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Technical details

Problem 3 ( Posterior with bounded non-negative
continuous variables) Let s be a target sum, € be a
positive number, and suppose there are k indepen-
dent real-valued random variables Xi,..., Xy, such
that X; ~ p;(z) and the prior probability densities
pi(z) > 0 if and only if z € [0,00). € is coded in fi-
nite bits. p;(+) is represented in parametric form with
finitely many parameters in constant bits. The goal
is to find a sample (z;) from the posterior probabil-
ity density p(Xi,..., Xk | Zle X; = s) such that
Zle X; = s and the un-normalized probability den-
sity

p(Xi=21) p(Xo=m2) - p(Xp =a1) > (1)

If such an (x;) does not exist, failure must be reported.

Theorem 2: Problem 3 is NP-hard.

Proof. Suppose that such a subset A C {ay,...,ar}
does exist. Let X; = x; = a; ifa; € Aand X; = 2; =0
otherwise. Then by definition of p;(z;):
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By the definition of n and €, the above LHS is greater
than e. As a result, the sample (X1 = z1... X = xy)
is a valid solution for Problem .

Conversely, if Problem has a valid solution, we can
show there is a subset A of {ay,...,a;} summing up
to s. To show this, suppose that a sample (X; =
Z1,...,Xp = x) such that Zle z; = s and the un-
normalized probability density [[, p(X; = x;) > €. We
claim |z;| < 5% or |z; — a;| < 5 for each i = 1.. k.
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To see this, note that if |2;| > 5 and |z; — a;| > 5,
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We can select a set A = {a;||z; — a;| < 5}. It then
follows |>°, € Aa — Y, 2 < £ = 1. Therefore
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Lemma 1. A is compact.
Proof of Lem. 1

Proof. Ak is a closed and bounded subset of R***. [

Lemma 2. Let f be a continuous real valued function
defined on compact set X. Then f is bounded on X.

Proof of Lem. 2

Proof. f(X) is a compact subset of R and is hence
closed and bounded. O

Lemma 3. The target joint  distribution
X1y, X, Zle X; = S has continuous probability
density function p on R* with support containing the
standard k — 1 simplex of value S. That is

k
supp(Xy, ... ,anZXi =S5)D A’;fl
i=1
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Proof of Lem. 3

Proof. By Assumption (1) we can write the joint den-
sity as

n k
N(z1,...,25,8) = <Hp(:v2)> I (le = s)
i=1 =1

This expression is continuous on A]gfl when s = S so
we have a continuous density on Algfl

O
Lemma 4. If S — Z;;ll x; > 0 then
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Proof of Lem. 4

Proof. Note that
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Using this equation, we calculate that
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Lemma 5. DYSC(S, k, X;,q;) has nonzero probabil-
ity density function q on R* with support equal to the
standard k — 1 simplex of value S

supp(DYSC(S, k, X;,¢;)) = A%

q 1s continuous in the interior ong_l, int(Ag_l), and
is lower bounded on Agfl by some ¢ > 0.

Proof of Lem. 5
Proof. We prove this result by constructing an explicit

formula for ¢ on R¥. Given 2 € R¥, as before let

j—1
¢(x,S) = min(k — 1, i <1
(z,5) = min( m]axZLr | )

=1

We need the function /(z, S) since Alg. 1 stops random
sampling at j if j =k —1orif >/ z; = S. Using
this function, we can write our formula,
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Ifzé¢ Ag_l, the indicator functions in the above for-
mula guarantee that g(z) = 0. If z € A%™!, then the
above formula simplifies.

N(z1,... )
q(@1,... ;) = 7D(SL‘1 L Tk)
£(z,S)

N@) = [T a(win)
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£(z,S)

D@ = I [ablro<y<s—3 a)

where N and D are respectively the numerator and
denominator. Assumption (3) guarantees that N(x)
and D(z) are positive for z € AE™ and continuous in
any neighborhood where ¢(x,S) is constant. Specifi-
cally note that £(x,S) is continuous in int(A%™) so
N(z) and D(x) are continuous there as well. Before
we prove continuity of ¢ on int(A’f{l), we will need
the following consequence of lemma 4
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Thus the denominator D is lower bounded by a posi-
tive number. Now let z,y € int(A%™"). We can calcu-

(z,S)
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Since % and N are both positive continuous functions
on int(A% 1), we can make the right hand side arbi-
trarily small as |z — y| — 0. It follows that ¢ is con-
tinuous on int(A’f(l). We now show that ¢ is lower
bounded on A’g_l. By Assumption (3), there exist
continuous positive functions f; on [0,00) that lower
bound g; regardless of choice of ;. Then f = Hle fi
defines a positive continuous function on Al;fl. Since
Ag_l is compact, f has a lower bound ¢ > 0 on Ag_l.
It follows that ¢ is lower bounded by c. O



