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Abstract

This paper studies Central Limit Theorems
for real-valued functionals of Conditional
Markov Chains. Using a classical result by
Dobrushin (1956) for non-stationary Markov
chains, a conditional Central Limit Theorem
for fixed sequences of observations is estab-
lished. The asymptotic variance can be es-
timated by resampling the latent states con-
ditional on the observations. If the condi-
tional means themselves are asymptotically
normally distributed, an unconditional Cen-
tral Limit Theorem can be obtained. The
methodology is used to construct a statistical
hypothesis test which is applied to syntheti-
cally generated environmental data.

1 INTRODUCTION

Conditional Random Fields, introduced by Lafferty et
al. (2001), are a widely popular class of undirected
graphical models for the distribution of a collection of
latent states conditional on observable variables. In
the special case of a linear-chain graph structure, the
latent states form a Conditional Markov Chain.

Asymptotic statistical properties of Conditional Ran-
dom Fields and, more specifically, Conditional Markov
Chains, have been first investigated by Xiang and
Neville (2011), and Sinn and Poupart (2011a). The
main focus of this research was on asymptotic proper-
ties of Maximum Likelihood (ML) estimates, such as
convergence in probability (Xiang and Neville, 2011),
or almost sure convergence (Sinn and Poupart, 2011a).
While originally the analysis was restricted to models
with bounded feature functions, Sinn and Chen (2012)
have recently generalized the results to the unbounded
case.
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This paper studies Central Limit Theorems for real-
valued functionals of Conditional Markov Chains. Pre-
vious work in this direction is a Central Limit Theorem
by Xiang and Neville (2011), however, as this paper
points out, the proof of their result is flawed. Cen-
tral Limit Theorems are of great practical importance
because they allow for the construction of confidence
intervals and hypothesis tests at predefined coverage
and signficance levels. For example, in the experimen-
tal part of this paper, it is demonstrated how to con-
struct tests for dependencies between latent states and
observable variables.

On the theoretical side, studying Central Limit Theo-
rems gives great insight into the dependency structure
of time series and helps to understand long-memory
effects. In accordance with the results in (Sinn and
Chen, 2012), the main finding in this regard is the
importance of the tail distribution of the feature func-
tions, and of concentration inequalities for bounded
functionals of the observable variables.

The outline of this paper is as follows: Section 2
reviews the definition and fundamental properties of
Conditional Markov Chains, which will serve as the
mathematical framework of the analysis. The main
mathematical results are presented in Section 3. Us-
ing a result by Dobrushin (1956) for non-stationary
Markov chains, a conditional Central Limit Theo-
rem (where the sequence of observations is considered
fixed) is dervied. If the conditional means themselves
are asymptotically normally distributed, an uncondi-
tional version of the Central Limit Theorem is ob-
tained. Section 4 presents an algorithm for estimat-
ing the asymptotic variance by resampling the latent
states conditional on a given sequence of observations.
Empirical experiments with synthetically generated
environmental data are shown in Section 5. In par-
ticular, it is demonstrated how the previous method-
ology can be used for the construction of hypothesis
tests. Section 6 concludes the paper with an outlook
on open problems for future research.
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2 CONDITIONAL MARKOV
CHAINS

Preliminaries. Throughout this paper N, Z and R
denote the sets of natural numbers, integers and real
numbers, respectively. Consider the probability space
(Q, F,P) with the following two stochastic processes
defined on it:

o X = (X})iez are the observable variables, ranging
in the metric space X equipped with the Borel
sigma-field A.

e Y = (Y})icz are the latent states, ranging in the
finite set }. Let || denote the cardinality of ).

It is assumed that Y conditional on X forms a
Conditional Markov Chain, the definition of which is
given in the following paragraph. The distribution
of X is arbitrary for now. Later on, in order to
establish statistical properties of the Conditional
Markov Chain, certain assumptions on the mixing
behavior of X will be made.

Definition. The distribution of Y conditional on
X is parameterized by a vector f of feature functions
f: A xYx)Y — R, and real-valued model weights A
(of the same dimension as f). Throughout this paper
it is assumed that the following regularity condition is
satisfied:

(A1) The model weights and the feature functions are
finite: |A| < oo, and |f(z,i,5)| < oo forallz € X
and 7,5 € ).

A key ingredient in the definition of Conditional
Markov Chains is the || x |V|-matrix M (x) with the
(i,7)-th component given by

exp(AT f(=,1,))

for 7,5 € Y. In terms of statistical physics, m(zx, 1, j) is
the potential of the joint variable assignment X; = x
and ;1 =1, Y; = j. For sequences @ = (z¢)tez in X
and indices s,t € Z with s <t define the vectors

m(x,i,j) =

M(z)T .. . M(z)T(1,1,...,1)T,
M(2sq1) ... M () (1,1,...

ag(x) =
Bi(x) =

Let of(x,4) and B%(x,j) denote the ith and jth com-
ponents of af () and B’ (x), respectively.

The marginal distributions of Y given X = x are ob-
tained by conditioning on a finite observational con-
text using a conventional Conditional Random Field
(see Sutton and McCallum, 2006), and then letting

the size of this context going to infinity. Formally, for
any t € Z, k>0 and y4, ..., Ys+r €V, let

P(Y: =y, Yegr = ypin | X = )

k
= Hm($t+z‘,yt+i—1,yt+¢)
i=1

i (2, yr) Bfillern(wa Yitrk)
X am t T at+k+n
noeeag, (2)T8 ()

It can be shown that, under Assumption (Al), the
limit on the right hand side is well-defined (Sinn and
Poupart, 2011a). Moreover, Kolmogorov’s Extension
Theorem asserts that the conditional distribution of
Y defined by the collection of all such marginal distri-
butions is unique.

At first glance, it might seem restrictive to allow the
feature functions only depend on a single observation.
However, in order to take into account more than one
observation, it suffices to replace x; by the “enhanced”
xy = (Tp—apy- o, Tty o, Tipw) Where w € N is some
finite time window length.

Properties. For any matrix = = (m;;) with strictly
positive and finite entries, define the mizing coefficient
L TiRT
mT) = min ——. 1

¢( ) i,k TR T4 ( )
This coefficient plays a key role in the theory of non-
negative matrices (Seneta, 2006), which is of great im-
portance for studying mixing properties of Conditional
Markov Chains. Note that 0 < ¢(7) < 1, and

o(m) = [=5" 2)

The following proposition reviews fundamental
properties of Conditional Markov Chains. For more
background, see Proposition 1 in (Sinn and Chen,
2012).

Proposition 1. Suppose that Assumption (Al)holds
true. Then the following statements hold true:

(i) Y conditional on X forms a Markov chain, i.e.

]P)(}/;f :yt|Y%71 = ytfla"w}/tfk :ytfka = w)
=PYi=w|Yici=y-1, X =x)

for every sequence x = (x¢)1ez in X.

(i) The transition probabilities of the Markov chain,
Pz, i,7) =PY; =j|Yi—1 =i, X = x) have the
following form:

m(z,4,5) lim EACYH)E .

Pt(iB,Z,j) = n—00 B?_l(wyi)
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A lower bound for P(x,1i,7) is given by

P(x,i,j) > g(xt)égft“)
where
fz) = ming ey m(z, k, 1)

maxy ey m(z, k, 1)

(iii) The transition matriz P.(x) with the (i,j)-th
component Py(x,1,7) has the mizing coefficient

(Pi(x)) = ¢(M(zi)).

Note that, in general, Y conditional on X = x forms
a non-stationary Markov chain because the transition
matrices Py(x) vary with ¢.

3 CENTRAL LIMIT THEOREMS

The goal of this paper is to establish Central Limit
Theorems for real-valued functionals of Conditional
Markov Chains. More precisely, we consider partial
sums of the form >;' | g(X¢,Y;) where g : X xY — R,
and study conditions under which these partial sums
(after suitable scaling) converge to a Normal Distribu-
tion. A review of the theory of convergence in distri-
bution can be found in (Lehmann, 1999).

Our main result is a Central Limit Theorem for
i1 9(Xt,Y;) conditional on the sequence of obser-
vations X, which is stated and proved in Section 3.2.
It builds on a result for non-stationary Markov chains
due to Dobrushin (1956), which we review in Section
3.1. In Section 3.3 we discuss generalizations of our
result, e.g., to vector-valued functions or to functions
depending on more than one observation and latent
state. Finally, an unconditional version of the Central
Limit Theorem is formulated in Section 3.4.

Note that a Central Limit Theorem for Conditional
Random Fields has previously been stated by Xiang
and Neville (2011), however, the proof of their result
is flawed. The actual error lies in the proof of Lemma
2, Where the authors argue that the expectations of
o Zk 1Uk’ converge to zero. At the same time,
they intend to show that - Y} | uy is asymptoti-
cally standard normal, in Wthh case the expectations
of the absolute values cannot tend to zero.

3.1 Dobrushin’s Central Limit Theorem

A key tool in our analysis is a Central Limit Theorem
for real-valued functionals of non-stationary Markov
chains by Dobrushin (1956). We first review his result,
closely following the exposition in (Sethuraman and

Varadhan, 2004). Let (Z,C) be a measurable space.
For any Markov kernel w = m(z,-) on (Z,C), let v(m)
denote the contraction coefficient,

’Y(ﬂ-) = sup |7T(Zlv C) - 7T(212, C)| (3)
z1,22€2Z,CeC
Intuitively, v(7) measures the maximum distance be-

tween conditional distributions 7 (z1,-), m(z2,-) with
21,29 € Z. Clearly, 0 < y(w) < 1, and ~(w) = 0 if
and only if the conditional dlstrlbutlon 7(z, ) does not
depend on z. Now let (m;) with ¢ > 1 be a sequence
of Markov kernels, and v a probability measure on
(Z,C). For n € N define

max ().

T =
" 1<t<n

Consider a Markov chain (Z;)teny on (Z,C) with the
initial distribution P(Z; € C) = v(C), and the tran-
sition probabilities P(Z; € C'|Z;—1 = z) = m(z,C).
Furthermore, let (g:):eny be a sequence of measurable
real-valued functions on (Z,C), and let S,, denote the
partial sum

th(Zt)- (4)

The following theorem due to Dobrushin (1956) estab-
lishes conditions under which the standardized partial
sums S, converge to a standard Normal Distribution.
Note that the original result applies more generally
to triangular sequences of Markov kernels m; and
measurable functions g;. Here we present a simplified
version which suffices for our purpose.

Theorem 1. Suppose there exists a sequence of finite
constants (¢p)nen such that

sup sup |g:(2)] < en-
1<t<n 2€Z

Furthermore, suppose the following condition holds:

—1

{ZVartht} 0. (5

lim c (1 =)~
n—oo

Then the standardized partial sum S, in (4) converges

to a standard Normal Distribution:
S, — E[S,,
S _BS - dy ngo,). (6)
Var(S,,)

The following corollary considers the special case
where the functions ¢; and variances Var(g,(Z;)) are
uniformly bounded.
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Corollary 1. Suppose that the functions g; are
bounded so that ¢, < ¢ < oo for all m € N, and
the variances Var(g:(Z;)) are bounded away from zero,
Var(g:(Z;)) > v > 0 for all t € N. Then the conver-
gence statement (6) holds provided that

lim n%(lffyn) = oo
n— oo

3.2 The Conditional Case

Next, we apply Dobrushin’s result to establish a Cen-
tral Limit Theorem for Y ;" , g(X3,Y;) conditional on
the observations X. For now, let us assume that the
function g : X x Y — R has the following form:

g(z,y) = g(x)1(y =1i)

where i € Y and g : X — R are fixed. (In Section
3.3 we will show how to derive the general case.) Let
us rewrite the conditional partial sums in order to see
how Dobrushin’s result comes into play:

n

Z g(Xtv th)

t=1
where g:(y) := g(X¢)1(y = 4) for y € Y. Note that,
conditional on X, the mappings g, : V — R are
deterministic. Moreover, according to Proposition 1,
Y conditional on X forms a Markov chain. Hence,
substituting (Z;)ien by (Y:)ten conditional on X, we
have the same setting as in Dobrushin’s theorem.

X

X = th(yt)

Assumptions. Let us formulate the assumptions on
the observations X that we will use in the proof of
our main result. First, let us introduce some measure-
theoretic notation: By X we denote the space of se-
quences x = (z¢)¢cz in X, and by A the corresponding
product o-field. We write Px for the probability mea-
sure on (X, A) defined by Px(A) := P(X € A) for
A € A, and 7 for the shift operator 7@ := (x441)tecz-

(A2) X is ergodic, i.e. Px(A) = Px(771A) for each
A € A, and Px(A) € {0,1} for every A € A
which satisfyies A =771 A.

(A3) The set Y has cardinality |Y| > 1, and there

exists a measurable set A € AwithP(X; € A) >0
such that |g(z)| > 0 for all z € A.

(A4) Let F': X — R denote the mapping
F(x) = Y [X'f(z.i5)
i,jEY
where f and A are the feature functions and

model weights of the Conditional Markov Chain.
Then there exist p, ¢ > 0 with %—i—% = 1 such that

E[lg(X;)|*] < oo and E[exp(F(X;))*] < cc.

(A5) Let A € A be a fixed measurable set. Define
p:=P(X; € A), and S, () := 37 | 1(z € A)
for £ € X. Then there exists a constant x > 0
such that, for all n € N and € > 0,

P(Su(X) ~pl 2 ) < exp(—re®n).

Let us explain the rationale behind (A2)-(A5). The
ergodicity assumption (A2) implies laws of large num-
bers for integrable functionals of X (Cornfeld et al.,
1982). As a consequence of the invariance property
Px(A) = Px(77'A), the sequence X is strictly
stationary, and hence the moments and probabilities
in (A3)-(A5) do not depend on ¢. (A3) ensures that
the conditional variance of Y.} | g(X;,Y:) is strictly
positive.  (A4) relates the tail behavior of g and
of the feature functions f with the distribution of
X:. Finally, (A5) ensures that indicator functions of
X, satisfy Hoeffding-type concentration inequalities.
Sufficient conditions for ®-mixing processes and mar-
tingales can be found in (Samson, 2000; Kontorovich
and Ramanan, 2008).

Main result. Next we state our main result. Possible
generalizations, e.g., to vector-valued functions or to
functions depending on more than one observation
and latent state are discussed in Section 3.3.

Theorem 2. (i) Suppose that Assumption (A1) - (A4)
are satisfied. Then the following statement holds true
P-almost surely:

1
on(X)

>~ (9(X0,Yi) ~ Elg(X,, Y)| X]) | X

5 N(0,1)

with the asymptotic variance o2(X) given by

o2(X) =

n

Var(i:g(xt,yt) ‘X)

(1) If additionally (A5) holds, then L o2 (X)) converges
P-almost surely to a constant 0® < oo given by

o0

o2 = Z E[Cov(g(X+,Yz), 9(Xttr, Yeir) | X))

k=—o0

We note that statement (i) establishes a conditional
Central Limit Theorem in which the observations X
are considered to be fixed. In Section 3.4 we show that
an unconditional version can be obtained if the condi-
tional means are asymptotically normally distributed.
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Statement (i¢) establishes a standard /n rate of con-
vergence, provided that o2 > 0:

1 n
— X, Y;) —Elg(X,,Y:) | X ’ X
\/ﬁ;(g( t, Y1) [9(X¢, Y2) | ])

4 N(0,0?).
Interestingly, in this case the asymptotic variance o>
does not depend on the particular realization of X. In
Algorithm 1 below we show how o2 can be estimated

in practice.

Proofs. Before proving Theorem 2, we establish three
technical lemmas. The first lemma relates the mixing
and contraction coefficients ¢(-) and ~(-) introduced
in (1) and (3). With a slight abuse of notation, if
7 = (mi;)ijez is a stochastic matrix, we write ()
for the contraction coefficient of the Markov kernel
induced by (i, C) == 3, o mij-

Lemma 1. For any stochastic matric @ = (m;;), we
have the inequality 1 — v(m) > ¢(7).

Proof. First note that vy(7) can be written as

ma. ik — Ts 7
max (Tik — i)+ (7)

key

v(m) =

where z; denotes the positive part of x € R. Next we
will show that

(mire = mjk)+ < ma[l = o). (8)

Note that, if (mx — mjk)+ > 0, then we can write
Tik—Tjk = Wik[l—ﬂ'jk/’ﬂ'ik]. Moreover, (Fik—ﬂ'jk)Jr >0
implies the existence of an [ € )V with m; > m; which
shows that m;,/my > ¢(w). Now, substituting (8)
back into (7) and using the fact that 3, .y, m = 1
for all i € ), we obtain y(mw) < 1 — ¢(mr), which gives
us the result. O

Lemma 2. Let z1, zo, ...be a real-valued sequence.
Furthermore, let kK > 0 and suppose that the limit of
LS 1 |zl™ is well-defined and finite. Then the se-
quence (Mp)neN With my, := maxi<i<n |2¢| satisfies

K

lim —2 = 0.
n—,oo M

Proof. Define z,, := %Z?Zl |z¢|® and ¢ 1= limy,— 00 Zn.
Suppose that z, converges to ¢ and the limes superior

of 2 is non-zero. Then we can find a constant € > 0
I

n
for which |Z”T > ¢ infinitely often. On the other
hand, there exists an ng such that |z, — (| < ¢/2 for all
n > ng. Now let n > ng with z,, > ¢ + %Zn_l and

"T_l arbitrarely close to 1. Since z,—1 > { — ¢/2 we

obtain the contradiction z, > ¢ + ¢/2. Consequently,
my
n

if Z,, converges to (, the limes of has to be zero. [J

Lemma 3. Suppose that Assumption (A2)-(A3) are

satisfied. Then the following statement holds true P-
almost surely:

1o
nlgr;o%z\/'ar(g(xt,mm) > 0.

t=1

Proof. The existence of the limit on the left-hand side
immediately follows by the ergodicity of X. Next we
note that

Var(g(Xy, V:) | X)
= (9(X0))’P(Y; =i | X) (1 - P(Y; = i| X)).

It is easy to see that, for every x € X, a lower bound
for P(Y; =i | X = @) is given by the minimum transi-
tion probability miny ey P(Y; =1|Yi—1 = £, X = x).
Using the fact that |)| > 1, the same lower bound also
applies for 1 — P(Y; = ¢| X = x). Applying the result
from Proposition 1 (i), we arrive at

9(Xe) U(X) U(Xe11)]?
V| '

Since X is ergodic, the limit of the sample averages
LS 1 [9(X0) €(Xy) 6(X41)]2| V|72 converges to its
expected value. As f(z) > 0 for all z € X, and
g(z)? > 0 on a subset A € A with P(X; € A) > 0 (see
Assumption (A3)), it follows that this expected value
is strictly positive, which finishes the proof. O

Var(g(X:, Y1) | X) =

Proof of Theorem 2. (i) We need to show that condi-
tion (5) is satisfied where, in our case:

e Var(g;(Z;)) corresponds to Var(g(X;,Y:) | X),
e ¢, corresponds to maxi<i<n |g(X¢)],

e 7, corresponds to maxi«i<n, Y(P(X)) with the
matrices Py(X) defined in Proposition 1.

According to Lemma 3, the inverse of the sum of vari-
ances is of order n~'. Hence it remains to show that
2 -3
cs (1 —
lim ald =) _ 0. (9)

n—00 n

Using the result from Lemma 1, we obtain

(1=)™ < max ¢(M(X,))™".

1<t<n
With the lower bound (2) for ¢(-) and the mapping F
defined in Assumption (A3), we arrive at

J(M(Xe)™? < exp(F(Xy))°.
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Now let p, ¢ > 0 be such that Assumption (A4) is sat-

isfied. Since X is ergodic, the limits of the sequences

LS lg(X0)[? and 370 exp(F(Xy))3 are well-

defined and finite P-almost surely. Hence, according

to Lemma 2,

i% (1- ’7n)73
1 1

=0 and lim
n— o0

lim = 0.
Multiplying the two sequences and using the fact that
% + % =1, we arrive at (9).

(ii) We note that (A4) implies E[|g(X;, Y7)]?] < oo.
Hence, as an immediate consequence of Theorem 2 in
(Sinn and Chen, 2012), 02 exists and is finite. It re-
mains to show that LoZ(X) actually converges to o2,
The key observation is that, due to the ergodicity of

X, the sample average

n oo

%Z Z Cov(g(X+,Y2), 9(Xitk, Yerr) | X)

t=1 k=—o0

tends to

o0

> E[Cov(g(X1,Y2), g(Xer, Yegw) | X))

k=—o00

P-almost surely. Moreover, the difference between the

sample average and 102 (X) is equal to

n

1 —t
S5 (DD CovlglXe, Vo), g(Xin Yirr) | X)
nt:l k=—o0
+ Y Covlg(Xe Vi), g(Xusk, Yier) | X)).
k=n—t+1

It remains to show that this difference tends to 0 as
n — oo. We will demonstrate the proof for the first
term; the second term can be treated in the same way.
Using a result from the proof of Theorem 2 in (Sinn
and Chen, 2012), we have

’COV(g(Xta Y;f)mg(XIFHCa }/t+k) |X)|

K|
< 41g(Xo)| |g(Xetn)l H[l — (M (X¢—j41))].
Now let
—t ||
Uo o= 4 Y 19(Xern)l [T0 = oM (X))
k=—o00 j=1

It is easy to see that Uypq = [1 — ¢(M (X¢41))] Uy, by
which it follows that

%Z i |Cov(g(Xe, Vo), 9(Xesres Yern) | X))
t=1 k=—o00

< 023 g0 TT1 - oM (X))

t=1

s=1

Now it only remains to show that the terms

t—1

lg(X4)] H[l — (M (Xs41))]

s=1

P-almost surely tend to 0 as t — oo. By argu-
ments similar to the proof of Lemma 2, we obtain
that |g(X:)| = O(t) P-almost surely. Moreover, there
exists a subset A € A with P(X; € A) > 0 and
¢p(M(x)) > € > 0 for all x € A. By the ergodicity
of X it follows that the sample frequency of X; lying
in A converges to P(X; € A), and hence

t—1

[I0 - é(M(X1))] = Olexp(—rt))

s=1

P-almost surely where x > 0. The proof is complete. [

3.3 Discussion

Let us discuss special cases, extensions and possible
generalizations of the Central Limit Theorem.

Bounded features. If the feature functions of the
Conditional Markov Chain are bounded (i.e., there ex-
ists a constant u < oo such that |f(z,4,J)| < u for all
x € X and i,5 € ), then a sufficient condition for
the results in Theorem 2 (7)-(i¢) is that Assumption
(A2)-(A3) hold, and E[|g(X;)|*>*€] for some € > 0.

Extension to functions of multiple observations
and hidden states. It is straight-forward to extend
the results to functions g depending on more than one
observation and latent state. Similarly, without fur-
ther technical difficulties it is possible to extend the
result to Conditional Markov Chains of order k > 1.

Extension to vector-valued functions. To es-
tablish a multi-dimensional version of the Central
Limit Theorem for vector-valued functions g, we use
the Cramér-Wold device (see, e.g., Lehmann (1999)).
Without loss of generality, we may assume that the
components of g have the following form: ¢\ (z,y) =
gD (2)1(y = i) for x € X, y € Y. We need to
show that, for every non-zero vector w, the partial
sums Y ;. w’g(X;,Y;) are asymptotically normally
distributed. The crucial part is to establish an equiv-
alent result to Lemma 3. It is not difficult to see that
such a result can be obtained if and only if

P(Var(w'g(X;, V)| X) > 0) > 0.
Hence, the individual components of g must satisfy

P(Var(¢"(X;,Y;) | X) > 0) > 0, and there must not
be any linear dependence among them.
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3.4 The Unconditional Case

While Theorem 2 establishes asymptotic normality
for the partial sums ., , 9(X;,Y;) conditional on
X, it does not make any assertions about the limit
distribution in the unconditional case. Statement (i7)
shows that, under additional regularity assumptions,
the asymptotic variance in the conditional case
is constant and hence independent from X. The
conditional mean, however, is a random variable
which in general does depend on X. Hence, the
unconditional limit distribution can be regarded
as an infinite mixture of normal distributions with
constant variance and random means. If the means
are asymptotically normally distributed, then the
mixture itself is converging to a normal distribution.
This result is stated in the following theorem.

Theorem 3. Suppose that Assumption (Al) - (A5)
hold, and the conditional means E[g(Xy,Y:) | X] sat-
isfy a Central Limit Theorem:

(el

with the asymptotic variance T2 given by

Z Cov(E

k=—o0

9(X1, ) | X] — Elg(X;, Y3)]) & N(0,72)

[9(Xe, V)| X, Elg( Xk, Yigr) | X])

and 0 < 7% < oco. If additionally the asymptotic vari-
ance o2 defined in Theorem 2 (ii) is strictly positive,
then we obtain

1

% Z (Q(Xtayt) - ]E[Q(Xt,yt)D LN N(0,0%+72%)

where, according to the law of total variance,

o242 = Z Cov(9(X¢, Y1), 9(Xiqr, Yign))-

k=—o00

We leave it as an open problem to state conditions on
X under which the conditional means are asymptoti-
cally normally distributed.

4 ESTIMATION OF THE
ASYMPTOTIC VARIANCE

In this section we present an algorithm for estimat-
ing the asymptotic variance o2 in Theorem 2. The
key idea is the following: Suppose we are given sam-
ples X, = (X1,...,X,) and Y, = (Y1,...,Y,) of X
and Y, respectively, and g is a function such that As-
sumption (A1)-(A5) are satisfied. In order to estimate

Algorithm 1 Estimation of the asymptotic variance

1: Input: Realizations x,, = (z1,...,z,) and y,, =
(y1,...,yn) of the samples X,, = (X1,...,X,)
and Y, = (Y1,...,Y,); feature functions f;
model weights A; real-valued function g; number
of Monte Carlo replications M.
2: form=1,...,M do
Simulate Y™ = (v{™, ..., ¥;™) conditional
on X, = x, using a finite Conditional Markov
Chain with feature functions f and model
weights A (Sutton and McCallum, 2006).

4:  Compute the sample statistic

n

> gl v™)

t=1

9m =

5: end for

6: Compute gar = 17 S0, g, and
M

A2 1

On,M = mZ(Qm

m=1

—am)>

7: Output: Estimate &7217M of the asymptotic vari-
ance o2 in Theorem 3.

o2, we resample sequences of latent states conditional

on X, using a finite Conditional Markov Chain. See
Algorithm 1 for a detailed outline.

Note that, alternatively, the conditional variance of
i, 9(X,Y;) given X, can be computed using the
exact formulas in (Sutton and McCallum, 2006). The
following theorem shows that the estimates & 5,
obtained by Algorithm 1 are strongly consistent.

Theorem 4. Suppose that Assumption (Al1)-(A5)
hold. Then the following result holds P-almost surely:

Proof: First, by the Law of large numbers, we have

1 ) (e
m Gom = nVar(l'”)(;g(Xt, Y1) ‘ X)
where the superscript (1 : n) of the variance on the
right hand side denotes integrals with respect to a fi-
nite CMC which only takes into account the obser-
vations X1, ..., X,. Next, using similar arguments
as Theorem 4 in (Sinn and Chen, 2012), we obtain
that the difference between finite and infinite CMCs is
asymptotically negligible, hence

lim f‘Var(I")(Zg X, Ys) ’X) _ UZ(X)’ _—

n—o0o MN
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Finally, according to the result in Theorem 2 (i7),

1o2(X) converges to o®. The proof is complete. [

In most practical situations, the feature functions f
and model weights A in Algorithm 1 are unknown and
need to be replaced by empirical estimates. In our
experiments in Section 5, we use the true feature func-
tions, and estimate the model weights by maximizing
the conditional likelihood of Y, given X, (Sha and
Pereira, 2003). The results suggest that the estimates
62’ s are still consistent in this case. A rigorous proof
is left as an open problem for future research.

5 Experiments

In this section, we illustrate the theoretical findings
from the previous sections using synthetically gener-
ated environmental data. In particular, we demon-
strate how to construct hypothesis tests for Condi-
tional Markov Chains. Important applications are,
e.g., testing for model misspeficiations, signficance of
feature functions, or dependencies between observa-
tions and latent states.

Data-Generating Model. In all our experiments,
X is an autoregressive process, X; = ¢ X;_1 + ¢;, with
the autoregressive coefficient ¢ = % and independent
standard normal innovations (e):cz. The process of
latent states Y has two different labels, Y = {0, 1}.
The distribution of Y conditional on X is induced by

the feature functions f = (f1, f2)” given by

Hmeye,u) = 2Ly = 1),
f2(xtayt—layt) = 1(yt—1:yt)a

and the model weights A = (A1, A2)7. In order to
simulate samples (X1,...,X,) and (Y3,...,Y,) from
an infinite Conditional Markov Chain, we generate
sequences of observations and latent states of length
n+ 2m using a finite Conditional Markov Chains, and
then discard the first and the last m values. In our
experiments, we found that discarding m = 50 values
is sufficient; for more information on the effect of these
“burn-in” periods, see (Sinn and Poupart, 2011b).

Figure 1 shows two examples: In the upper graph, we
choose the model weights A = (1,1)7. As can be seen,
there is a positive correlation between the observations
X; and the events Y; = 1. Furthermore, the latent
states tend to persist, i.e., there is a high probability
that Y; = Y;_1. In the lower graph, the model weights
are A = (0,1)7. In this case, the probability of the
event Y; = 1 is % independently from the observation
at time t, and the probability that Y; = Y;_1 equals
e/(1+e)~731%.

Time series as those in Figure 1 are commonly encoun-

Tt 2 o Yt

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

Figure 1: Realizations of a Conditional Markov Chain
with model weights A = (1,1)” (upper plot) and XA =
(0,1)T (lower plot). In the first case, there is a positive
correlation between the observations X; and the events
Y; = 1; in the second case the observations and latent
states are mutually independent.

tered in environmental studies. For example, think of
X as (normalized) daily average temperatures, and
Y as indicators of extreme ozone level concentrations.
More generally, multivariate observations can be taken
into account, e.g., comprising CO2 emissions or cloud
cover data. An important question in such studies is
whether particular covariates actually have an effect
on the latent states.

Asymptotic normality. First, let us consider the
asymptotic distributions both in the conditional and
unconditional case. In this experiment we choose the
model weights A = (1,1)7, and consider the partial
sums >, 9(X4, V) for g(x,y) = 2 1(y = 1) with the
sample size n = 1000.

Figure 2 (a)-(c) show examples of conditional distri-
butions, each obtained for a fixed sequence of obser-
vations by repeatedly simulating sequences of latent
states. Here and in all the following experiments, we
use 1000 Monte Carlo replications. The red lines dis-
play the fit of normal distributions. As can be seen,
the distributions all look approximately normal. The
standard deviations are very similar, however, there
is considerable variation in the conditional mean. Fig-
ure 2 (d) shows that the distribution of the conditional
mean itself is approximately normal. Finally, the un-
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Figure 2: Illustration of the Central Limit Theorem for Conditional Markov Chains. (a)-(c): Conditional distri-
butions, each obtained for a fixed sequence of observations. The red lines display the fit of normal distributions.
(d): Distribution of the conditional means. (e) Unconditional distribution.

conditional distribution of the partial sums is displayed
in Figure 2 (e). In accordance with Theorem 3, this
distribution can be regarded as the infinite mixture of
the conditional distributions which again is approxi-
mately normal.

Estimation of the asymptotic variance. Next,
we apply Algorithm 1 for estimating the asymptotic
variance o2 in Theorem 2. By simulations, we obtain
the true value 02 ~ 0.128. Table 1 shows the mean
and the standard deviation of the estimates 6%7 v for
M = 10,000. We report the results obtained using the
true model weights A, and the maximum likelihood
estimates. As can be seen, the estimates only have a
small bias, and the standard deviation decreases as the
sample size increases. Interestingly, the results for the
true and the estimated model weights are practically
identical, which supports our conjecture that Theo-
rem 4 still holds if A is replaced by strongly consistent
estimates.

True A Estimated A
n 100 1000 | 100 1000
Mean 0.129 0.128 | 0.129 0.128
Std.dev. | 0.053 0.016 | 0.0563 0.016

Table 1: Mean and standard deviation of the estimates
&7, 5 for different sample sizes n and M = 10, 000.

Hypothesis testing. Finally, let us show how the
previous methodology can be used for hypothesis test-
ing. Consider the null hypothesis Hy : A = (0,1). In
order to construct a test at significance level « € (0, 1),
we follow these steps: (S1) Compute the test statistic
T, = > 1 9(Xt,Y:). (S2) Use Algorithm 1 to com-
pute the estimate &721, 1 of 2. Analogously, compute
an estimate fi, ps of the conditional mean. Use the
model weights A = (0,1)” under Hy in these compu-
tations. (S3) Compute the standardized test statistic

Zn

1 .
m(Tn - Nn,M)~

(S4) Reject Hy if |Z,| is larger than the 100(1 — §)%
quantile of the standard normal distribution.

Table 2 shows the probability for rejecting Hy when
Hy is true (A = (0,1)7), and in a case (A = (1,1)7)
where Hj is wrong. As can be seen, the test preserves
the significance level, and achieves excellent power as
the sample size increases.

[ A=01D" | xA=01,1"
n =100 0.048 0.205
n=1000 |  0.045 0.967

Table 2: Probability for rejecting Hy at signficance
level oo = 0.05.
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6 Conclusions

The present paper provides a rigorous treatment of
Central Limit Theorems for real-valued functionals of
Conditional Markov Chains. The main result is The-
orem 2, which establishes asymptotic normality con-
ditional on the sequence of observations. An uncon-
ditional version is obtained if the conditional means
themselves are asymptotically normally distributed.
Algorithm 1 shows how the asymptotic variance can
be estimated by resampling the latent states condi-
tional on a given sequence of observations. The exper-
iments in Section 5 illustrate the Central Limit Theo-
rems both in the conditional and unconditional case,
and show the accuracy of the algorithm for the vari-
ance estimation. Moreover, it is demonstrated how the
methodology can be used for hypothesis testing.

The paper opens interesting questions for future re-
search. For example, it remains an open question when
the conditional means (or higher conditional moments)
are asymptotically normally distributed, which is a
prerequisite for the unconditional Central Limit Theo-
rem. Another problem is to prove that Algorithm 1 is
still consistent if the true model weights are replaced
by consistent estimates. One approach would be to
bound the derivatives of conditional marginal distri-
butions with respect to the model weights, which is an
important problem in its own right.
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