
 265

Learning to Top-K Search using Pairwise Comparisons

Brian Eriksson
Technicolor Research

Abstract

Given a collection of N items with some un-
known underlying ranking, we examine how
to use pairwise comparisons to determine the
top ranked items in the set. Resolving the
top items from pairwise comparisons has ap-
plication in diverse fields ranging from rec-
ommender systems to image-based search to
protein structure analysis. In this paper
we introduce techniques to resolve the top
ranked items using significantly fewer than
all the possible pairwise comparisons using
both random and adaptive sampling method-
ologies. Using randomly-chosen comparisons,
a graph-based technique is shown to effi-
ciently resolve the top O (logN) items when
there are no comparison errors. In terms of
adaptively-chosen comparisons, we show how
the top O (logN) items can be found, even in
the presence of corrupted observations, us-
ing a voting methodology that only requires
O
(
N log2 N

)
pairwise comparisons.

1 Introduction

Consider the learning to rank problem, where a set of
N items, X = {1, 2, ..., N}, has unknown underlying
ranking defined by the mapping π : {1, 2, ..., N} →
{1, 2, ..., N}, such that item i is ranked higher than
item j (i.e., i ≺ j) if πi < πj . Instead of resolving
the entire item ranking, our goal is to return the top-
k ranked items, the set {x ∈ {1, 2, ..., N} : πx ≤ k}.
Possible applications range from determining the top
papers submitted to a conference, to the recommender
systems problem of finding the best items to present
to a user based on prior preferences.

A critical problem is to determine a sequence of queries

Appearing in Proceedings of the 16th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2013, Scottsdale, AZ, USA. Volume 31 of JMLR: W&CP
31. Copyright 2013 by the authors.

to efficiently resolve the top ranked items. We focus
on finding the top-k items using pairwise comparisons.
For two items, i, j, a pairwise comparison asks the fol-
lowing question, “Is item i ranked higher than item
j?”, which only returns if πi < πj or if πj < πi. Unfor-
tunately, when considering pairwise comparisons, the
exhaustive set of all O

(
N2
)
comparisons is often pro-

hibitively expensive to obtain. For example, in the
case of comparing protein structures, each pairwise
structure comparison requires significant computation
time [1]. In the recommender systems context, there
are significant limitations in terms of user engagement,
where each user resolves only a small number of pair-
wise queries [2]. In this paper, we focus on estimating
a specified number of top ranked items using signifi-
cantly fewer than all the pairwise comparisons.

We approach the problem of estimating the top-k
items using two distinct methodologies. The first
methodology exploits a constant fraction of the pair-
wise comparisons observed at-random in concert with
a graph-based methodology to find items ranked in
the top O (logN). The second technique uses a two-
stage voting methodology to adaptively sample pair-
wise comparisons to discover the top O (logN) items
using only O

(
N log2 N

)
pairwise comparisons. We

show how this adaptive technique is robust to a signif-
icant number of incorrect pairwise comparison queries
with respect to the underlying ranking.

1.1 Related Work

There is a rich collection of prior literature on learn-
ing to rank a set of items (e.g., [3, 4, 5, 6, 7, 8, 9],
to cite only a few). This paper is motivated by re-
cent work on estimating item ranking using pairwise
comparisons. Examples include the work by Jamieson
and Nowak [10] and Karbasi et. al. [11] who both
focus on resolving ranking when the items lie in a low-
dimensional Euclidean space. Also, the analysis by
Ailon [12], where query complexity bounds are derived
for resolving an ε-approximation of the entire rank-
ing. Finally, recent work by Ammar and Shah [13] has
shown how the top ranked items from pairwise com-
parisons can be resolved using a maximum entropy dis-

 266

Learning to Top-K Search using Pairwise Comparisons

tribution technique. In contrast to prior work, analysis
presented in this paper focuses on deriving worst-case
bounds for finding the top-ranked items exactly with
high probability, while making no assumptions as to
the underlying embedding or distribution of the items.

1.2 Paper Organization

The paper is organized as follows. In Section 2, we
review the notation for the top-k search problem. An
algorithm for at-random observations of pairwise com-
parisons is introduced in Section 3. In Section 4, we
describe a robust methodology for adaptive sampling
of pairwise comparisons. Finally, experimental results
are shown in Section 5 and we state future directions
in Section 6.

2 Top-K Search and Notation

Let X = {1, 2, ..., N} be a collection of N items
with underlying ranking defined by the mapping π :
{1, 2, ..., N} → {1, 2, ..., N}, such that item {x ∈
{1, 2, ..., N} : πx = 1} is the top-ranked item (i.e., the
most preferred), and item {x ∈ {1, 2, ..., N} : πx = N}
is the bottom-ranked item (i.e., the least preferred).
We assume no ties.

To describe subsets of items in the underlying ranking
we use the following terminology,

Definition 1. The item subset {x ∈ {1, 2, ..., N} :
πx ≤ k1} are the top-k1 items.

Definition 2. The item subset {x ∈ {1, 2, ..., N} :
πx > N − k2} are the bottom-k2 items.

Definition 3. The item subset {x ∈ {1, 2, ..., N} :
kA < πx ≤ kB} are the middle-{kA, kB} items.

Our goal is to return the top-k items, for some spec-
ified k > 0. Unfortunately, the given item set X =
{1, 2, ..., N} is unordered. To determine the collection
of top ranked items, we query pairwise comparisons.

Definition 4. We define the pairwise comparison
matrix, C, where,

ci,j =

{
1 πi < πj

0 otherwise
(1)

As stated in the introduction, in many applications
not all O

(
N2
)
pairwise comparisons (i.e., the entire

matrix, C) will be available. To denote this incom-
pleteness, we define the indicator matrix of similarity
observations, Ω, such that Ωi,j = 1 if the pairwise
comparison ci,j has been observed and Ωi,j = 0 if the
pairwise comparison ci,j is not observed (i.e., the pair-
wise comparison is unknown).

In Section 4.1, we consider the case where these com-
parison queries can be returned with incorrect infor-
mation that does not conform to the underlying rank-
ing. We model these errors as i.i.d. with probability
bounded by q ≥ 0, such that,

P (ci,j 6= 1 (πi < πj)) ≤ q (2)

Where the indicator function, 1 (E) = 1 if the event
E occurs, and equals zero otherwise.

3 Top-K Search Using
Randomly-Chosen Comparisons

There are many situations where the ability to adap-
tively query pairwise comparisons is unavailable. In-
stead, only a subset of randomly-chosen comparisons
are communicated, where the algorithm has no control
over which pairwise comparisons are observed. Given
the indicator matrix of similarity observations, Ω, such
that Ωi,j = 1 if the pairwise comparison ci,j has been
observed, we model each comparison as observed with
i.i.d. probability p, such that for all i, j,

P (Ωi,j = 1) = p (3)

Where p > 0.

Prior work in [10] states that when comparisons are
observed at-random then effectively all the pairwise
comparisons will be required to find the entire rank-
ing. In contrast, our goal here is to determine the top-
ranked items. For this at-random sampling regime, we
consider the case where all the pairwise comparisons
conform exactly to the underlying ranking (i.e., the
probability of incorrect comparison, q = 0).

Our approach is to analyze the graph structure pro-
vided by randomly observed pairwise comparisons.
Consider the “sampling comparison graph”, G =
{V, E}, where the set of vertices represent each item,
and the set of edges consist of Ei,j = 1 if Ωi,j = 1 (i.e.,
the pairwise comparison between i, j is observed) and
ci,j = 0 (i.e., j ≺ i). An example of this comparison
graph can be seen in Figure 1.

12345

Figure 1: The complete comparison graph (Ωi,j = 1 for
all i, j) of five items in ranked order 1 ≺ 2 ≺ 3 ≺ 4 ≺ 5.

On this directed acyclic graph, we define the path
length as the number of item nodes traversed between
two connected vertices. We can make the following
statement: If an item i is in the top-k ranked items,

 267

Brian Eriksson

there will never exist a path through the graph G of
length > k originating at vertex i. Therefore, resolving
the top-k items using this graph structure follows the
rule of discarding all items that have paths of length
> k to any other item. This PathRank methodology
is described in Algorithm 1.

Algorithm 1 - PathRank(X, k,CΩ)

Given :

1. Set of unranked items, X = {1, 2, ..., N}.

2. Specified minimum number of top-ranked items
to resolve, k > 1.

3. Random selection of pairwise comparisons, CΩ.
Where Ωi,j = 1 if the pairwise comparison be-
tween items i, j was observed.

Methodology :

1. Create graph structure G = {V, E}. Where the
set of vertices, V = {1, 2, ..., N}, and the set of
edges Ei,j = 1, if Ωi,j = 1 and ci,j = 0.

2. Define the reduced set of items, Y = {}.

3. For each item, i ∈ X,

(a) Using the graph structure, G, perform a
depth-first-search starting at vertex i. If
there does not exist any paths through G
starting at vertex i of length > k, then add
item i to reduced item set Y.

Output :

Return the resolved top items found, Y.

If all the pairwise comparisons are observed, then the
PathRank methodology will only return the top-k
items. If not all the pairwise comparisons are observed
(i.e., p < 1), then due to missing edges in the graph,
items ranked far from the top-k items could poten-
tially have no > k-paths observed. Therefore, in ad-
dition to the top-k items returned by the algorithm,
non-top-k items can also be erroneously returned as
an estimated top-ranked item. An example of this can
be seen in Figure 2-(Center). Although the possibility
of non-top-k items returned exists, even with very few
observed comparisons we are able to discard bottom
ranked items, as demonstrated in Figure 2-(Right).
In Theorem 3.1, we bound the lowest-ranked item re-
turned using PathRank for a specified probability of
pairwise comparison observations, p.

Theorem 3.1. Consider N items with unknown un-
derlying ranking {π1, π2, ..., πN}, and the at-random
observation of pairwise comparisons with i.i.d. proba-

bility p > 0. Then, with probability ≥ (1− α) (where
α > 0), the PathRank methodology from Algorithm 1

only returns items from the top-
(

2k(1−p)
p + 2 log

(
N
α

))
,

for some constant k > 0.

Proof. (Sketch) Consider a collection of X + 1 items
(where X > k). For ease of notation, let us assume
that the items are ordered 1 ≺ 2 ≺ 3 ≺ ...X + 1,
although this is not required. We first determine the
probability that a path of length k+1 is found starting
from the (X + 1)-th ranked item. The probability that
a path goes through a specific choice of k items (not

counting the X + 1 item) is pk (1− p)
X−k

, where k
pairwise comparisons must be observed to determine
the path and X − k pairs must not be observed to
ensure that no prior k path exists through the col-
lection of X items. Given

(
X
k

)
possible choices of k

items out of X, we can state that the probability of
a k-path through X items is

(
X
k

)
pk (1− p)

X−k
. Note

that this does not eliminate the possibility of a path
longer than k, only that the first k path found uses
the specified combination of k items out of X total
items. A path of length > k could feasible start at
item k + 1, k + 2, ..., X + 1, therefore we can state the
total probability of a path of length > k being ob-
served as

∑X
Y=k

(
Y
k

)
pk (1− p)

Y−k
. As a result, the

probability that X items does not result in a path of
length > k is the upper tail probability of a negative
binomial distribution with parameters k and p. There-
fore, bounding the tail probability by α

N (due to the
union bound) and using Chernoff’s bound to solve for
X, proves the result.

4 Top-K Search Using
Adaptively-Chosen Comparisons

An alternative problem is the case where we can adap-
tively choose which elements of the comparison ma-
trix, ci,j , to evaluate. To begin we will assume that all
returned values of this query were accurate (i.e., the
probability of incorrect comparison, q = 0). When this
occurs, the top-k search problem reduces to a sorting
problem, where the comparison query can be consid-
ered an answer to a bisection search question using the
desired item against a set of preordered k + 1 items.
The query complexity of this technique is therefore an
extension of Quicksort bounds (as previously explored
for ranking in [14]) and is stated in Lemma 1.

Lemma 1. Consider N items with unknown under-
lying ranking {π1, π2, ..., πN}. If the probability of
erroneous pairwise comparison, q = 0, then using
Quicksort the top-k items can be found using only at
most N log2 (k + 1) adaptively-chosen pairwise com-
parisons.

 268

Learning to Top-K Search using Pairwise Comparisons

12345

Figure 2: Example of five items in ranked order (where 1 ≺ 2 ≺ 3 ≺ 4 ≺ 5), with the goal finding the top-3 items.
(Left) Example incomplete comparison graph (where only four of the possible ten pairwise comparisons were
observed), (Center) - PathRank error due to incompleteness, where the fourth ranked item has no observed
paths of length > 3 and therefore is returned as a top item. (Right) - The fifth ranked item would be correctly
discarded using PathRank due to path of length > 3 found in the graph.

Now assume that there is a non-zero probability that
a queried pairwise comparison returns incorrect infor-
mation with respect to the underlying ranking of the
items (i.e., q > 0). We focus on the regime where only
a single, potentially erroneous, comparison is available
for each pair, as the ability to query a specific pair
of items multiple times makes the solution obvious.
Using a Quicksort-based methodology, even a single
erroneous comparison has the potential to disrupt our
ability to determine the top-k items, as the corrupted
comparison can disturb the bisection search and result
in erroneous ranking for this item. Due to these limi-
tations, we need a new methodology that is robust to
comparison errors.

4.1 Robust Adaptive Comparisons

To design a technique that is robust to a potentially
large number of pairwise comparison errors, we rely
on selecting random subsets of items (i.e., “voting
items”) and determine if every item is in the top-k
ranked items by taking a majority vote using pair-
wise comparisons with respect to the voting items.
This algorithm uses these votes to determine some
fraction of the bottom ranked items, allowing us to
remove these items from consideration. Specifically,
given N unranked items (with unknown underlying
ranking {π1, π2, ..., πN}) our goal is to return a re-
duced set of items, with the bottom-N8 items (i.e.,

{x ∈ {1, 2, ..., N} : πx > 7N
8 }) removed, while the

top-N8 items (i.e., {x ∈ {1, 2, ..., N} : πx ≤ N
8 }) are

retained. Extending these techniques for removing
larger or smaller fraction of the items would follow
from the analysis presented here.

Our methodology proceeds as follows. First, we ran-
domly select a subset of items as voting items. Given
an item i, we would like to use selected pairwise com-
parisons with the voting items to determine via ma-
jority vote if item i is in the bottom-N8 items (and
therefore should be removed). Unfortunately, to dis-
tinguish between the bottom-N8 and the top-N8 items,
not all possible voting items will be informative. For
example, comparing an item i (where πi < N) with
the lowest ranked item will always result in item i be-

ing returned as the higher ranked item unless there is
a comparison error. As a result, we need a selected
subset of voting items, such that every remaining vot-
ing item is informative with respect to determining
between the bottom and top ranked items.

To find informative voting items, we take a prelimi-
nary set of candidate voting items chosen at-random
from the set {1, 2, ..., N}. Each of the candidate voting
items are compared against the set of all items. Given
these comparisons, we then remove the candidate vot-
ing items at the extremes of the ranking (i.e., the can-
didate voting items found to be very often the top or
bottom ranked with respect to all other items). The
reduced set of voting items, containing the items found
not to be at the extremes of the ranking, are then used
to efficiently determine which items are ranked in the
bottom-N8 . Our two-stage voting methodology is de-
scribed in the adaptiveReduce methodology in Al-
gorithm 2, with performance guarantees specified in
Theorem 4.1.

Theorem 4.1. Consider N items with unknown un-
derlying ranking {π1, π2, ..., πN}, and the ability to
adaptively query pairwise rank comparisons of any two
items. If the probability of incorrect comparison,

q ≤ min

1

2
−

(
N

4 log
(
4N
α

))−2

,

1
3
4N − 1

(
N

8
−
(
N − 1

2
log

(
16N

α

))1/2
)}

and the number of items is large enough with N ≥
max

{
4
α , 64 log

(
4
α

)
+ 2 log 64− 2

}
, then with probabil-

ity ≥ (1− α) (where α > 0) using the adaptiveRe-
duce methodology from Algorithm 2, the bottom-N8
items are removed and the top-N8 items are retained

using at most
(
16
(
1
2 − q

)−2
+ 32

)
N logN adaptively-

chosen pairwise comparisons.

Proof. By combining the results from Proposi-
tions 1, 2, 3, and 4 in the Appendix, we prove the
result of Theorem 4.1

 269

Brian Eriksson

Algorithm 2 - adaptiveReduce(X, q)

Given :

1. Set of N unranked items, X = {1, 2, ..., N}.

2. Probability of erroneous pairwise comparison, q.

Method :

1. Find Xrandom, a subset of nrandom ≥(
16
(
1
2 − q

)−2
+ 32

)
logN randomly chosen

candidate voting items out of the N total items.

2. Find the validation counts for each candidate vot-
ing item, vj =

∑N
i=1 cj,i for all j ∈ Xrandom.

3. Refine the voting item subset, Xvote = {x ∈
Xrandom : N

4 ≤ vx ≤ 3N
4 }.

4. Find the voting counts for each item, ti =∑
x∈Xvote

ci,x for all i = {1, 2, ..., N}.

5. Determine the reduced set of top-ranked items,

Y = {y ∈ {1, 2, ..., N} : ty ≥ |Xvote|
2 }.

Output :

Return the reduced set of items, Y.

The adaptiveReduce algorithm only reduces the set
of N items to the subset of top-

(
≤ 7N

8

)
items. In order

to further reduce the subset of top ranked items, we
repeatedly run this technique on the returned subsets
of top ranked items. Of course, there are limits to size
of the top subset we can resolve, as we need to ob-
tain enough voting items to ensure that the erroneous
pairwise comparisons are defeated. In Theorem 4.2 we
state the total number of adaptively chosen pairwise
comparisons needed to resolve the top O (logN) items.

Theorem 4.2. Consider N items with unknown un-
derlying ranking {π1, π2, ..., πN}, and the ability to
adaptively query pairwise rank comparisons of any two
items. If the probability of incorrect comparison,

q ≤ min

1

2
− 1

N2

(
4 log

(
4N logN

αT log
(
8
7

)))2

,

(
3

4
N + 1

)−1
(
N

8
−
(
N − 1

2
log

(
16N

αT

))1/2
)}

and the total number of items N is large enough, then
using the robustAdaptiveSearch methodology,
with probability ≥ (1− αT) (where αT > 0) the top-

max

{
4 logN

αT log(8
7)
, 64 log

(
4 logN

αT log(8
7)

)
+ 2 log 64− 2

}
items will be found using at most

(
16(1

2−q)
−2

+32
)

αT log(8
7)

N log2 N adaptively-chosen pair-

wise comparisons.

Proof. Given that each iteration of the adaptiveRe-
duce Algorithm removes the bottom-

(
≥ 1

8

)
fraction

of the items from consideration, then from Lemma 2
in the Appendix, we find that at most logN

log 8
7

executions

of the adaptiveReduce Algorithm will be performed
until there are not enough voting items left to defeat
erroneous pairwise comparisons. Combining this with
the results of Theorem 4.1, we prove this theorem in
the appendix.

Algorithm 3 - robustAdaptiveSearch(X, q, αT)

Given :

1. Set of N unranked items, X = {1, 2, ..., N}.

2. Probability of erroneous pairwise comparison, q ≥
0.

3. Probability of methodology failing, αT > 0.

Repeated Pruning Process :

1. While

|X| > max

{
4 logN

αT log
(
8
7

) ,
64 log

(
4 logN

αT log
(
8
7

))+ 2 log 64− 2

}

(a) Update the set of items,
X =adaptiveReduce(X, q).

Output :

Return X, the resolved top ranked items.

5 Experiments

While the derived bounds in Section 4 reveal regimes
where the robustAdaptiveSearch algorithm will
succeed with high probability, the use of conserva-
tive concentration inequalities and union bounds in-
dicate that in practice these methods may work well
even when we cannot prove success (e.g., when 40%
of the observed comparisons are incorrect, q = 0.4).
In Table 1, we show the performance of the ro-
bustAdaptiveSearch algorithm in synthetic exper-
iments across a wide range of item sizes, N , and incor-
rect pairwise comparisons probabilities, q. As seen in
the table where where the methodology is run until a
subset of < 50 items are found, the technique performs

 270

Learning to Top-K Search using Pairwise Comparisons

well with a subset of items in the top-39 ranked items
for q = 0.1 (and the top-155 ranked items for q = 0.4),
across all experiments, even in regimes where no per-
formance guarantees are available.

6 Conclusions

Learning to rank from pairwise comparisons is neces-
sary in problems ranging from recommender systems
to image-based search. In this paper, we presented
novel methodologies for resolving the top-ranked items
from either adaptively or randomly chosen pairwise
comparisons. Using graph-based analysis, a constant-
fraction of the randomly observed comparisons were
used to resolve items from the top O (logN) when the
pairwise comparisons perfectly conform to the under-
lying item ranking. When a fraction of the compar-
isons are erroneous, our results showed that the top
O (logN) items can be recovered with high probabil-
ity using only O

(
N log2 N

)
adaptively chosen compar-

isons. In future work, we look to find the top items
when there are possibly erroneous randomly-observed
pairwise comparisons, and exploring alternative noise
models.

7 Appendix

7.1 Proof of Theorem 4.1

As stated in Section 4, to discriminate between the
top and bottom ranked items requires an intelligently
selected set of voting items which are located in the
middle of the ranking. While we eventually describe a
technique to determine a restricted collection of voting
items, first we consider when this informative collec-
tion of voting items are given to the algorithm.

To begin, let us consider prior knowledge of a selected
set of nvote number of voting items, denoted by the
set Xvote, where every element of this set is in middle-
{N

8 ,
7N
8 } items (i.e., Xvote ⊂ {x ∈ {1, 2, ..., N} : N

8 <

πx ≤ 7N
8 }). Using this selected set of voting items,

we evaluate “voting counts” for each unranked item i,
where for all i = {1, 2, ..., N},

ti =
∑

x∈Xvote

ci,x (4)

Therefore we observe that the voting counts of the
bottom-N8 items behaves like,

tbottom ∼ binomial (nvote, q) (5)

Given that all the selected voting items are ranked
higher than the bottom-N8 items, and therefore the
pairwise comparison (ci,x) will only equal 1 if there is
an error.

Similarly, we observe the voting counts for the top-N8
items,

ttop ∼ binomial (nvote, 1− q) (6)

Where, for these top ranked items, we find the pair-
wise comparisons (ci,x) will only return 0 if there is a
comparison error.

If the number of voting items nvote is large enough
and the error rate q is not too large, then this stipu-
lates a clear gap between these two distributions. By
thresholding on these voting counts by the gap mid-
point (nvote

2) and creating a subset of top-ranked items,
such that X∗ = {x ∈ {1, 2, ..., N} : tx ≥ nvote

2 }, we can
eliminate the bottom-N8 items while ensuring that the

top-N8 items are retained.

Proposition 1. Consider the set X containing N
items with unknown ranking {π1, π2, ..., πN} and the
ability to query pairwise rank comparison with i.i.d
probability of error q < 1

2 . Given nvote number of

voting items in middle-{N
8 ,

7N
8 } (the set Xvote, where

Xvote ⊂ {x ∈ {1, 2, ..., N} : N
8 < πx ≤ 7N

8 }), and
defining voting counts ti =

∑
x∈Xvote

ci,x for item i.

If nvote ≥ 1
2 log

(
16N
α

) (
1
2 − q

)−2
then the set X∗ =

{x ∈ {1, 2, ..., N} : tx ≥ nvote

2 } will contain the top-N8
items of X and omit the bottom-N8 items of X with
probability ≥ 1− α

4 where α > 0.

Proof. To remove the bottom-N8 items, we require that

tx < nvote

2 for all items {x ∈ {1, 2, ..., N} : πx > 7N
8 }.

Using the distribution stated in Equation 5 and both
Hoeffding’s Inequality and a union bound over all pos-
sible items, we find that this is satisfied if q < 1

2 , and

nvote ≥ 1
2 log

(
8N
α

) (
1
2 − q

)−2
.

To ensure that the top-N8 items are preserved, we re-
quire that tx ≥ nvote

2 for all items {x ∈ {1, 2, ..., N} :

πx ≤ N
8 }. Again simplifying using both union and Ho-

effding’s bound, we find that this is satisfied if q < 1
2 ,

and nvote ≥ 1
2 log

(
16N
α

) (
1
2 − q

)−2

Combining both bounds, we find that the set X∗ =
{x : tx ≥ nvote

2 } will contain the top-N8 items of X

and omit the bottom-N8 items of X with probabil-
ity ≥ 1 − α

4 where α > 0 if q < 1
2 , and nvote ≥

1
2 log

(
16N
α

) (
1
2 − q

)−2
. This proves the result.

Unfortunately, a selected set of nvote voting items all
contained in the set middle-{N

8 ,
7N
8 } will not be known

a priori. To obtain this selected subset, we initially
obtain an at-random collection of nrandom initial can-
didate voting items, Xrandom, out of all N possible
items (where the number of candidate voting items
will be larger than the final selection of voting items,

 271

Brian Eriksson

Table 1: Performance of robustAdaptiveSearch algorithm given specified N and q values. Results are for
the top ranked subset found, and averaged across 100 experiments.

Number of Fraction of Total Number of Fraction of Total Lowest Ranked Item
items (N) incorrect comparisons (q) Comparisons Used Comparisons Used Returned (out of N)

1,000 0.10 1.33× 105 0.267 34.67
10,000 0.10 1.83× 106 3.66× 10−2 36.31
100,000 0.10 2.31× 107 4.61× 10−3 38.21
1,000,000 0.10 2.77× 108 5.53× 10−4 36.14
1,000 0.40 1.26× 105 0.253 153.62
10,000 0.40 1.84× 106 3.69× 10−2 117.21
100,000 0.40 2.21× 107 4.42× 10−3 107.85
1,000,000 0.40 2.78× 108 5.56× 10−4 101.26

nrandom > nvote). Of course, the set Xrandom will
contain items from throughout the ranking, not just
items in the specified middle subset of the ranking.
In the following procedure, we describe how to use
adaptively-chosen pairwise comparisons to eliminate
all candidate voting items at the extremes of the rank-
ing.

To reduce this set of candidate voting items to the
desired subset, we will query each of the candidate
voting items (j ∈ Xrandom) and compare that item
with all items in X, calculating the number of times
that a candidate voting item j is higher ranked than
any other item. We denote this “validation count”
metric vj for all candidate voting items j ∈ Xrandom,
such that using the comparison queries (cj,i) specified
in Equation 1,

vj =

N∑
i=1

cj,i (7)

To obtain the values of vj for all j = 1, 2, ..., nrandom

therefore requires nrandomN total pairwise comparison
queries.

From these validation counts, if the count is too high,
then the candidate voting item may potentially be in
the top-N8 items, while if the validation count is too
low then the candidate item may be in the bottom-
N
8 subset. We eliminate these non-informative items
from the collection Xrandom by defining the final vot-
ing item set, Xvote = {x ∈ Xrandom : N

4 ≤ vx ≤ 3N
4 }.

We state guarantees for this final voting item set in
Proposition 2.

Proposition 2. Consider the set X containing N
items with unknown ranking {π1, π2, ..., πN} and the
ability to query pairwise rank comparison. Given the
subset Xrandom, containing nrandom number of ran-
domly chosen candidate voting items from X, we de-
fine the reduced set of voting items, Xvote = {x ∈
Xrandom : N

4 ≤ vx ≤ 3N
4 } (using the validation counts,

v, from Equation 7). Then with probability ≥ 1 − α
4 ,

with α > 0, the subset Xvote will not contain any of the
top-N8 items or the bottom-N8 items if the probability
of pairwise comparison error,

q ≤ 1
3
4N − 1

(
N

8
−
(
N − 1

2
log

(
16N

α

))1/2
)

Proof. Given our noise model in Equation 2 and the
definition of the validation count metric in Equation 7,
it follows that each of these values is distributed as a
mixture of two binomials, such that for the i-th ranked
item, where {x ∈ {1, 2, ..., N} : πx = i},

vx ∼ binomial (i− 1, q) + binomial (N − i, 1− q) (8)

Where the i-th item is declared to be ranked higher
than i − 1 other items only if there is an erroneous
pairwise comparison (with probability q), and the i-th
item is found to be ranked higher thanN−i items if the
pairwise comparison is not erroneous (with probability
1− q).

Taking the union bound over all possible N items, we
can state that the probability that any of the top-N8
items are in the final voting item set using Hoeffding’s
bound, such that for all x ∈ {1, 2, ..., N} where πx ≤
N
8 },

P

(
vx ≤ 3N

4

)
≤ 2 exp

−2
(

N
8 − q − 3Nq

4

)2
N − 1

 ≤ α

8N

Bounding the probability that the bottom-N8 items are
in the final voting set follows from this analysis, and
solving for q returns the result.

Of course, we need enough voting items in Xvote to be
robust to erroneous comparisons, therefore we show
in Proposition 3 that all the candidate voting items
chosen from middle-{3N

8 , 5N
8 } in Xrandom will remain

in Xvote with probability ≥ 1− α
4 , with α > 0.

 272

Learning to Top-K Search using Pairwise Comparisons

Proposition 3. Consider the set X containing N
items with unknown ranking {π1, π2, ..., πN} and the
ability to query pairwise rank comparison with i.i.d
probability of error q < 1

2 . Given the subset Xrandom,
containing nrandom number of randomly chosen candi-
date voting items from X, we define the reduced set of
voting items, Xvote = {x ∈ Xrandom : N

4 ≤ vx ≤ 3N
4 }

(using the validation counts, vi, from Equation 7).
Then with probability ≥ 1 − α

4 , with α > 0, the sub-
set Xvote will contain all items of Xrandom in middle-
{ 3N

8 , 5N
8 } if N ≥ 64 log

(
4
α

)
+ 2 log 64− 2.

Proof. From Equation 8 and Hoeffding’s Inequality
we can state the following, such that for all x ∈
{1, 2, ..., N} where πx ≥ 3N

8 , we find,

P

(
tx ≥ 3N

4

)
≤ exp

(
−2
(
N
8 +

(
1 + N

4

)
q
)2

N − 1

)
≤ α

8N

and for all x ∈ {1, 2, ..., N} where πx ≤ 5N
8 , we find,

P

(
tx ≤ N

4

)
≤ 2 exp

(
−2
(
N
8 +

(
1 + N

4

)
q
)2

N − 1

)
≤ α

8N

Rearranging both terms and using logN ≤ N
64 +

log 64 − 1, we find both inequalities are satisfied if,
N ≥ 64 log

(
16
α

)
+ 2 log 64− 2

Finally, we show that if the total number of candidate
voting items (nrandom) is large enough, then the num-
ber of items chosen in middle-{ 3N

8 , 5N
8 } (i.e., a lower

bound on the size of the reduced voting set, Xvote)
will be greater than or equal to the required number
of selected voting items from Proposition 1.

Proposition 4. Consider the set X containing N
items with unknown ranking {π1, π2, ..., πN}. If

nrandom ≥
(
16
(
1
2 − q

)−2
+ 32

)
logN items are se-

lected at-random from X, then with probability ≥ 1− α
4

(for α > 0) there will be at least 1
2 log

(
4N
α

) (
1
2 − q

)−2

items chosen in middle-{3N
8 , 5N

8 } of X if the to-
tal number of items is large enough, N > 4

α , and
the probability of erroneous comparison, q ≤ 1

2 −(
N

4 log(4N
α)

)−2

.

Proof. To show that sampling without replacement
from N items returns the desired result, we consider
simplifying the bound in terms of sampling with re-
placement. First we rearrange the results of Propo-

sition 1 to find that if q ≤ 1
2 −

(
N

4 log(4N
α)

)−2

, then

the desired number of items in middle-{3N
8 , 5N

8 } in

the underlying ranking is less than N
8 . Next, we then

can lower bound the number of items in Xrandom

in middle-{3N
8 , 5N

8 } using z ∼ binomial
(
nrandom, 1

8

)
.

Therefore, the proposition holds if,

P

(
z <

1

2
log

(
4N

α

)(
1

2
− q

)−2
)

≤ α

4

Using Hoeffding’s Inequality, we find that
1
2 log

(
4N
α

) (
1
2 − q

)−2
items are chosen are in

middle-{3N
8 , 5N

8 } if the probability of erroneous

comparisons, q ≤ 1
2 −

(
N

4 log(4N
α)

)−2

, N ≥ 4
α , and

nrandom ≥
(
16
(
1
2 − q

)−2
+ 32

)
logN .

Combining results from Propositions 1-4, we find that
if the probability of erroneous comparison,

q ≤ min

1

2
−

(
N

4 log
(
4N
α

))−2

,

1
3
4N − 1

(
N

8
−
(
N − 1

2
log

(
16N

α

))1/2
)}

,

and the total number of items N ≥
max

{
4
α , 64 log

(
4
α

)
+ 2 log 64− 2

}
, then using the

adaptiveReduce algorithm, the bottom-N8 items

will be removed and the top-N8 items will be preserved
with probability ≥ 1− α (with α > 0).

From Equation 7 and Proposition 4, we find that at

most
(
16
(
1
2 − q

)−2
+ 32

)
N logN pairwise compar-

isons are needed for the adaptiveReduce algorithm
to succeed1. This proves Theorem 4.1.

7.2 Proof of Theorem 4.2

The robustAdaptiveSearch algorithm recursively
calls the adaptiveReduce subalgorithm until there
are no longer enough items remaining to defeat er-
roneous comparisons. In Lemma 2, we show that
only O (logN) calls to adaptiveReduce will be per-
formed.

Lemma 2. Given the adaptiveReduce methodology
removes ≥ 1

8 -th of the items, then we can recursively

perform this method at most logN
log 8

7

times.

Finally, for the robustAdaptiveSearch methodol-
ogy to succeed with probability ≥ 1− αT for αT > 0,
this requires that each of the O (logN) executions of
the adaptiveReduce technique succeeds. Therefore,

setting α =
αT log 8

7

logN in Theorem 4.1, we prove Theo-
rem 4.2.

1Using bookkeeping, no additional pairwise compar-
isons are required to evaluate the voting count values in
Equation 4.

 273

Brian Eriksson

References

[1] L. Holm, S. Kääriäinen, P. Rosenström, and
A. Schenkel, “Searching protein structure
databases with DaliLite v. 3,” Bioinformatics,
vol. 24, no. 23, pp. 2780–2781, 2008.

[2] J. Bennett and S. Lanning, “The Netflix Prize,”
in Proceedings of KDD Cup and Workshop, vol.
2007, 2007, p. 35.

[3] W. W. Cohen, R. E. Schapire, and Y. Singer,
“Learning to order things,” in Journal of Artifi-
cial Intelligence Research, vol. 10, January 1999,
pp. 243–270.

[4] C. Dwork, R. Kumar, M. Naor, and D. Sivaku-
mar, “Rank Aggregation Methods for the Web,”
in Proceedings of WWW, Hong Kong, May 2001,
pp. 613 – 622.

[5] R. Karp and R. Kleinberg, “Noisy Binary Search
and its Applications,” in ACM-SIAM Symposium
on Discrete Algorithms (SODA), New Orleans,
Louisiana, January 2007, pp. 881 – 890.

[6] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li,
“Learning to Rank: From Pairwise Approach to
Listwise Appraoch,” in Proceedings of Interna-
tional Conference on Machine Learning (ICML),
Corvallis, OR, June 2007.

[7] M.-F. Balcan, N. Bansal, A. Beygelzimer, D. Cop-
persmith, J. Langford, and G. B. Sorkin, “Ro-
bust Reductions from Ranking to Classification,”
in Machine Learning, vol. 72, August 2008, pp.
139 – 153.

[8] M. Braverman and E. Mossel, “Noisy sorting
without resampling,” in ACM-SIAM Symposium
on Discrete Algorithms (SODA), San Francisco,
California, January 2008, pp. 268–276.

[9] J. C. Duchi, L. Mackey, and M. I. Jordan, “The
Asymptotics of Ranking Algorithms,” in arXiv
Preprint:1204.1688, April 2012.

[10] K. Jamieson and R. Nowak, “Active Ranking us-
ing Pairwise Comparisons,” in Neural Informa-
tion Processing Systems (NIPS), Granada, Spain,
December 2011.

[11] A. Karbasi, S. Ioannidis, and L. Massouli,
“Comparison-Based Learning with Rank Nets,”
in International Conference on Machine Learning
(ICML), Edinburgh, Scotland, June 2012.

[12] N. Ailon, “An Active Learning Algorithm for
Ranking from Pairwise Preferences with an Al-
most Optimal Query Complexity,” in Journal of

Machine Learning Research (JMLR), vol. 13, Jan-
uary 2012, pp. 137–164.

[13] A. Ammar and D. Shah, “Efficient Rank Aggre-
gation using Partial Data,” in ACM SIGMET-
RICS Conference, London, England, June 2012,
pp. 355–366.

[14] N. Ailon, M. Charikar, and A. Newman, “Ag-
gregating Inconsistent Information: Ranking and
Clustering,” Journal of the ACM, vol. 55, no. 5,
p. 23, 2008.

