Changepoint Detection over Graphs with the Spectral Scan Statistic

A  Appendix

A.1 Proofs in Section 2

Proof of Lemma 2. To expedite the proof, we express
the LR statistics in terms of the sufficient statis-

tics yo = ﬁziec yi ~ N(ﬁo,o‘%) and y; =
%’\Zieé)ﬂ' ~ N(B1,0%) for 09 = 0/4/|C| and o1 =
J/\/@. Then, we obtain
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where B = U;faz Yo + Jz(fgz y1 is the MLE under Hy.
0 1 0 1

(The likelihood under the alternative balances with the

normalizing constant of the null likelihood.) Thus,
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Now we let x = 1, making the statistic above
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The result now follows by considering all the indicator
functions corresponding to the sets in C. O

Proof of Remark 4. First we notice that (8) is equiva-
lent to

)1{2% —x'yst. x"Lx<p, x| <1

because x' Lx and x 'y are invariant under changes
in 17x. This admits the Lagrangian (for parameters
vo,v1 > 0),

—x"y +ro(x"Lx —p)+ri(x"x—1)

which is minimized for fixed vy, at x = —%[l/oL +
11I]7ty (which confirms Slater’s condition). Hence,
the dual program is
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A.2 Proofs in Section 3

Proof of Theorem 5 (1). Let the true C € C be
known. The performance of the optimal test with C
known, which by the Neyman-Pearson Lemma is based
on 2log Ac(y), bounds the performance of that with
C unknown. To this end, note that, under Hy, the LR
statistic (6) has a x?, while under the alternative H{
it has a x?(\) distribution with non-centrality param-
eter

_oelel
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which is the square of the SNR. For fixed C', asymp-
totically indistinguishable of Hy versus H}, follows by
considering any threshold and noticing that the associ-
ated type 1 and type 2 errors are non-vanishing under
the SNR scaling assumed in the statement. Since the
risk of testing Hy versus H; is no smaller than the risk

of testing Hy versus H}, the result follows. O

We remark that the proof of the previous result shows
that when distinguishing Hy from HE, the power of
the test is maximal when |C| = |C| for a fixed value of
the SNR.

Proof of Theorem 5 (2). We will begin by construct-
ing from our set, C’, a new set, S, of clusters which
are difficult to distinguish in the sense that the Bayes
risk for the uniform prior over those in the alterna-
tive is bounded away from 0. Enumerate C’ such that
¢ = {Cl}llczl‘1 We will build & by unioning k ele-
ments of C’, then draw S, S’ uniformly from S. Specif-
ically, let & = [/|C’]] (recall that ¢ = |C|,YC € C’),
and let K, K’ be independent uniform samples with-
out replacement of k elements from {1,...,|C’|}. Then
let S = UjexC; and S’ = U;cxC;. Notice that
ke =|S| < n/2 for n large enough.

|0S] < kmaxcecr |0C)|

IS|IS| = ke(n — ke)
n—c |0C| p
max =
“n—kcCeC e(n—c) T 2

Notice that the risk can be bounded by

sup EgT'(y) + sup Eg[l —T(y)]
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where 3% =1
sition 3.2 in [1],
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for S,5’ drawn independently uniformly from S. No-
tice that

ﬁls and § C C. Then by Propo-
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And we have that

Hence,
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Hence, we can apply Proposition 3.4 from [1] (by sub-

stituting u < 17v/2/(0vk)) and determine that R* > §
if

2
ovk
Because k? < |C'| we have asymptotic indistinguisha-
bility if /o = o(vVk) = o(|C’|'/*). For some explana-
tion for the choice of k the term klog(1 + |C'|/k?) is
largest when k2 < |C’|. O

C’|log(1+4(1 — §)2
g 1+ losL 019

Proof of Lemma 7. Without loss of generality, let y ~
N(0,I). We recall that, since G is connected, the
combinatorial Laplacian L is symmetric, its small-
est eigenvalue is zero and the remaining eigenvalues
are positive. By the spectral theorem, we can write
L = UAUT, where A is a (n — 1) x (n — 1) diago-
nal matrix containing the positive eigenvalues of L in
increasing order and the columns of the n x (n — 1)
matrix U are the associated eigenvectors. Then, since
each vector x € R™ with 1Tx = 0 can be written as
Uz for a unique vector z € R"~!, we have

X = {xeR":x"Lx<px'x=1,1"x<0}
= {Uz:zeR" Y
z'U'LUz<p,z'U'Uz <1}
= {Uz:zeR" Y %ZTAZ <l,z'z <1},

where in the third identity we have used the fact that
U'U =1, ;. Letting Z = {z € R*: %ZTAZ <
1,27z < 1}, we see that

d
supx'y=supz U'y Ssupz'¢&,
xeX z€EZ zZEZ

where & ~ N(0,I,,_1) and 2 denotes equality in dis-
tribution.

Next, we show that the set Z, which is the intersection
of an ellipsoid with the unit ball in R”~!, is contained
in an enlarged ellipsoid. The supremum of the Gaus-
sian process z ' & over Z will then be bounded by the
supremum of the same process over this larger but sim-
pler set, which we will be able to bound using directly
a result from [38] based on chaining. To this end, let
A = %A = diag{a;}"}! and d = max{j : a; < 1}.
For for a vector z € R" ™! set z1 = zq], Z2 = Z[p—1]\[q]»
and Ao = diag{a;};>q. Then, we observe the following
chain of implications, holding for vectors z € R"~1:

2] <1.2"Az<1= |zl < 1) az? <1
i>d

1.
:>ZIZ1+Z;A2Z2§2:>ZMZ?S1.
i

Hence, we have the bound

EVS<E sup z € st. ZQmax{l,ai}x? <1

zERP—1

Recalling that a; = %, fori=1,...,n— 1, where

Ait1 is the (i 4+ 1)th eigenvalue of L, by Proposition
2.2.1 in [38] the right hand side of the previous expres-

\/22i>1 min{1, pA; ' }. O

sion is bounded by

Supplement to the proof of Theorem 6. The following
property of Gaussian processes effectively reduces the
study of their supremum to the study of its expecta-
tion. It was established by [7] and [10] and can be
found in [22].

Lemma 14. Consider a Gaussian process {Zi}icu

where U is compact with respect to metric
d(s,t) = (B(Zs — Z)*)Y2,  s,t,el,

and let 02 > sup, ey EZ2. We have that with probabil-

ity at least 1 — 0
/ 2
202log —.
< g og5

Notice that the natural distance is given by d(xg, x1) =
(E((x0—x1)Ty))!/? = rlxo— 1 | for x0,%1 € X. O

sup Zy — Esup Z;
teu teu

A.3 Proof in Section 4

Proof of Corollary 11 (a). The study of the spectra of
trees really began in earnest with the work of [12]. No-
tably, it became apparent that tree have eigenvalues
with high multiplicities, particularly the eigenvalue 1.
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[30] gave a tight bound on the algebraic connectivity

of balanced binary trees (BBT). They found that for

a BBT of depth ¢, the reciprocal of the smallest eigen-

value ()\g)) is

B 2L —\/2(20 —1 — 201
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<2Y 1 1051{¢ < 4}

(12)

[32] gave a more exact characterization of the spectrum
of a balanced binary tree, providing a decomposition of
the Laplacian’s characteristic polynomial. Specifically,
the characteristic polynomial of L is given by

2 2[*3

detMI—L) =p2 “(Mp2 *(V)...
5P (Npe-1(V)se(N)

where s¢(\) is a polynomial of degree ¢ and p;()\) are
polynomials of degree ¢ with the smallest root satis-
fying the bound in (12) with ¢ replaced with i. In
[33], they extended this work to more general balanced
trees.

(13)

By (13) we know that at most £ + (¢ — 1) + (£ —
2)2 + ... + (£ — )27~ < (27 eigenvalues have recip—
rocals larger than 277 4+ 1051{j < 4}. Let k =
max{[£26(1-9)] 23} then we have ensured that at
most k eigenvalues are smaller than p. For n large
enough

¢
Zmin{l,p)\fl} <k+p Z (29247

i>1 j>logk
=k + (0 —logk)np = O(n'~*(logn)?)

O

Proof of Corollary 11 (b). We will construct C’ in
Theorem 5 (b) from subtrees of size 4cn®. Let C be
such a subtree, then for n large enough
1—cnot

2

= [4en®(1 — 4en® 1)t

1—4en® 1 >

n|oC|
IClIC]

a—1\1—1 _ @

Hence the conditions of Theorem 5 (b) hold with |C’| =
n/(4en®) < ni=@ O

1
< i[cna(l —cn

Proof of Corollary 12 (a). By a simple Fourier analy-
sis (see [36]), we know that the Laplacian eigenvalues
are 2(2 — cos(2miy /p) — cos(2miz/p)) for all iy, iz € [p].

Let us denote the p? eigenvalues as A(iy ig) fOT i1,i2 €
[p]. Notice that for i € [p], [{(i1,i2) : i1 Vie = i}] < 2i.
For simplicity let p be even. We know that if i; V iy <
p/2 then A, ;,) = 2 — cos(2miy/p) — cos(2mia/p) >
1 —cos(2m(i1 Vi2)/p) . Thus,

3 -

(i1,32)#(1,1)€[p)? Alis,iz)

<2 Z Qi(lAl—w;.M>

i€[p/2]

<p£2 Z 2 i/p

2p oy 1 — cos(27i/p)

1/2
pi / — cos 27rx)

< ppj log(sin(rz)) — mx cot(mx)
-2 272 1/p

p* (7 /p) cot(m/p) — log(sin(x/p))
2 272

1/2

=

While we can use the first order expansion of the terms
to obtain the behavior,

(m/p) cot(m/p) =1+ o(m/p)

— log(sin(m/p)) = —log(m/p) — log(1 + o(1))

so we arrive at the following,

> 1A -
(i1,i2)#(1,1)€[p]2 (i1,i2)
2

< 35 (1 + log(p/m) +o(1)

_ 4%;&”’(1 +log(p/) 4 o(1))
= 0(n"*"/2og(p))

which in conjunction with (9) completes our proof. [J

Proof of Corollary 13 (a). The Kronecker product of
two matrices A,B € R" " is defined as A ®
B e RMxm)x(nxn) gych that (A ® B)(il,iz),(jl,h) =
Ay g1 Biy j,- Some matrix algebra shows that if H;
and H, are graphs on p vertices with Laplacians
L1, Lo then the Laplacian of their Kronecker product,
Hi®Hs, is given by L = L1 ®1,+I,®Ls ([28]). Hence,
if v, vy € RP are eigenvectors, viz. Lyvy = A\yvy and
L2V2 = )\2V2, then L(Vl & V2) = (Al + )\Q)Vl ® Vo,
where v; ® vy is the usual tensor product. This com-
pletely characterizes the spectrum of Kronecker prod-
ucts of graphs.

We should argue the choice of p o< p?*~¢~1 by showing
that it is the results of cuts at level k. We say that an
edge e = ((41,..,%), (J1,..-, Je)) has scale k if i, # jp.
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Furthermore, a cut has scale k if each of its constituent
edges has scale at least k. Each edge at scale k£ has
weight p*~* and there are p®~! such edges, so cuts at
scale k have total edge weight bounded by

k 1 i

) D= k=1 D
/—1 § i—4 k—1 P
— <
P Z_ilp P p—1 T p-1

k

Cuts at scale k leave components of size p'~* intact,

meaning that p oc p?*~*~1 for large enough p.

We now control the spectrum of the Kronecker graph.
Let the eigenvalues of the base graph H be {v; }1;-’:1 in
increasing order. The eigenvalues of G are precisely
the sums

1 1 1
>\i = FVZ‘I + PVQ + ...+ 5VZ‘£71 + Vig

for i = (%‘)?:1 C [p]. The eigenvalue distribution {A;}

stochastically bounds

¢
=D Z%”?I{’% 704 = pﬁn
j=1
where Z(i) = min{j : v;,_, # 0}. Notice that if 7 is
chosen uniformly at random then Z(i) has a geometric
distribution with probability of success (p—1)/p. Also
p/(25) = p?D+2k=L=1 /0 > 1 Z(i) > 0+ 1 -2k +

pZ®
log,, v2, so
1 ) p p2k7Z71
ot Z min{1, /\7} < T
i€[p]*

[€+1—2k+log, v |
P pZ+2k—€—1 ip_l

+
Z=1 ve  p7 p
2k—b—1
< (L+2)p
Vs

This followed from the geometric probability mass
function. We also know that the algebraic connectiv-
ity, 1, is bounded from below by 4p~2, so the following
result holds.

O

Proof of Corollary 13 (b). Similarly to the proof of
Corollary 11 (b), we form C’ as the connected com-
ponents of the graph with all the edges at coarseness
less than k — 2. So we have more than quadrupled the
size of the clusters without increasing their cut size.
Hence, |C'| < p*=2 < n*/¢/p?.
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