
s
ta

n
c
e
 g

a
in

0 14 28
0

14

28

DBN log−loss / instance gain

D
C

B
N

 l
o

g
−

lo
s
s
 /

 i
n

s
ta

n
c
e

 g
a

in

Figure 4: (left) DOW dataset average test log-loss per instance of the different models over 5 folds (y-axis) as
a function of the maximal number of parents allowed in the model. Compared are our copula-based DCBN
model, a standard linear Gaussian DBN model and a full multivariate Gaussian model (tMVG). Also shown
is a non-temporal MVG model. The structure of both the DBN and DCBN models was learned using the
same greedy procedure and the BIC score. (center) Neural and (right) EMG average log-loss per instance
improvement relative to the full independent Gaussian model. Each point corresponds to a specific experiment
and a specific bound on the number of parents in the network. The colors correspond to different experiments.

whelming majority of cases our model leads to sub-
stantial gains in test set performance. Specifically, our
model is superior in all of the 65 Neural experiments
and 55/60 of EMG experiments.

4.2 Qualitative Neuronal Assessment

As exemplified in Figure 1, the strength of the copula
representation is that it can faithfully capture a com-
plex distribution. Thus, aside from the quantitative
advantage reported above, we would expect a copula-
based model to better capture the underlying qualita-
tive phenomenon. We now demonstrate that this is the
case for the Neural data. Concretely, in contrast to a
standard DBN, we show that our model allows us to
“identify” the biologically meaningful spiking events.

We start by evaluating the likelihood of the models
in the physiologically relevant periods around spiking
events. To do so, we use the procedure described in
Rothschild et al. [2010] to identify spike-evoked tran-
sients. Since our model is defined over all neurons
at each time point, we consider firing of any of the
neurons to be an event of interest. We can then mea-
sure performance (relative to the independent Gaus-
sian model), as a function of the temporal distance
from the event. A typical result is shown Figure 6,
where the advantage of our DCBN model over the
DBN model is evident (similar results for the other
12 neuronal experiments are provided in the supple-
mentary material).

Importantly, our DCBN model “identifies” the salient
regions, although this information was not available at
training time, and offers the greatest advantage in the
vicinity of the event. The explanation is simple: near

an event, the activity of neurons is more correlated and
the advantage over an independent model manifests
more clearly. In contrast, the DBN model is not able
to capture the more complex distribution and, in many
cases, degrades in performance in that region. This
should not come as a surprise given that fact that
the DBN model has Gaussian marginals that cannot
capture heavy-tailed behavior.

Our results also shed light on an ongoing biological de-
bate [Schneidman et al., 2006, Ganmor et al., 2011]. It
was suggested [Schneidman et al., 2006] that pairwise
interactions dominate neuronal network dynamics and
higher-order interactions account for only 10% of the
overall information. We can use our DCBN model to
evaluate the contribution of higher degree interactions
in terms of test likelihood performance. The result is
summarized in Figure 5. As expected, the contribution
of the first parent in the network (corresponding to
pairwise interactions) is the largest and accounts for
approximately 65% of the information gain. At the
same time, the third and forth order interactions alone
contributing close to 30% of the gain. This suggests
that higher-order interactions play an important role
in neuronal activity. We leave further biological inves-
tigation of these findings to future work.

4.3 EMG - Discriminative Assessment

The EMG dataset involves a variety of different activ-
ities, and naturally lends itself to the discriminative
task of activity recognition. Given a test sequence,
we simply predict the activity to be the one that cor-
responds to the model whose posterior probability is
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Figure 5: Log-loss/instance improvement of our
DCBN model as a fraction of the information gain
of a 5-parent model relative to the independence
baseline. The lower bars (a) show the improvement
when allowing one parent for each variable, corre-
sponding to pairwise dependencies. The second layer
(b) correspond to the additional improvement when
allowing up to two parents, and so on. The dotted
line shows the first level average across experiments.

maximized:

α̂ = argmax
α

Pr(Mα|seq) ∝ Pr(seq|Mα),

where Mα is the model learned for the activity α. We
similarly use the temporal linear Gaussian DBN as a
generative baseline. We also compare to a discrim-
inative baseline. Since there are only 4 recordings
for every activity, we can only consider a simple kNN
classifier (K=3), applied to first and second moments
of the variables (we also tried kNN with a Fourier basis
representation of the sequences with worse results).

When attempting to identify one of twenty activities,
the performance of all methods is comparable and
unimpressive and averages around 30% (with a small
advantage to our DCBN model). In this case, a
model with no parents achieves similar performance.
Intuitively, the similarity between some activities
is simply too high for greater differences between
the models to manifest. Indeed, the experimental
setting in which the data was collected was described
as including 10 aggressive and 10 normal activities.
When we consider this coarser-grained binary
classification problem, the differences between the
models are more evident: while the nearest neighbor
and the DBN baseline are able to achieve a solid 85%
classification accuracy, our DCBN model offers an
impressive 5% improvement in predictive accuracy.
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Figure 6: Average test set improvement in log-
loss/instance relative to the independent Gaussian
model (y-axis) as a function of the distance from a
spike event (x-axis) for the Neural dataset. Shown
is the improvement of the DCBN and DBN models
with up to 4 parents per variable

5 Conclusions and Future Work

In this work we introduced Dynamic Copula Bayesian
Networks (DCBN), a model aimed at coping
with the challenge of modeling the joint temporal
behavior of multiple real-valued variables. Using the
statistical framework of copulas, our model allows
us to separately choose the univariate marginal
representation and the joint dependence function,
thus generalizing the recently introduced copula BN
model. Importantly, our model offers great flexibility
in accurately capturing real-valued non-Gaussian
temporal phenomena.

We applied our generic construction to three markedly
different real-life domains. In all cases, our generic
model offers consistent and significant quantitative ad-
vantages, even when using only straightforward uni-
variate marginal histograms and the simple Gaussian
copula. We also demonstrated the merit of the model
in terms of the ability to qualitatively capture physi-
cally meaningful aspects of the domain.

More generally, the DCBN model allows for the mix-
and-match of any univariate marginal representation
and an expressive range of copula families without
any computational difficulty. Obviously, and in
contrast to temporal modeling using standard DBNs,
this amounts to substantial modeling flexibility.
Thus, our model opens the door for numerous novel
applications in a variety of complex domains where,
for computational reasons, only relatively simple
(e.g., Gaussian) representations were explored.
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