
Spanning Tree Wavelet Bases

A Proofs for Section 2

Proof of Proposition 2. By Cirelson’s theorem, we
know that
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such that |C| ≥ n/2 we have the sufficient condition.

Proof of Proposition 3. Under H0,
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where Φ is the CDF of the standard normal.

B Proofs for Section 3

B.1 Properties of the Spanning Tree Wavelet

Basis

Lemma 14. The output B of the Spanning Tree
Wavelet Construction has the following properties:

1. B is an orthonormal basis of R
n, in particular

there are n vectors.

2. B can be computed in O(n log n log dT ) time.

Proof. Before we dive into the Spanning Tree Wavelet
Construction, we must analyze the FormWavelets rou-
tine. FormWavelets operates on the subtrees ci as
if they form a chain structure, and it constructs
the Haar Wavelet basis over this chain structure.

A fairly straightforward inductive argument shows
that, coupled with the all-ones vector, the output of
FormWavelets is an orthonormal basis over the sub-
trees ci. In particular, a linear combination of these
vectors can be used to obtain a vector that is constant
and non-zero on a single subtree and zero elsewhere.

Analyzing the Spanning Tree Wavelet Construction
also proceeds by induction. On the two-node graph,
running the Spanning Tree Wavelet Construction
gives a basis with two elements (1/

√
2, 1/
√
2)T and

(1/
√
2,−1/

√
2)T which is clearly an orthobasis. For

any tree T , FormWavelets gives an orthonormal basis
over the subtrees, and the inductive hypothesis gives
the basis for each of these individual subtrees. By in-
duction, recursing on each subtree Ti gives a set of
orthonormal vectors that are also orthogonal to 1Ti

.
Consequently B is an orthobasis.

Computing the basis involves finding a balancing ver-
tex and then recursively forming the basis elements.
Finding a balancing vertex can be done in linear time
by precomputing all of the subtree sizes using a depth-
first tree traversal. Computing the basis just involves
another pre-order traversal of the tree, where at each
level in the tree we construct O(⌈log dT ⌉) basis ele-
ments, with a total of O(n⌈log dT ⌉) non-zero coeffi-
cients. Repeating this across the ⌈log n⌉ levels gives
the running time bound.

B.2 Proof of Lemma 4

Before we proceed with the proof, we state and prove
two results on the performance of the algorithm:

Lemma 15. Let T be a tree. FindBalance returns a
vertex v such that the largest connected component of
T \v is of size at most ⌈|T |/2⌉ in O(|T |) time.

Proof. Let the objective be the size of the largest con-
nected components of T \v. Every move in FindBal-
ance reduces the objective by at least 1 and the objec-
tive can be at most |T |−1 so it must terminate in less
than |T |moves. Now at any step of FindBalance, if the
objective is greater than ⌈|T |/2⌉, the cumulative size
of the remaining connected components is less than
⌊|T |/2⌋. Hence, in the next step the connected com-
ponent formed by these is less than ⌈|T |/2⌉. Thus, the
program cannot terminate at a move directly after the
objective is greater than ⌈|T |/2⌉.

We will also require the following claim. Indeed, con-
trolling the depth of the recursion in the wavelet con-
struction is the sine qua non for controlling the spar-
sity, ‖BTx‖0.
Claim 16. The wavelet construction has recursion
depth at most ⌈log dT ⌉⌈log n⌉.
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Proof. Whenever FormWavelet is applied it increases
the height of the dendrogram by at most ⌈log dT ⌉.
By lemma 15 the size of the remaining components is
halved, so the algorithm terminates in at most ⌈log n⌉
steps.

Proof of Lemma 4. We will show that any edge e ∈ T
supports at most ⌈log dT ⌉⌈log n⌉ basis elements in B,
and this will imply the result. We will say that an
edge e supports a basis element b if e ⊆ supp(∇T b).
It follows that for a basis element b, if bTx 6= 0 then ∃e
that supports b. Let no basis(e) be the number of basis
elements that are supported by e (no basis(e) = 0 if
e /∈ supp(∇T x)). We then have

||BTx||0 ≤
∑

e∈supp(∇T x)

no basis(e)

Consider some edge e. If e supports some subtree Tsub
(we use this interchangeably with supporting a basis
element formed by partitioning Tsub into two groups),
then e supports at most one of Tsub’s subtrees. This
implies that no basis(e) is upper bounded by the depth
of the recursion. By the claim, we find that,

||BTx||0 ≤
∑

e∈supp(∇T x)

⌈log dT ⌉⌈log n⌉

≤ ||∇T x||0⌈log dT ⌉⌈log n⌉

proving the first claim. The second claim is obvious
from the fact that T contains a subset of the edges in
G, so every cut has larger cut size in G than it does in
T .

B.3 Proof of Theorem 5

Proof. Under the null x = 0, and we have that

||BTy||∞ = ||BT
ǫ||∞ < σ

√

2 log(n/δ)

with probability at least 1 − δ. So, as long as τ =
σ
√

2 log(n/δ) then we control the probability of false
alarm (type 1 error). For a element x of the alter-
native, let the index, i∗, achieve the maximum of
BTx (i.e. ||BTx||∞ = |BTx|i∗). Then |BTy|i∗ ≥
|BTx|i∗ −σ

√
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Taking square roots and combining this with Lemma 4,
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from which we have the result that under H1,
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Furthermore, because the first wavelet coefficient is
just the vertex average, BT

0 y, we know that under H1

with probability at least 1− δ,

|BT
0 y| ≥

√

|C|
n

µ− σ
√

2 log(1/δ)

Forcing the maximum of these lower bounds to be
greater than τ gives us our result.

C Proofs For Section 5

C.1 Proof of Corollary 12

First we restate Corollary 9 from [32]:

Corollary 17. Consider an unweighted symmetric or
mutual k-NN graph built from a sequence X1, . . . , Xn

drawn i.i.d. from a density p. Then there exists
constants c1, c2, c3 such that with probability at least
1−c1n exp(−kc2) we have uniformly for all i 6= j that:
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Proof of Corollary 12. We focus on the symmetric k-
NN graph in which we connect vi to vj if vi is in the
k-nearest neighbors of vj or vice versa. In this graph,
every node has degree ≥ k which will be crucial in our
analysis. Our goal is to bound the effective resistance
of every edge, so that we can subsequently bound rmax

and apply Corollary 9. From the definition of re we
have:
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Where the first line is the definition of rij , the second
line follows from Corollary 17 and the last line fol-
lows from the fact that di ≥ k for each vertex. Since
k(k/n)2/d → ∞, we see that rij = O( 1k ). Moreover,
with this scaling of k, that the probability in Corol-
lary 17 is going to 1. We can therefore bound rmax

as:

rmax ≤ ρ

(

2c3
n2/d

k2+2/d
+

2

k

)

= O
(ρ

k

)

Since the first term is going to zero with n. Plugging
in this bound on rmax into Theorem 9 gives the result
(and substituting d = k).
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C.2 Proof of Corollary 13

As before, we first state Corollary 8 from [32]:

Corollary 18. Consider an unweighted ǫ-graph
built from the sequence X1, . . . , Xn drawn i.i.d.
from the density p .Then there exists constants
c1, . . . c5 > 0 such that with probability at least 1 −
c1n exp(−c2nǫD) − c3 exp(−c4nǫD)/ǫD, we have uni-
formly for all i 6= j that:
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Proof of Corollary 13. Some manipulation of the re-
sult in Corollary 18 reveals that:

Hij ≤
2m

dj
+

2c5m

n2ǫ2D+2

Under our scaling, the second term goes to zero and
the probability in Corollary 18 goes to one, so Hij =
O(m/dj). We will now give a lower bound on dj . If
Xi is in the ball of radius ǫ centered at Xj , then we
connect Xi and Xj . Thus dj is exactly the number
of vertices in the B(Xj ; ǫ). The regularity condition
on p in [32] requires that there exists constants α and
ǫ0 such that for all ǫ < ǫ0 and for all x ∈ supp(p),
vol(B(x; ǫ) ∩ supp(p)) ≥ αvol(B(x; ǫ)). By this fact,
the fact that the density is lower bounded by pmin, and
by the fact that ǫ → 0, we know that for sufficiently
large n, p(B(Xj ; ǫ)) ≥ pminαcDǫD where cDǫD is the
volume of a D-dimensional ball of radius ǫ. The prob-
ability that Xi ∈ B(Xj ; ǫ) is distributed as a Bernoulli
random variable with mean ≥ αpmincDǫD. By Hoeffd-
ing’s inequality and a union bound we get that:

dj ≥ nαpmincDǫD +
√

n log(n) = Ω(nǫD)

for all vertices j with probability ≥ 1−1/n. Using the
definition of ri,j along with the bound on Hij and dj
we have that uniformly for all pairs i, j:

ri,j = O(
1

nǫD
)

Plugging in this bound into Theorem 9 gives us the
result.


