Dynamic Scaled Sampling for Deterministic Constraints
Supplemental Material

Lei Li
University of California, Berkeley
leili@cs.berkeley.edu

Bharath Ramsundar
Stanford University
rbharath@stanford.edu

Stuart Russell
University of California, Berkeley
russell@cs.berkeley.edu

Technical details

Problem 3 (Posterior with bounded non-negative continuous variables) Let \(s \) be a target sum, \(\epsilon \) a positive number, and suppose there are \(k \) independent real-valued random variables \(X_1, \ldots, X_k \), such that \(X_i \sim p_i(x) \) and the prior probability densities \(p_i(x) > 0 \) if and only if \(x \in [0, \infty) \). \(\epsilon \) is coded in finite bits. \(p_i(\cdot) \) is represented in parametric form with finitely many parameters in constant bits. The goal is to find a sample \((x_i) \) from the posterior probability density \(p(X_1, \ldots, X_k \mid \sum_{i=1}^k X_i = s) \) such that \(\sum_{i=1}^k X_i = s \) and the un-normalized probability density

\[
p(X_1 = x_1) \cdot p(X_2 = x_2) \cdots p(X_k = x_k) > \epsilon \quad (1)
\]

If such an \((x_i)\) does not exist, failure must be reported.

Theorem 2: Problem 3 is NP-hard.

Proof. Suppose that such a subset \(A \subseteq \{a_1, \ldots, a_k\} \) does exist. Let \(X_i = x_i = a_i \) if \(a_i \in A \) and \(X_i = x_i = 0 \) otherwise. Then by definition of \(p_i(x_i) \):

\[
\prod_{i=1}^k p(X_i = x_i) = \frac{1}{\prod_i c_i} \cdot \frac{1}{(2\pi)^k} \prod_i \left(1 + \exp\left(-\frac{a_i^2}{\delta^2}\right)\right) > \epsilon
\]

By the definition of \(\eta \) and \(\epsilon \), the above LHS is greater than \(\epsilon \). As a result, the sample \((X_1 = x_1 \ldots X_k = x_k)\) is a valid solution for Problem 3.

Conversely, if Problem 3 has a valid solution, we can show there is a subset \(A \) of \(\{a_1, \ldots, a_k\} \) summing up to \(s \). To show this, suppose that a sample \((X_1 = x_1, \ldots, X_k = x_k)\) such that \(\sum_{i=1}^k x_i = s \) and the un-normalized probability density \(\prod p(X_i = x_i) > \epsilon \). We claim \(|x_i| < \frac{1}{2\pi} \) or \(|x_i - a_i| < \frac{1}{2\pi} \) for each \(i = 1 \ldots k \).

To see this, note that if \(|x_j| \geq \frac{1}{2\pi} \) and \(|x_i - a_i| \geq \frac{1}{2\pi} \),

\[
\prod_{i=1}^k p(X_i = x_i) = \frac{1}{\prod_i c_i} \cdot \frac{1}{(2\pi)^k} \prod_i \left(1 + \exp\left(-\frac{a_i^2}{\delta^2}\right)\right) \leq \frac{1}{\prod_i c_i} \cdot \frac{1}{(2\pi)^k} \prod_i \left(1 + \exp\left(-\frac{a_i^2}{\delta^2}\right)\right) \cdot \exp\left(-\frac{1}{4\pi^2}\right) + \exp\left(-\frac{(a_i - 1/2k)^2}{\delta^2}\right) \\
< \epsilon
\]

Since

\[
\exp\left(-\frac{1}{4\pi^2}\right) + \exp\left(-\frac{(a_i - 1/2k)^2}{\delta^2}\right) < 2 \exp(-16) = \eta
\]

We can select a set \(A = \{a_i \mid x_i - a_i < \frac{1}{2\pi}\} \). It then follows \(\sum_{a_i \in A} a_i - \sum x_i < \frac{k}{2\pi} = \frac{1}{2} \). Therefore \(\sum_{a \in A} a = s \).

Lemma 1. \(\Delta^k \) is compact.

Proof of Lem. 1

Lemma 2. Let \(f \) be a continuous real valued function defined on compact set \(X \). Then \(f \) is bounded on \(X \).

Proof of Lem. 2

Lemma 3. The target joint distribution \(X_1, \ldots, X_k, \sum_{i=1}^k X_i = S \) has continuous probability density function \(p \) on \(R^k \) with support containing the standard \(k - 1 \) simplex of value \(S \). That is

\[
\text{supp}(X_1, \ldots, X_k, \sum_{i=1}^k X_i = S) \supseteq \Delta^{k-1}_{S}
\]
Proof of Lem. 3

Proof. By Assumption (1) we can write the joint density as

$$N(x_1, \ldots, x_k, s) = \left(\prod_{j=1}^{n} p(x_i) \right) I \left(\sum_{i=1}^{k} x_i = s \right)$$

This expression is continuous on Δ_S^{k-1} when $s = S$ so we have a continuous density on Δ_S^{k-1}.

Lemma 4. If $S - \sum_{j=1}^{i-1} x_j > 0$ then

$$P_{q_i(\cdot | \eta_i)}(0 \leq X_i \leq S - \sum_{j=1}^{i-1} x_j) \geq \frac{1}{2}$$

Proof of Lem. 4

Proof. Note that

$$\mathbb{E}_{q_i(\cdot | \eta_i)}[X_i] = \int x_i q_i(x_i | \eta_i) dx_i = \eta_i = \frac{S - \sum_{j=1}^{i-1} x_j}{k - i + 1}$$

Using this equation, we calculate that

$$P_{q_i(\cdot | \eta_i)}(0 \leq X_i \leq S - \sum_{j=1}^{i-1} x_j)$$

$$= \int q_i(x_i | \eta_i) I(0 \leq x_i \leq \eta_i(k - i + 1)) dx_i$$

$$\geq 1 - \int q_i(x_i | \eta_i) I(x_i > 2 \eta_i)$$

$$= 1 - P_{q_i(\cdot | \eta_i)}(x_i > 2 \eta_i)$$

$$\geq 1 - \frac{\mathbb{E}_{q_i(\cdot | \eta_i)}[X_i]}{2 \eta_i} = 1 - \frac{\eta_i}{2 \eta_i} = \frac{1}{2}$$

Lemma 5. DYSC(S, k, X_i, q_i) has nonzero probability density function q on \mathbb{R}^k with support equal to the standard $k - 1$ simplex of value S

$$\text{supp}(\text{DYSC}(S, k, X_i, q_i)) = \Delta_S^{k-1}$$

q is continuous in the interior of Δ_S^{k-1}, int(Δ_S^{k-1}), and is lower bounded on Δ_S^{k-1} by some $c > 0$.

Proof of Lem. 5

Proof. We prove this result by constructing an explicit formula for q on \mathbb{R}^k. Given $x \in \mathbb{R}^k$, as before let

$$\ell(x, S) = \min(k - 1, \max_j \sum_{i=1}^{j-1} |x_i| < 1)$$

We need the function $\ell(x, S)$ since Alg. 1 stops random sampling at j if $j = k - 1$ or if $\sum_{j=1}^{j-1} x_j = S$. Using this function, we can write our formula,

$$q(x_1, \ldots, x_k) \propto$$

$$\left(\prod_{i=1}^{\ell(x, S)} q_i(x_i | \eta_i) I \left(0 \leq x_i \leq S - \sum_{j=1}^{i-1} x_j \right) \right)$$

If $x \notin \Delta_S^{k-1}$, the indicator functions in the above formula guarantee that $q(x) = 0$. If $x \in \Delta_S^{k-1}$, then the above formula simplifies.

$$q(x_1, \ldots, x_i) = \frac{N(x_1, \ldots, x_k)}{D(x_1, \ldots, x_k)}$$

$$N(x) = \prod_{i=1}^{\ell(x, S)} q_i(x_i | \eta_i)$$

$$D(x) = \prod_{i=1}^{\ell(x, S)} \int q_i(y | \eta_i) I(0 \leq y \leq S - \sum_{j=1}^{i-1} x_j) dy$$

where N and D are respectively the numerator and denominator. Assumption (3) guarantees that $N(x)$ and $D(x)$ are positive for $x \in \Delta_S^{k-1}$ and continuous in any neighborhood where $\ell(x, S)$ is constant. Specifically note that $\ell(x, S)$ is continuous in int(Δ_S^{k-1}) so $N(x)$ and $D(x)$ are continuous there as well. Before we prove continuity of q on int(Δ_S^{k-1}), we will need the following consequence of lemma 4

$$D(x_1, \ldots, x_k)$$

$$= \prod_{i=1}^{\ell(x, S)} \int q_i(y | \eta_i) I(0 \leq y \leq S - \sum_{j=1}^{i-1} x_j) dy$$

$$= \prod_{i=1}^{\ell(x, S)} P_{q_i(\cdot | \eta_i)}(0 \leq X_i \leq S - \sum_{j=1}^{i-1} x_j)$$

$$\geq \prod_{i=1}^{\ell(x, S)} \frac{1}{2} \geq \left(\frac{1}{2} \right)^k$$

Thus the denominator D is lower bounded by a positive number. Now let $x, y \in \text{int}(\Delta_S^{k-1})$. We can calcu-
late

\[|q(x) - q(y)| = \left| \frac{N(x)}{D(x)} - \frac{N(y)}{D(y)} \right| \]

\[= \left| \frac{N(x)}{D(x)} - \frac{N(x)}{D(y)} + \frac{N(x)}{D(y)} - \frac{N(y)}{D(y)} \right| \]

\[= \left| N(x) \left(\frac{1}{D(x)} - \frac{1}{D(y)} \right) + \frac{1}{D(y)} (N(x) - N(y)) \right| \]

\[\leq N(x) \left| \frac{1}{D(x)} - \frac{1}{D(y)} \right| + \frac{1}{D(y)} |N(x) - N(y)| \]

\[\leq \left| \frac{1}{D(x)} - \frac{1}{D(y)} \right| + 2^k |N(x) - N(y)| \]

Since \(\frac{1}{D} \) and \(N \) are both positive continuous functions on \(\text{int}(\Delta_{k-1}^S) \), we can make the right hand side arbitrarily small as \(|x - y| \to 0 \). It follows that \(q \) is continuous on \(\text{int}(\Delta_{k-1}^S) \). We now show that \(q \) is lower bounded on \(\Delta_{k-1}^S \). By Assumption (3), there exist continuous positive functions \(f_i \) on \([0, \infty)\) that lower bound \(q_i \) regardless of choice of \(\eta_i \). Then \(f = \prod_{i=1}^{k} f_i \) defines a positive continuous function on \(\Delta_{k-1}^S \). Since \(\Delta_{k-1}^S \) is compact, \(f \) has a lower bound \(c > 0 \) on \(\Delta_{k-1}^S \).

It follows that \(q \) is lower bounded by \(c \). \(\square \)